

École Normale Supérieure www.di.ens.fr/data/scattering

• Comment analyser automatiquement ces informations ?

High Dimensional Analysis

• High-dimensional signals x = (x(1), ..., x(d)):

 $d = 10^{6}$

• Supervised learning: learn a function f(x) (class label) given n sample values $\{x_i, y_i = f(x_i)\}_{i \le n}$

Different Class of Problems

- Unsupervised problems: we know examples $\{x_i\}_i$ and want to estimate a probability density p(x) or clusters.
- Supervised problems: we know examples $\{x_i\}_i$ and their values $f(x_i)$ and want to estimate f(x) for all $x \in \Omega$.

Different Level of Complexity:

- Low dimensional problems: $\dim(\Omega)$ is small.
- High-dimensional but separable: $f(x) = \prod_{k=1}^{d} f_k(w_k.x)$

with 1D functions $f_k(u)$ for $u \in \mathbb{R} \Rightarrow$ indépendant components.

• High-dimensional Ω with many interactions: OUR PROBLEM.

Monday, June 23, 14

Many Body Interactions

Long range interactions: each body interacts with the d others

Interaction energy f(x) of a system $x = \{ \text{positions, values} \}$ Astronomy Masses Quantum Chemistry Charges

- Recherche des lois de la physique: synthèses d'observations. Intelligences exceptionnelles: Newton, Maxwell, Einstein...
- Vraiment ?

Electric Eel 500*V*

Blackghost Knifefish 1*mV*

Un poisson peut résoudre les équations de l'électromagnétique bien mieux que nous.

• On peut apprendre directement à partir des données, mais il en faut **beaucoup**, **beaucoup**...

Une Architecture de Traitement

de Données Massives

- Comment et quoi apprendre ?
- Pourquoi faut il beaucoup de données et de mémoire ?

- I- Curse of Dimensionality and Kernel Classifiers
 - Support vector machines
 - Kernels and metrics
- II- Deep Neural Networks and Wavelet Scattering Transforms
 - Geometric invariants
 - Iterated wavelet transforms
 - Image and audio classification, and physics learning
 - Stationary Processes: beyond Gaussian processes
- III- Unsupervised Kerenel Learning with Deep Neural Networks

Nearest Neighbor Approximations

- f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by
- local interpolation if f is regular and there are close examples:

Regression:
$$\tilde{f}(x) = \sum_{i} \alpha_i K(x, x_i)$$

Classification binaire: $\tilde{f}(x) = \operatorname{sign}\left(\sum_{i} \alpha_{i} K(x, x_{i})\right)$

Problème des plus proche voisins: ils sont trés loin en grande dimension.

- il faut 10 points pour couvrir [0, 1] à intervalles 10^{-1}

La Malédiction de la Dimensionalité-

- il en faut 100 pour $[0, 1]^2$

0										
Ŭ	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
Т										

- il en faut 10^d pour $[0,1]^d$: impossible si $d \ge 100$ 10^{100} : plus que le nombre d'atomes dans l'univers.

 \Rightarrow on ne peut apprendre que des choses assez simples

High Dimensional Classification

- Considerable variability in each class.
- Euclidean distances are meaningless
- Need to find **discriminative invariants**.

Signal Representation

- Signals x belong to subsets Ω of \mathbb{R}^d
- \bullet No dimensionality curse when Ω is low-dimensional

Finding Ω is a signal representation issue: manifold learning or sparse dictionary representation

 $||x_1 - x_2||$ is a good local measure of similarity

• For complex signals, Ω is most often high-dimensional:

 \mathbf{X}_{1}

 \mathbf{X}_{2}

 $\Rightarrow \Omega$ must be reduced depending on f.

Low-Dimensional Data

• Face variations • Rigid motions

• Lips motion

• Identify the manifold where the data lies.

High-Dimensional Data

Textures

Electro-Cardiograms

Audio Recordings

Turbulences

• Need to eliminate irrelevant variability: compute invariants.

Monday, June 23, 14

Linear and Kernel Classifiers

• Classifications can be reduced to multiple binary classifications $\operatorname{sign}(f(x)) = \pm 1$ Training samples: $\{(x_i, y_i)\}_i$

Representation

Training samples: $\{(x_i, y_i)\}_i$ Supervised linear classification

w

$$\begin{array}{c} \mathbb{R}^{d} & \mathbb{R}^{d'} \\ x \longrightarrow \Phi \\ d' \gg d \end{array} \xrightarrow{} \left\{ \phi_n(x) \right\}_{n \leq d'} \longrightarrow \left[\langle \Phi x, w \rangle + b \xrightarrow{?} 0 \right] \longrightarrow \text{ class}$$

Hyperplance separation between pairs of classes:

$$f(x) = \langle \Phi x, w \rangle + b = \sum_{n} w_n \phi_n(x) + b$$

• (1) How to optimize (w, b) to minimize "errors" ? SVM: f(x) depends on kernel values $K(x, x_i) = \langle \Phi(x), \Phi(x_i) \rangle$.

