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Overview

1. Reconstruction : How to connect the points

Voronoi and Delaunay

The crust

2. Re-meshing : How to improve the mesh

Centroidal Voronoi Tesselation

Restricted CVT

Lp CVT



Overview

1. Reconstruction

Not covered here:

Volumetric methods, model repair

2. Re-meshing

More on this Chapter 6
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1. Reconstruction

How to connect the points ?
Intuitively: based on proximity



1. Reconstruction

Voronoi diagram

X = (x1, x2, xn) set of points

xi = (xi,yi)           one of the points



1. Reconstruction

Voronoi diagram

X = (x1, x2, xn) set of points

xi = (xi,yi)           one of the points

Vor(i) =  { x / d(x,xi) < d(x,xj) } j
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Voronoi diagram

X = (x1, x2, xn) set of points

xi = (xi,yi)           one of the points

Vor(i) =  { x / d(x,xi) < d(x,xj) } j

Euclidean distance
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Voronoi diagram of two points

x1
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Vor(x2):

d(x,x2) < d(x,x1)



1. Reconstruction
Voronoi diagram of two points

x1

x2

Bisector:

d(x,x1) = d(x,x2)
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Voronoi diagram of two points

x1

x2

Bisector:

d(x,x1) = d(x,x2)
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Voronoi diagram of three points

x1

x3x2

d(x,x2) = d(x,x3)



1. Reconstruction
Voronoi diagram of three points

x1

x3x2

p

d(p,x1) = d(p,x2) = d(p,x3)



1. Reconstruction
Voronoi diagram of three points

x1

x3x2

p

p is the circumcenter of the triangle (x1,x2,x3)



1. Reconstruction
Voronoi diagram 

of N points



1. Reconstruction

Voronoi diagram Delaunay triangulation 

Cell



1. Reconstruction

Voronoi diagram Delaunay triangulation 

Cell



1. Reconstruction

Voronoi diagram Delaunay triangulation 
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Voronoi diagram Delaunay triangulation 

Cell Vertex
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Voronoi diagram Delaunay triangulation 

Cell

Edge

Vertex
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1. Reconstruction

Voronoi diagram Delaunay triangulation 

Cell

Edge

Vertex

Vertex

Edge

Cell 
(triangle)

Duality
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1. Reconstruction

Voronoi diagram Delaunay triangulation 

Amenta et.al, 1998]
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Voronoi diagram Delaunay triangulation 

Medial axis



1. Reconstruction

Voronoi diagram Delaunay triangulation 

Insert the Voronoi vertices (red) into the triangulation
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A problem: in 3D the set of Voronoi vertices does not converge to the medial axis !

tetrahedra)
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A problem: in 3D the set of Voronoi vertices does not converge to the medial axis !

tetrahedra)

Circumcenter



1. Reconstruction

Solution: the set of poles (subset of Voronoi vertices) converge to the medial axis !

x
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1. Reconstruction

Solution: the set of poles (subset of Voronoi vertices) converge to the medial axis !

+ Pole of x cell = furthest Voronoi vertex
- Pole = furthest Voronoi vertex in opposite direction

x
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1. Reconstruction

Amenta et.al 98]

1)Compute Del(X)
2)Compute the poles
3)Compute Del(X U {poles})
4)Extract the triangles

- Amenta, Bern, Dey]



1. Reconstruction

- -sampling of S,  with < 0.1

lfs(p) =  d(p, medial axis)

For all point p of S, there is a point x in X
nearer to p than lfs(p)
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lfs measures curvature and thickness
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- -sampling of S,  with < 0.1

Sampling density proportional to 1/lfs

lfs measures curvature and thickness



1. Reconstruction

Amenta, Bern, Kamvysselis 98]



1. Reconstruction

Amenta, Bern, Kamvysselis 98]

Further reading:

-
(See Nina Amenta, Tamal website)

eigencrust Kolluri and Shewchuk]

Boissonnat and Yvinec, Computational Geometry

Polygon Mesh Processing



(Re)-meshing [Du et.al], [Alliez et.al - SIGGRAPH], [Yan et.al - SGP]

2. Remeshing



Deformations Elastons sampling
[Martin et.al, SIGGRAPH2010]

2. Remeshing



Deformations Elastons sampling
[Martin et.al, SIGGRAPH2010]

Fluids Free surface sampling
[Bridson et.al, SIGGRAPH2010]
[Wotjan et.al,  SIGGRAPH2010]

2. Remeshing



Color quantization
[Leung et.al, GPU Pro, AK Peters, 2010] 

2. Remeshing



Centroidal Voronoi Tesselation

R

G

B

What is the optimal colormap ?

