Décomposition en groupes dépendant du temps

Signaux-graphes pour l'étude d'interactions sociales Partie 2 -Temporalité dans les interactions sociales

Pierre Borgnat

CR1 CNRS – Laboratoire de Physique, ENS de Lyon, Université de Lyon

Équipe SISYPHE : Signaux, Systèmes et Physique

06/2014

Décomposition en groupes dépendant du temps

Généralités sur les dynamiques sociales

Quelques exemples de réseaux dynamiques

Téléphones

Sociopatterns: One day in a museum [Dublin, 2011]

 Article de review : [Holme & Saramäki, "Temporal networks", 2012]

Généralités sur les dynamiques sociales

 Dynamique non stationnaire : rythmes cycliques, "burstiness",...

Généralités sur les dynamiques sociales

- Les durées contact et inter-contact suivent une loi de puissance
- Exemple sur le conférence à SLC

Durées d'inter-contact

Généralité: 000 Réseaux dynamiques

Décomposition en groupes dépendant du temps

Réseaux dynamiques

- Complexification progressive : topologie fixe ; réseaux en croissance ; processus dynamiques sur topologie fixe ; processus dynamique en co-évolution avec réseaux dynamiques ; réseaux temporels
- Contextes : épidémies, diffusion d'information (de rumeur), réseaux de communication ad-hoc, sans fil, micro-blogs, réseaux d'évolution en biologie, etc.
- => Réseaux temporels
- Quels modèles, quels outils ?

[Scherrer et al. "Description and simulation of dynamic mobility network", Computer

Networks (2008)]

- Methodology: empirical analyses from data
- Available datasets at that time:
 - IMOTE: 41 nodes, 3 days, sampling 2' [Chaintreau et al., 2006]
 - MIT: 100 nodes, 9 months, sampling 5' [Eagle et al., 2007]
- Power-laws strike back:
 - -Contact and inter-contact duration PDF

[Chaintreau et al., 2006]

-Scale-free networks, Small worlds networks,...

[Barabasi, 1999]

Généralités 000 Réseaux dynamiques

Data

IMOTE

IMOTE

Туре

Inter-contact

Contact

Décomposition en groupes dépendant du temps

Analysis of Dynamical Network

Scale invariance in dynamical networks

[IMOTE dataset]

Mean (s)

3680

140

С

156

98

α

0.60

1.66

Généralités 000 Réseaux dynamiques

Décomposition en groupes dépendant du temps

Analysis of Dynamical Network

Basic Statistics [IMOTE, 2006]

Prop.	Data	PDF	Mean	Std.	Corr. T (s)
# Liens	And		21.9	12.4	3930
# Nœuds			19.9	4.73	5540
Degré Moyen			2.08	0.77	3600
# CC			4.75	2.12	3380
# Triangles	The (score) + th	ž c. tu ž c. tu ž c. tu č c. tu č c. tu č c. tu c. tu c.t	6.93	8.30	4440

Généralités 000 Réseaux dynamiques

Décomposition en groupes dépendant du temps

Analysis of Dynamical Network

Joint Distribution

Connected Nodes/Links

Nonnected Nodes/Links in CC

Large Variability

For a given number of connected nodes, the # of connected links may be widely spread.

G	é	n	é	r	а	i	t	é	S	
	С)							

Décomposition en groupes dépendant du temps

Dynamical properties: link creation/deletion process

Link creation/deletion is not much correlated along time

Not many correlation between evolution of different nodes.

Exemple d'un modèle de réseau dynamique

- Travail de [Scherrer et al. "Description and simulation of dynamic mobility network", *Computer Networks* (2008)]
- Principe de base pour proposer un modèle de réseau dynamique : modèle dynamique d'activation / inactivation des liens
- Objectif : respecter les contraintes mesurées = statistiques globales
- Nombre de nœuds / liens connectés
- Degré des nœuds
- Nombre de triangles, etc.