• (2) How to define Φ to get linear discriminative invariants ?

How to choose the Hyperplane ?

Given training data (\mathbf{x}_i, y_i) for $i = 1 \dots N$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i) \begin{cases} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

Linear decision boundary.

How to choose the Hyperplane ?

Given training data (\mathbf{x}_i, y_i) for $i = 1 \dots N$, with $\mathbf{x}_i \in \mathbb{R}^d$ and $y_i \in \{-1, 1\}$, learn a classifier $f(\mathbf{x})$ such that

$$f(\mathbf{x}_i) \begin{cases} \geq 0 & y_i = +1 \\ < 0 & y_i = -1 \end{cases}$$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

• maximum margin solution: most stable under perturbations of the inputs

Monday, June 23, 14

Support Vector Machine

SVM Convex Optimization

• Find w with a convex quadratic optimization: $\min_{w} \|w\|^{2} \text{ subject to } \forall i \ y_{i}(w^{t}x_{i}+b) \geq 1$ Solution : $f(x) = \sum \alpha_{i} y_{i}(x_{i}^{t}x) + b$

Soft Margin Minimization

Kernel Support Vector Machine

$$f(x) = w^t x + b = \sum_i \alpha_i y_i \left(x_i^t x \right) + b.$$

• Replacing x by its representation $\Phi(x)$:

$$f(x) = w^t \Phi(x) + b = \sum_i \alpha_i y_i \left(\Phi(x_i)^t \Phi(x) \right) + b.$$

• Kernel trick: $K(x_i, x) = \Phi(x_i)^t \Phi(x)$ similarity measure

$$f(x) = \sum_{i} \alpha_i y_i K(x_i, x) + b.$$

Non-linear decision boundary.

• How to choose $\Phi(x)$ or equivalently K(x, x') (Mercer thm.)

A kernel is symmetric if K(x, x') = K(x', x) and positive if

Mercer Theorem

$$\forall c_i \in \mathbb{R} \ \forall x_i \in \mathbb{R}^d \ , \ \sum_i \sum_j K(x_i, x_j) c_i c_j \ge 0$$

Theorem If K(x, x') is continuous, symmetric, positive then there exists Φ from \mathbb{R}^d to a Hilbert space \mathcal{H} such that

$$K(x, x') = \Phi(x)^t \Phi(x') = \langle \Phi(x), \Phi(x') \rangle$$

Example: Gaussian kernel $K(x, x) = \exp\left(\frac{-\|x-x'\|^2}{2\sigma^2}\right)$

Increase Dimensionality

Proposition: There exists a hyperplane separating any two subsets of N points $\{\Phi x_i\}_i$ in dimension d' > N + 1if $\{\Phi x_i\}_i$ are not in an affine subspace of dimension < N.

 \Rightarrow Choose Φ increasing dimensionality !

Problem: generalisation.

Example: Gaussian kernel $K(x', x) = \exp\left(\frac{-\|x-x'\|^2}{2\sigma^2}\right)$

 $K(x', x) = \langle \Phi(x'), \Phi(x) \rangle$ where $\Phi x \in \mathcal{H}$ inifinite dimensional.

If σ is small, nearest neighbor classifier type:

High-Dimensional Curse

- We want to learn f(x) with $x \in \Omega$ and $\dim(\Omega) = d$ very big from n examples $\{x_i, f(x_i)\}_{i \leq n}$
- Curse of dimensionality: if $n \ll 2^d$ then for "most" x: $\min_i ||x - x_i||$ is large

 $\Rightarrow f(x)$ can not be computed with a local interpolation

1 Layer Neural Network

• Ridge function approximations: $\Phi(x) = \left\{ \rho(\langle w, x \rangle \right\}_w \rho(t) = e^{it}, \max(t, 0), \operatorname{argtan}(t), \psi(t), \dots \right\}$

Theorem: For "resonnable" bounded $\rho(u)$ If $f \in \mathbf{C}^{\alpha}[0,1]^d$ then $||f - f_M|| \leq C M^{-\alpha/d}$

Deep Neural Neworks

• The revival of an old idea (G. Hinton, Y. LeCun)

Gradient descent learning of the W_k : more than 10⁹ parameters ImageNet (10⁶ images and 10³ classes): 17% error Images, speech, bio-data: FaceBook, IBM, Google, Microsoft, Yahoo...