Centroidal Voronoi Tesselation from the information theory

2. Remeshing



Centroidal Voronoi Tesselation

R

G

B

What is the optimal colormap ?

xi = (ri,gi,bi)   Colormap entry
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Centroidal Voronoi Tesselation

R

G

B

What is the optimal colormap ?

xi = (ri,gi,bi)   Colormap entry

Vor(i) =  { x / d(x,xi) < d(x,xj) } i j

xi

2. Remeshing



Centroidal Voronoi Tesselation
What is the optimal colormap ?

2. Remeshing

A « bad » colormap entry / Voronoi cell



Centroidal Voronoi Tesselation
What is the optimal colormap ?

A « bad » colormap entry / Voronoi cell

: a color poorly approximated
by the colormap entry xi

Why bad ? Because Vor(xi) contains

xi

2. Remeshing



Centroidal Voronoi Tesselation
What is the optimal colormap ?

2. Remeshing



Centroidal Voronoi Tesselation
What is the optimal colormap ?

2

dx

Vor(i) 

xi - xF=

2. Remeshing



Centroidal Voronoi Tesselation
What is the optimal colormap ?

Quantization noise power
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Centroidal Voronoi Tesselation
What is the optimal colormap ?

2. Remeshing

2

dx

Vor(i) 

xi - xF=
Quantization noise power



Centroidal Voronoi Tesselation
What is the optimal colormap ?

F=

Vor(i) 

2

dxxi - x

i

Minimize

2. Remeshing



Centroidal Voronoi Tesselation

The classical method: 

F=

Vor(i) 

2

dxxi - x

i
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The classical method: 

F=

Vor(i) 

2

dxxi - x
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F|xi =  2 mi (xi - gi)             [Iri et.al], [Du et.al]

Volume of Vor(i) Centroid of Vor(i)
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Centroidal Voronoi Tesselation

The classical method: 

F=

Vor(i) 

2

dxxi - x

i

F|xi =  2 mi (xi - gi)             [Iri et.al], [Du et.al]

Volume of Vor(i) Centroid of Vor(i)

If xi coincides with the centroid of Vor(i), we got a stationary point of F
(therefore a « good sampling »)

2. Remeshing

Vor(X): Centroidal Voronoi Tesselation



2. Remeshing

Disclaimer:

This presentations contains live demos.
Crashes may occur.

The presenter assumes no liability. 



2. Remeshing



2. Remeshing

(Geometric point of view)
Loop
Move the xi's to the gi's
Re-triangulate

End loop

+ Provably decreases F     [Du et.al]
+ Reasonably easy to implement
- Slow (linear) convergence



2. Remeshing

Theorem: F is C2 almost everywhere

[Liu, Wang, L, Sun, Yan, Lu and Yang 09]
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2. Remeshing

Theorem: F is C2 almost everywhere

[Liu, Wang, L, Sun, Yan, Lu and Yang 09]

Faster CVT algorithm (Newton)
More general (quads)



CVT in 2D

2. Remeshing
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CVT in 2D

CVT on surfaces

Constrained CVD [Qiang Du et.al 1999]
[Yan, L, Liu, Sun and Wang SGP 2009]

2. Remeshing
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CVT in 2D

CVT on surfaces

CVT in volumes
[Yan, Wang, L, Liu]

2. Remeshing
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2. Remeshing

Validity of  Restricted Voronoi Diagram / Restricted Delaunay Triangulation

Theorem : [Edelsbrunner & Shah 1997]