Exemple d'un modèle de réseau dynamique

- Simulation du processus d'ajout/suppression de lien, pour chaque lien et chaque pas de temps indépendamment
- Contraintes : on garde les distrib. temporelles des temps de contacts / inter-contacts
- On force la création de triangles

```
For i=0..Simulation-Time
For each link e
Pr = Uniform(0,1);
Ptr(e,t) = TransitionProbability(e,t);
if (Pr \le Ptr(e,t))
ChangeState(e);
```

Prise en compte des contacts / inter-contacts

- Objectif ? Reproduire la distribution stationnaire des temps de contact P_{ON}(t) / inter-contact P_{OFF}(t).
- Pourquoi ? Ces distributions ont une queue lourde.
- Comment ? Calculer P₊(t) et P₋(t)) en fonction de P_{ON}(t) et P_{OFF}(t).

$$P_{ON}(t) = P_{-}(t) \times \prod_{i=1}^{t-1} (1 - P_{-}(i))$$

On peut inverser cette relation pour obtenir $P_{-}(t)$ récursivement:

$$\begin{aligned} P_{-}(t) &= \frac{P_{ON}(t)}{\prod_{i=1}^{t-1}(1-P_{-}(i))}, \quad t \geq 2, \quad P_{-}(1) = P_{ON}(1) \\ P_{+}(t) &= \frac{P_{OFF}(t)}{\prod_{i=1}^{t-1}(1-P_{+}(i))}, \quad t \geq 2, \quad P_{+}(1) = P_{OFF}(1) \end{aligned}$$

p. 14

Prise en compte des créations de triangles

- Objectif ? Favoriser les ajouts de liens qui créent un nouveau triangle.
- Pourquoi ? Reproduire la proportion de ces évènements observée dans les données.
- Comment ? Pondération de la probabilité de transition P₊(t).

$$P_+(t)rac{P_{+/tri=}}{f_{+/tri=}}$$

1

Pour les créations de liens qui mène à une création de triangle

$$P_+(t)\frac{P_{+/tri=}}{f_{+/tri=}}$$

Pour les créations de liens qui ne mène pas à une création de triangle

Décomposition en groupes dépendant du temps

Informations injectées dans le modèle

Décomposition en groupes dépendant du temps

Distributions conjointes obtenues

 La variabilité des configurations n'est reproduite que par le modèle favorisant les triangles

Généralités 000

Décomposition en groupes dépendant du temps

Densités des communautés

• La densité des communautés n'est reproduite que par le modèle favorisant les triangles

Autres questions ou modèles pour les réseaux dynamiques

- Modèles écrits au niveau des groupes cf. [Stehlé, Barrat et al., 2010, 2011]
- Flèche du temps dans les interactions sociales ? (poser la question à Nicolas Tremblay...)
- Trouver des modèles de graphes temporels G^t = (V^t, E^t) ou bien de flots de liens (A_i, B_i, t_i)
- Adapter la notion de communautés aux réseaux dynamiques

Décomposition en groupes dépendant du temps

- Sur cette question, il existe plusieurs solutions et pas encore de consensus
- Présentation ici de quelques travaux dans ce sens
- Autre piste qui ne sera pas présenté dans le cours : dans le cadre de la thèse de Ronan Hamon (transformation de graphes en signaux et NMF)

 Définition d'un groupe dynamique de manière formelle :
 sous-graphe maximal ayant au moins σ liens pendant plus que τ pas de temps

- critère de densité : $2|E||V|(|V|-1) \ge \delta$

• Rechercher exhaustive (en data mining) par *D-miner* (utilise la monotocité de la définition)

p. 20 From time step 1 to time step 4

From time step 4 to time step 6

Décomposition en groupes dépendant du temps

Décomposition en groupes dépendant du temps -1

- Résultat sur les données IMOTE [Scherrer et al., 2008]
- Cercles = groupes ; carrés = individus

Trajectoires des individus parmi les groupes.