Why does it work?

Neurophysiologie de la Perception

Vision

Hubel, Wiesel Cellules simples modélisées par des ondelettes

• Reduce the space volume with iterated contractions

$$\Phi x = \rho W_m \dots \rho W_2 \rho W_1 x$$

- W_k preserve distances: $||W_k x W_k x'|| = ||x x'||$ - ρ is a contraction
- Iterative space contraction: reduce intra-class variability but avoid reducing class distances: margin condition.

- Contract Ω with an operator Φ such that:
 - $-\forall x \in \Omega$, $\min_i \|\Phi(x) \Phi(x_i)\|$ is small
 - f(x) is regular relatively to $d(x, x') = \|\Phi(x) \Phi(x')\|$

$$\forall x, x' | f(x) - f(x') | \le C \| \Phi(x) - \Phi(x') \|$$

Regression margin condition: $\|\Phi(x) - \Phi(x')\| \ge C^{-1}|f(x) - f(x')|$

then f(x) can be locally interpolated:

$$f(x) \approx \sum_{i=1}^{n} \alpha_i e^{\frac{\|\Phi(x) - \Phi(x_i)\|^2}{2\sigma^2}}$$

Volume Reduction

- Contract Ω with an operator Φ such that:
 - $-\forall x \in \Omega$, $\min_i \|\Phi(x) \Phi(x_i)\|$ is small
 - f(x) is regular relatively to $d(x, x') = \|\Phi(x) \Phi(x')\|$

$$\forall x, x' | f(x) - f(x') | \le C \| \Phi(x) - \Phi(x') \|$$

Classification

margin condition: $\|\Phi(x) - \Phi(x')\| \ge C^{-1}$ if $f(x) \ne f(x')$

then f(x) can be locally estimated:

$$f(x) \approx \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i e^{\frac{\|\Phi(x) - \Phi(x_i)\|^2}{2\sigma^2}}\right)$$

II- Translations and Deformations

• Patterns are translated and deformed

Invariance to Translations Two dimensional group: \mathbb{R}^2

Deformations are actions of diffeomorphisms: infinite group. Each digit is invariant to a specific set of small deformations

• Textures are stationary (translation invariant) processes

with deformations

Translation and Deformations

Stable Translation Invariants

• **Invariance** to translations $x_c(t) = x(t-c)$

$$\forall c \in \mathbf{R}$$
, $\Phi(x_c) = \Phi(x)$.

$$x(t) \underbrace{\int \left(\frac{\Phi(x)}{2} \right) = \left| \hat{x}(\omega) \right|_{x}}_{x_{\tau}(t)} \underbrace{Fourier Modulus}_{x_{\tau}(t)} \underbrace{\int \left(\frac{\Phi(x_{\tau})}{2} \right) = \left| \hat{x}(\omega) \right|_{x_{\tau}(t)} \underbrace{\int \Phi(x_{\tau})}_{\omega} = \Phi(x_{\tau}) \right| \gg \sup_{t} |\tau'(t)| ||x||}_{x_{\tau}(t)} \underbrace{\int \Phi(x_{\tau})}_{0} = \left| \hat{x}(\omega) \right|_{\omega} \underbrace{\int \Phi(x_{\tau})}_{\omega} = \Phi(x_{\tau}) || \gg \sup_{t} |\tau'(t)| ||x||}_{x_{\tau}(t)} \underbrace{Fourier invariants}_{are not stable either.}$$

• Lipschitz stable to diffeomorphisms $x_{\tau}(t) = x(t - \tau(t))$ small deformations of $x \implies$ small modifications of $\Phi(x)$

$$\forall \tau$$
, $\|\Phi(x_{\tau}) - \Phi(x)\| \leq C \sup_{t \in T} |\nabla \tau(t)| \|x\|$.
diffeomorphism metric

Fourier Translation Invariance

• Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$ invariance:

if
$$x_c(t) = x(t-c)$$
 then $|\hat{x}_c(\omega)| = |\hat{x}(\omega)|$

• Instabilities to small deformations $x_{\tau}(t) = x(t - \tau(t))$: $||\hat{x}_{\tau}(\omega)| - |\hat{x}(\omega)||$ is big at high frequencies

Example: If $\tau(t) = \epsilon t$ then $x_{\tau}(t) = x((1 - \epsilon)t)$

$$\Rightarrow \widehat{x}_{\tau}(\omega) = (1-\epsilon)^{-1} \widehat{x}((1-\epsilon)^{-1}\omega)$$

Scale Separation with Wavelets

- Complex wavelet: $\psi(t) = \psi^a(t) + i \psi^b(t)$
- Dilated: $\psi_{\lambda}(t) = 2^{-j} \psi(2^{-j}t)$ with $\lambda = 2^{-j}$.