Topological Ball Property: if each face of the Restricted
Voronoi Diagram is homeomorphic to a disc, then the 
Restricted Delaunay Triangulation is homeomorphic to the 
surface S



2. Remeshing



2. Remeshing

Validity of  Restricted Voronoi Diagram / Restricted Delaunay Triangulation

Theorem : [Edelsbrunner & Shah 1997]

Topological Ball Property: if each k-face of the Restricted
Voronoi Diagram is homeomorphic to a disc, then the 
Restricted Delaunay Triangulation is homeomorphic to the 
surface S

Theorem: [Amenta & Bern 1999]

if X is an -sampling of S,  with < 0.1, then the Restricted 
Delaunay triangulation is homeomorphic to the surface S
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2. Remeshing

Def. 1: CVT is what you obtain when moving the points to the 
centroids of their Voronoi cells
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Def. 1: CVT is what you obtain when moving the points to the 
centroids of their Voronoi cells

Def. 2: CVT is what you obtain by minimizing the quantization
noise power

F=

Vor(i) 

2
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2. Remeshing

Def. 1: CVT is what you obtain when moving the points to the 
centroids of their Voronoi cells

Def. 2: CVT is what you obtain by minimizing the quantization
noise power

F=

Vor(i) 

2

dxxi - x

i

Faster solution mechanism
Generalizations



Quad and Hex meshing

2. Remeshing



Tet Meshing
1. Fully Automated
2. Millions of elements in minutes/seconds
3. Adequate for some analysis
4. Inaccurate for other Analysis

Hex Meshing
1. Partially Automated, some Manual
2. Millions of elements in 

days/weeks/months
3. Preferred by some analysts for solution 

quality

[Matt Staten] (Sandial Labs)

Motivations Why Hexes ?

2. Remeshing



p=2 p=4 p=8

Blowing Square Bubbles

2. Remeshing
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F=

Vor(i) 

2

dx(xi x)

i
Standard CVT:

2. Remeshing



F=

Vor(i) 

2

dx(xi x)

i
Standard CVT:

F=

Vor(i) 

p

dxM(x) (xi x)
i p

Lp CVT:

[L and Liu 2010]

2. Remeshing



F=

Vor(i) 

p

dxM(x) (xi x)
i p

Lp CVT:

Anisotropy, encodes desired orientation
Riemannian metric G = Mt M

2. Remeshing



F=

Vor(i) 

p

dxM(x) (xi x)
i p

Lp CVT:

Lp norm: || x ||
p

=   |x|p + |y|p + |z|p
p

2. Remeshing



F=

Vor(i) 

p

dxM(x) (xi x)
i p

Lp CVT:

Lp norm: || x ||
p

=   |x|p + |y|p + |z|p

p
=   xp + yp + zpIf p is even:  || x ||

p

p

2. Remeshing



Optimization with LBFGS (quasi-Newton)

For each iterate X(k):
Compute  F(X(k)) and F(X(k))

F=

Vor(i) 

p

dxM(x) (xi x)
i p

Lp CVT:

2. Remeshing



p      = 2
M(x) = ppal dir.

of curvature.

2. Remeshing



p      = 2
M(x) = Normal 

anisotropy.

Feature-sensitive meshing

2. Remeshing



p      = 2
M(x) = Normal 

anisotropy.

Feature-sensitive meshing

CSG-Remeshing

2. Remeshing



2. Remeshing



p      = 8
M(x) = ppal dir.

of curvature.

2. Remeshing



+ many other examples in paper
and supplemental material.

2. Remeshing
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2. Remeshing

Further reading on (re)meshing

VD: Papers by Nina Amenta, Tamal Dey, Herbert Edelsbrunner
CVT: Papers by Qiang Du, Maria Emelianenko, Max Gunzberger

Space Tesselations, Okabe
maillage , Paul-Louis George and Pascal Frey

Computational Geometry, Jean-Daniel Boissonnat and M. Yvinec
Polygon Mesh Processing Botsch, Kobbelt, Pauly, Alliez, L Chapter 6