Décomposition en groupes dépendant du temps

Décomposition en groupes dépendant du temps -2

- **Travail de** [Gauvin et al. "Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach", *PLOS One* (2014)]
- Codage Tensoriel du cube de données des $\mathcal{G}^t = (\mathcal{V}, \mathcal{E}^t)$

Décomposition tensorielle de type PARAFAC

$$\mathcal{T} = \sum_{r}^{R_{\mathcal{T}}} \mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}$$

Décomposition en groupes dépendant du temps -2

- Applications : école primaire [Sociopatterns]
- Groupes obtenus

Cohérence des groupes

Décomposition en groupes dépendant du temps -2

Interprétation des groupes : classes vs. groupes

(23	0	0	0	0	0	0	0	0	0 \	(23)	0	0	0	0	0	0	0	0	0	0	13	0)
0	25	0	0	0	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0	15	14
0	0	22	0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	12	0
0	0	0	26	0	0	0	0	0	0	0	0	0	26	0	0	0	0	0	0	23	16	0
0	0	0	0	23	0	0	0	0	0	0	0	0	0	23	0	0	0	0	0	22	17	0
0	0	0	0	0	22	0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	9	2
0	0	0	0	0	0	21	0	0	0	0	0	0	0	0	0	21	0	0	0	0	3	12
0	0	0	0	0	0	0	23	0	0	0	0	0	0	0	0	0	23	0	0	0	1	8
0	0	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0	0	21	0	0	1	12
0 /	0	0	0	0	0	0	0	0	24/	(0	0	0	0	0	0	0	0	0	24	0	1	13/

Décomposition en groupes dépendant du temps

Décomposition en groupes dépendant du temps -2

Activités au cours du temps des groupes

- Travail de [Xu, Kliger, Hero "Tracking Communities in Dynamic Social Networks", (2011, 2013)]
- Introduire de la continuité temporelle dans les méthodes de recherches de groupes ou clusters
- Idée principale : Adaptive Forgetting Factor for Evolutionary Clustering and Tracking (AFFECT)
- Modèle supposé :

$$W^t = \Psi^t + N^t$$

- Suivi à la Kalman
- Au premier ordre : du lissage exponentiel de la matrice d'adjacence

$$\bar{\boldsymbol{W}}^{t} = \alpha^{t} \bar{\boldsymbol{W}}^{t-1} + (1 - \alpha^{t}) \boldsymbol{W}^{t}$$

Décomposition en groupes dépendant du temps -3

• Estimation de α^t : minimisation du MSE

$$(\alpha^{t})^{*} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{var}(w_{ij}^{t})}{\sum_{i=1}^{n} \sum_{j=1}^{n} \left[(\bar{w}_{ij}^{t-1} - \psi_{ij}^{t})^{2} + \operatorname{var}(w_{ij}^{t}) \right]}$$

Décomposition en groupes dépendant du temps -3

 Comparaison entre le clustering ainsi obtenue et celui sans continuité temporelle

Décomposition en groupes dépendant du temps -3

 Changement des groupes instantanés obtenus juste avant et après les vacances d'hiver

 Développements à reprendre ou faire : nombre de groupes ? réseaux multiplexés ? Généralité 000 Réseaux dynamiques

Décomposition en groupes dépendant du temps

Conclusion

- Beaucoup de ces sujets sont très actifs
 - Analyse des données sociales numériques
 - Étude des réseaux complexes, avec l'apport du traitement du signal
 - Réseaux dynamiques
- Beaucoup d'enjeux, d'opportunités, de sujets
- Des données et des questions originales par rapport au TSI habituel

http://perso.ens-lyon.fr/pierre.borgnat

Remerciements: merci à Nicolas Tremblay et à Marton Karsai (LIP, ENSL) à qui j'ai emprunté beaucoup de figures ou diapo.