• Wavelet transform:

$$Wx = \begin{pmatrix} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \xrightarrow{}_{t,\lambda} \end{pmatrix} \text{ averaging high frequencies}$$

Unitary: $\|Wx\|^2 = \|x\|^2$.

Scale and Direction Separation in 2D-

• Complex wavelet: $\psi(t) = \psi^a(t) + i \psi^b(t)$, $t = (t_1, t_2)$ rotated and dilated: $\psi_\lambda(t) = 2^{-j} \psi(2^{-j}r_\theta t)$ with $\lambda = (2^j, \theta)$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{t,\lambda}$

Unitary: $||Wx||^2 = ||x||^2$.
Wavelet Tight Frames in L2

Functions in $\mathbf{L}^2(\mathbb{R}^d)$: $||x||^2 = \int |x(t)|^2 dt < \infty$

$$Wx = \left(\begin{array}{c} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{array}\right)_{t,\lambda}$$

Proposition: (Littlewood-Paley)

The wavelet transform is a tight frame for $x \in \mathbf{L}^2(\mathbb{R}^d)$

$$||Wx||^{2} = ||x \star \phi||^{2} + \sum_{\lambda} ||x \star \psi_{\lambda}||^{2} = ||x||^{2}$$

if and only if for almost all ω .

$$|\hat{\phi}(\omega)|^2 + \frac{1}{2} \sum_{\lambda} \left(|\hat{\psi}_{\lambda}(\omega)|^2 + |\hat{\psi}_{\lambda}(-\omega)|^2 \right) = 1$$

• Wavelets are uniformly stable to deformations:

if $\psi_{\lambda,\tau}(t) = \psi_{\lambda}(t - \tau(t))$ then

$$\|\psi_{\lambda} - \psi_{\lambda,\tau}\| \leq C \sup_{t} |\nabla \tau(t)|.$$

Wavelet Translation Invariance

Locally invariant to translations and stable to deformations but loss of information.

Recovering Lost Information

• The high frequencies of $|x \star \psi_{\lambda_1}|$ are in wavelet coefficients:

$$W|x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t) \end{array}\right)_{t,\lambda_2}$$

• Translation invariance by time averaging the amplitude:

$$\forall \lambda_1, \lambda_2, \quad ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(t)$$

Translation Invariance

Local invariant by translation $x \star \phi$ Wavelet transform W_1 $x \star \psi_{\lambda_1}(t)$ $x \star \psi_{\lambda_1'}(t)$ $x \star \psi_{\lambda_1''}(t)$ $x \star \psi_{\lambda_1'''}(t)$ scale and orientation separation w

Scattering Neuronal Network

Scattering Neuronal Network

Theorem:

 $||Sx - Sx'|| \le ||x - x'||$ et ||Sx|| = ||x||

Scattering Properties

$$Sx = \begin{pmatrix} x \star \phi(u) \\ |x \star \psi_{\lambda_1}| \star \phi(u) \\ ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(u) \\ |||x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(u) \\ \dots \end{pmatrix}_{u,\lambda_1,\lambda_2,\lambda_3,\dots}$$
$$\|Sx\|^2 = \sum_{m=0}^{\infty} \sum_{\lambda_1,\dots,\lambda_m} \left\| |||x \star \psi_{\lambda_{\epsilon}}| \star \dots | \star \psi_{\lambda_m}| \star \phi \right\|^2$$

Theorem: For appropriate wavelets, a scattering is contractive $||Sx - Sy|| \le ||x - y||$ preserves norms ||Sx|| = ||x||stable to deformations $x_{\tau}(t) = x(t - \tau(t))$ $||Sx - Sx_{\tau}|| \le C \sup_{t} |\nabla \tau(t)| ||x||$

Monday, June 23, 14

Lipschitz Stability to Deformations -

Wavelet transforms "nearly commute" with deformations:

 $D_{\tau}x(t) = x(t - \tau(t))$

Commutator operator:

$$[W, D_{\tau}] = W D_{\tau} - D_{\tau} W$$

Lemma :

$$\| [W, D_{\tau}] \| \leq C \sup_{t} |\nabla \tau(t)| .$$

and $\| [|W|, D_{\tau}] \| \leq \| [W, D_{\tau}] \|$ because modulus commutes with diffeomorphisms.

Image Scattering Transforms

Image x(t) $t = (t_1, t_2)$ Fourier Modulus $|\hat{x}(\omega)|$ $\omega = (\omega_1, \omega_2)$ Scattering $\phi(t) = 1$ $|x \star \psi_{\lambda_1}| \star \phi$ $||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi$ $||x \star \psi_{\lambda_1}||_1$ $||x \star \psi_{\lambda_1}| \star \psi_{2^{j_2}}||_1$

$$\lambda_1 = 2^{j_1} r_{\theta_1}$$

Digit Classification: MNIST

__Digit Classification: MNIST

Second order Scattering Sx:

$$|x \star \psi_{\lambda_1}| \star \phi(2^J n)$$

 $||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(2^J n)$

Affine Space Classification

Joan Bruna

- Each class is represented by a random process X_k
 - The support of SX_k is approximated by a low-dimensional
 - affine space \mathbf{A}_k computed with a PCA.

$$\hat{k}(x) = \arg\max_{k} \|Sx - P_{\mathbf{A}_{\mathbf{k}}}Sx\|.$$

Digit Classification: MNIST

Joan Bruna

3681796691 6757863485 2179712345 4819018894

Classification Errors

Training size	Conv. Net.	Scattering
300	7.2%	4.4%
5000	1.5%	1.0 %
20000	0.8%	0.6 %
60000	0.5%	0.4 %

LeCun et. al.

Many Body Interactions

Long range interactions: each body interacts with the d others

Interaction energy f(x) of a system $x = \{ \text{positions, values} \}$ Astronomy Masses Quantum Chemistry Charges

Many Body Interactions

• Energy of d interacting bodies: $d \quad d$

$$f(x) = \sum_{k=1}^{a} \sum_{k'=1}^{a} \frac{q_k q_{k'}}{|p_k - p_{k'}|^{\beta}} \quad \text{with} \quad x(u) = \sum_{k=1}^{a} q_k \,\delta(u - p_k)$$

N. Poilvert

А

Matthew Hirn

Fast multipoles: each particle interacts with $O(\log d)$ groups (Rocklin, Greengard)

Potential
$$|r|^{-\beta} \Rightarrow$$

Theorem: For any $\epsilon > 0$ there exists wavelets with

$$f(x) = \sum_{m=0}^{M} \sum_{\lambda_1, \lambda_m} \alpha(\lambda_1, ..., \lambda_m) S^2 x(\lambda_1, ..., \lambda_m) (1 + \epsilon)$$

Monday, June 23, 14

Quantum Chemistry

• Energies f(x) de différentes configurations x de H_2 , H_3 et H_4 plongées sur une variété tri-dimensionelle:

Scattering Representation

Fourier Representation

Quantum Chemistry

- Complex orbital interactions: no analytical energy f(x).
- Estimation from n = 700 nearly 2D molecules: $\{x_i, f(x_i)\}_{i \le n}$

Matthew Hirn

• Best *M* dimensional approximation f_M of *f* calculated from scattering vectors $\left\{Sx(p), S^2x(p)\right\}_p$

 $\log ||f - f_M||$: M-dimensional scattering error

Monday, June 23, 14

Textures with Same Spectrum

x(t): stationary process

Textures x(t)

window size = image size

Wavelet Scattering

Expected Scattering Transform

• If X(t) is a stationary process then

 $||X \star \psi_{\lambda_1}| \star ... | \star \psi_{\lambda_m}(t)|$ is also stationary.

Scattering :

$$SX(t) = \begin{pmatrix} X \star \phi(t) \\ |X \star \psi_{\lambda_1}| \star \phi(t) \\ ||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi(t) \\ ||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi(t) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

• When $\phi \to 1$ with "appropriate" ergodicity conditions" SX(t) may converge to the expected scattering transform:

$$\overline{S}X = \begin{pmatrix} E(X) \\ E(|X \star \psi_{\lambda_1}|) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ E(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$$

Wavelet Tight Frames in L2

Functions in $\mathbf{L}^2(\mathbb{R}^d)$: $||x||^2 = \int |x(t)|^2 dt < \infty$

Wavelet transform: $Wx = \begin{pmatrix} x \star \phi(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{t,\lambda}$

Proposition: (Littlewood-Paley)

The wavelet transform is a tight frame for $x \in \mathbf{L}^2(\mathbb{R}^d)$

$$||Wx||^{2} = ||x \star \phi||^{2} + \sum_{\lambda} ||x \star \psi_{\lambda}||^{2} = ||x||^{2}$$

if and only if for almost all ω .

$$|\hat{\phi}(\omega)|^2 + \frac{1}{2} \sum_{\lambda} \left(|\hat{\psi}_{\lambda}(\omega)|^2 + |\hat{\psi}_{\lambda}(-\omega)|^2 \right) = 1$$

Wavelet Frames of Processes

Stationary processes X(t) with $\mathbb{E}(|X(t)|^2) < \infty$.

Wavelet transform:
$$WX = \begin{pmatrix} \mathbb{E}(X) \\ X \star \psi_{\lambda}(t) \end{pmatrix}_{t,\lambda}$$

Proposition: (Littlewood-Paley)

The wavelet transform preserves the variance of stationary X

$$\mathbb{E}(X)^2 + \sum_{\lambda} \mathbb{E}(|X \star \psi_{\lambda}|^2) = \mathbb{E}(|X|^2)$$

if and only if for almost all ω .

$$\frac{1}{2}\sum_{\lambda} \left(|\hat{\psi}_{\lambda}(\omega)|^2 + |\hat{\psi}_{\lambda}(-\omega)|^2 \right) = 1$$

• S preserves is contractive because each $|W_k|$ are contractive

Expected Scattering Transform

X(t) stationary process: /

ationary process:

$$\overline{S}X = \begin{pmatrix} E(X) \\ E(|X \star \psi_{\lambda_1}|) \\ E(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}|) \\ E(|||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$$

$$|\overline{S}X||^2 = \mathbb{E}(X)^2 + \sum_{m=1}^{\infty} \sum_{\lambda_1,\dots,\lambda_m} \mathbb{E}\left(||X \star \psi_{\lambda_i}| \star \dots | \star \psi_{\lambda_m}|\right)^2$$

Theorem: A scattering is

contractive $\|\overline{S}X - \overline{S}Y\|^2 \le E(|X - Y|^2)$

stable to stationary deformations $X_{\tau}(t) = X(t - \tau(t))$

$$\|\overline{S}X - \overline{S}X_{\tau}\| \le C \sup_{t} |\nabla \tau(t)| E(|X|^2)^{1/2}$$

Expected Scattering Transform

Theorem For any stationary X, equivalent propositions:

(i) The scattering transform is mean-square consistent.

(*ii*)
$$\|\overline{S}X\|^2 = E(|X|^2)$$

(*iii*) $\lim_{m \to \infty} \sum_{\lambda_1, \dots, \lambda_m} \mathbb{E}\left(||X \star \psi_{\lambda_1}| \dots \star \psi_{\lambda_m}|\right)^2 = 0$

• Numerically always verified but not proved.

Representation of Random Processes

• An expected scattering is a non-complete representation

$$\overline{S}X = \begin{pmatrix} E(X) &= E(U_0X) \\ E(|X \star \psi_{\lambda_1}|) &= E(U_1X) \\ E(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) &= E(U_2X) \\ E(|||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) &= E(U_3X) \\ \dots & \end{pmatrix}_{\lambda_1,\lambda_2,\lambda_3,\dots}$$

Theorem (Boltzmann) The distribution p(x) which satisfies $\int_{\mathbb{R}^N} U_m x \ p(x) \ dx = E(U_m X)$ and maximizes the entropy $\int_{\mathbb{R}^N} p(x) \ \log p(x) \ dx$

and maximizes the entropy $-\int p(x) \log p(x) dx$

can be written:
$$p(x) = \frac{1}{Z} \exp\left(\sum_{m=1}^{\infty} \lambda_m \cdot U_m x\right)$$

Representation of Audio Textures

Joakim Anden Joan Bruna

- $x \in \mathbb{R}^d$ realization of a stationary process
- Gaussien model: covariance \Rightarrow d Fourier spectrum coefficients
- Scattering model Sx of second order: $\log^2 d$ coefficients

Sample X(t) so that ||SX - Sx|| is small

Original Gaussien/Fourier Scattering

Water

Paper

Cocktail Party

Synthesis Examples

original [McDermott & Simoncelli'11]

Gaussian

 $\begin{array}{c} 1 \mathrm{st+2nd} \ \mathrm{order} \ \mathrm{scattering} \\ K = 500 \end{array}$

J. Bruna

Monday, June 23, 14

Classification d'ECG

P. Abry, J. Anden, V. Chudacek, M. Doret, R. Talmon

• Mesure du niveau de stress d'un Fetus avant accouchement

Classification of Textures

$40~{\rm classes}$ of ${\rm CureT}$

Classification of Textures

Expected Scattering estimated with $\phi = 1$

 $|X \star \psi_{\lambda_1}| \star \phi$

X

Affine Space Classification

Joan Bruna

- Each class is represented by a random process X_k
 - The support of SX_k is approximated by a low-dimensional
 - affine space \mathbf{A}_k computed with a PCA.

$$\hat{k}(x) = \arg\max_{k} \|Sx - P_{\mathbf{A}_{\mathbf{k}}}Sx\|.$$
Classification of Textures

CUREt database 61 classes

0.2 %

1%

1%

46

Frequency Transpositions

Time and frequency translations and deformations:

• Frequency transposition invariance is needed for speech recognition not for locutor recognition.

Transposition Invariance

J.Anden

- Frequency transposition is a common source of variability
- Transposition \Leftrightarrow translation and deformations in log λ_1
- Invariance with a "frequency scattering" along $\log\lambda_1$

Genre Classification (GTZAN)

J.Anden

- GTZAN: music genre classification (jazz, rock, classical, ...) 10 classes and 30 seconds tracks.
- Each frame is classified using a Gaussian kernel SVM.

T = 370 ms

Feature Set	Error (%)
Δ-MFCC (32 ms)	19.3
Time Scat., m = 1	17.9
Time Scat., m = 2	12.3
Time & Frequency Scat., m=2	10.3

Phone Classification (TIMIT)

J.Anden

- Training on 3696 phrases (139868 phones) and and testing on 192 phrases (7201 phones)
- Each phone is classified using a Gaussian kernel SVM.

T = 32 ms

Feature Set	Error (%)
Δ-MFCC (32 ms)	19.3
State of the art (excl. scattering)	16.7
Time Scat., m = 1	18.5
Time Scat., m = 2	17.7
Time & Freq. Scat., m = 2	16.5

Joint versus Separable Invariants

- Separable cascade of invariants loose joint distributions.
- Separable rotation and translation invariants can not discriminate:

 \Rightarrow need to build invariant on the joint roto-translation group.

Roto-Translation Group

- Roto-translation group $G = \{g = (r, t) \in SO(2) \times \mathbb{R}^2\}$ $(r, t) \cdot x(u) = x(r^{-1}(u - t))$
- Group multiplication:

 $(r', t') \cdot (r, t) = (r'r, r't + t')$: not commutative.

- Inverse: $(r,t)^{-1} = (r^{-1}, -r^{-1}t).$
- An averaging invariant is convolution on $\mathbf{L}^{2}(G)$: x(g) = x(r, t)for total stations $\star: \phi(t) \gg \overline{\phi}(f) = \overline{\phi}(f) =$
- Roto-translation Haar measure : $dg = dt d\theta$ (rotation angle θ)

Scattering on a Lie Group

L. Sifre

- How to define a wavelet transform of $x(r,t) \in \mathbf{L}^{2}(G)$?
- One can define separable complex wavelets $\overline{\psi}_{\lambda_2}(r,t) \in \mathbf{L}^2(G)$

$$W_2 x = \left(\begin{array}{c} x \circledast \overline{\phi}(r,t) \\ x \circledast \overline{\psi}_{\lambda_2}(r,t) \end{array}\right)_{\lambda_2,r,t} \text{ is tight frame of } \mathbf{L}^2(G).$$

$$x \circledast \overline{\psi}_{\lambda}(g) = \int_{G} x(g') \,\overline{\psi}_{\lambda}(g'^{-1}g) \, dg'$$

$$\|x\|^{2} = \int_{G} |x(g)|^{2} dg = \|x \circledast \phi\|^{2} + \sum_{\lambda_{2}} \|x \circledast \psi_{\lambda_{2}}\|^{2}$$

Translation Invariance

Laurent Sifre

• Convolutions along translation parameter: t

Rotation-Translation Invariance

Laurent Sifre

• Convolutions along translation parameter: tConvolutions along rotation parameter: θ

Rotation-Scale Invariance

Laurent Sifre

translation

scalo-roto-translation

 \bullet Convolutions along translation parameter: t

Convolutions along rotation and scale parameters: θ , j

Rotation and Scaling Invariance

Laurent Sifre

0.6%

UIUC database: 25 classes

xTraining

20

20~%

Complex Source of Variability

CalTech 101/256 data-basis:

Arbre de Joshua

Castore

Ancre

Puma

Metronome

Buddha

Nénuphare

Guitare

Bateau

Lotus

Monday, June 23, 14

Alex Deep Neural Network

Problems/Datasets in Computer Vision

Imagenet

- 14,000,000 images (1,000,000 with bounding box annotations)
- 20000 categories

Instabilities of Deep Networks

ostrich

Monday, June 23, 14

classified

Deep Neural Neworks

For example: $\rho(u) = \max(0, u)$ or $\rho(u) = |u|$

Convolution networks: $W_m x(k) = \{x \star g_l(2k)\}_{l \leq K}$

• Reduce the space volume with iterated contractions

$$\Phi x = \rho W_m \dots \rho W_2 \rho W_1 x$$

- W_k preserve distances: $||W_k x W_k x'|| = ||x x'||$ - ρ is a contraction
- Iterative space contraction: reduce intra-class variability but avoid reducing class distances: margin condition.

Hierarchical Averaging Linear translation invariance by averaging.

• Hierarchical averaging: progressive invariant computation

W = (H, G) is an orthogonal operator

Monday, June 23, 14

W = (H, G) is an orthogonal operator

|W| = (H, |G|) is contracting

$$\left(\frac{a+b}{\sqrt{2}}, \frac{|a-b|}{\sqrt{2}}\right): \text{ permutation invariant of } (a,b)$$
$$\max(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2}$$
$$\min(a,b) = \frac{a+b}{2} - \frac{|a-b|}{2}$$

Haar Basis of Images

Haar Wavelet Scattering

Monday, June 23, 14

Wavelet Scattering

- What is happening if (H, G) are changed ? different wavelets.
- How to change the invariant ? change convolutions with permutations $S = \pi_4 |W_4| \pi_3 |W_3| \pi_2 |W_2| \pi_1 |W_1|$

Learning with Haar

- Learning convolutions/permutations reduces to pairing.
- Haar filtering of coefficient pairs:

$$\left\{x(k)\right\}_{k\leq d} \stackrel{\text{pairing}}{\longrightarrow} \left\{x(k), x(k')\right\}_{(k,k')} \stackrel{W}{\longrightarrow} \left\{\frac{x(k) + x(k')}{\sqrt{2}} , \frac{x(k) - x(k')}{\sqrt{2}}\right\}_{(k,k')}$$

• Permutation invariant contraction:

$$\left\{x(k)\right\}_{k\leq d} \stackrel{\text{pairing}}{\longrightarrow} \left\{x(k), x(k')\right\}_{(k,k')} \stackrel{|W|}{\longrightarrow} \left\{\frac{x(k) + x(k')}{\sqrt{2}}, \frac{|x(k) - x(k')|}{\sqrt{2}}\right\}_{(k,k')}$$

• Learn pairing $\{(k, k')\}$: low-dimensional problem (no curse) with optimal matching algorithms.

Learned Haar Scattering

Unsupervised Space Contraction

- Learn $S = \prod_m |W_m|$
- **Unsupervised**: minimise the data volume reduction

- Pair matching algorithm finds the pairing which maximizes the data volume: minimises a mixed l^2/l^1 sparsity norm.
- Sparsity minimises contraction:

$$||a| - |b|| = |a - b|$$
 if $a = 0$ or $b = 0$.
Learning with Optimal Contraction

• We want to maximize

$$\sigma^2(SX) = \sigma^2(\prod_{m=1}^J |W_m|X).$$

• Greedy: for increasing m finds W_m which maximizes

$$\sigma^2(|W_m|X_{m-1})$$
 with $X_{m-1} = \prod_{k=1}^{m-1} |W_k|X$

 $\sigma^2(|W_m|X_{m-1}) = \mathbb{E}(||W_m|X_{m-1}||^2) - ||\mathbb{E}(|W_m|X_{m-1})||^2$

⇒ find a grouping which minimizes $||\mathbb{E}(|W_m|X_{m-1})||^2$ sparsity l^2/l^1 norm: build discriminative features which are sparsely activated across realizations.

Digit Image Classification

Examples of MNIST written digits

Xu Chen, Xiu Cheng

Permutation of digit image pixels:

Unsupervised learning W_m for $1 \le m \le 4$ yields Haar wavelets of size 2^4

Reordered Haar pairing: 100% connected for first 3 levels m = 1, 2, 385% for m = 4 and 65% for m = 5

Learned Haar Scattering : 0.9% errors

Haar with Rotations

(a)

(b)

(Bruna, Szlam, Zaremb, LeCun)

-0.5

• Haar scattering: does not know translations and rotations

Bagging Scattering Vectors

• The training set $\{x_i, f(x_i)\}_i$ is divided in K groups example A Haar scattering representation $S_k x$ is learned from each g The aggregation $Sx = \{S_k x\}_{k \le K}$ is a vector size KN.

Conclusion

- Éfficacité remarquable des réseaux de neurones profonds:
 - Séparation d'échelles par ondelettes: scattering
 - Métriques invariantes et stables par difféomorphismes
 - Modèles de processus stationaires intermittents
- Apprentissage non-supervisé par contractions itérées.
- Grand potentiel à l'interface traitement du signal/apprentissage.

Papiers et Softwares Matlab: www.di.ens.fr/data/scattering