Lecture 1: The Low-Level Reconstruction, Meshing and Sampling

Bruno Lévy

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

Sponsored by ACM SIGGRAPH

- 1. Reconstruction : How to connect the points
 - Voronoi and Delaunay
 - The crust
- 2. Re-meshing : How to improve the mesh
 - Centroidal Voronoi Tesselation
 - Restricted CVT
 - Lp CVT

Overview

• 1. Reconstruction

Not covered here: Volumetric methods, model repair

See "Polygon Mesh Processing", Chapter 8

• 2. Re-meshing

More on this Chapter 6

How to connect the points?

How to connect the points ? Intuitively: based on proximity

Capturing all the "proximities" in a set of points Voronoi diagram

Capturing all the "proximities" in a set of points Voronoi diagram

$$\begin{aligned} \mathbf{X} &= (\mathbf{x}_1, \, \mathbf{x}_2, \, \dots, \, \mathbf{x}_n) & \text{set of points} \\ \mathbf{x}_i &= (\mathbf{x}_i, y_i) & \text{one of the points} \\ \forall \text{or}(i) &= \{ \, \mathbf{x} \, / \, d(\mathbf{x}, \mathbf{x}_i) \! \ll \! d(\mathbf{x}, \mathbf{x}_j) \, \} \, \forall \, j \end{aligned}$$

Capturing all the "proximities" in a set of points Voronoi diagram

$$\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n) \text{ set of points}$$
$$\mathbf{x}_i = (\mathbf{x}_i, \mathbf{y}_i) \text{ one of the points}$$
$$Vor(i) = \{ \mathbf{X} / d(\mathbf{x}, \mathbf{x}_i) \leq d(\mathbf{x}, \mathbf{x}_j) \} \forall j$$
Euclidean distance

Voronoi diagram

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

Voronoi diagram of two points

X₁

Sponsored by ACM SIGGRAPH

Bisector: $d(\mathbf{x}, \mathbf{x}_1) = d(\mathbf{x}, \mathbf{x}_2)$

Voronoi diagram of three points

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

Sponsored by ACM SIGGRAPH

Voronoi diagram of three points

Sponsored by ACM SIGGRAPH

Sponsored by ACM SIGGRAPH

Voronoi diagram of three points

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

p is the *circumcenter* of the triangle $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$

Sponsored by ACM SIGGRAPH

Voronoi diagram of N points

Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Sponsored by ACM SIGGRAPH

Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Duality

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH
Voronoi diagram

Delaunay triangulation

Voronoi diagram

Delaunay triangulation

Q: how to select the "right" edges (triangles) ?

Voronoi diagram

Delaunay triangulation

"right" edges do not cross the medial axis

The "crust" [Amenta et.al, 1998]

Delaunay triangulation

"right" edges do not cross the medial axis

Sponsored by ACM SIGGRAPH

Insert the Voronoi vertices (red) into the triangulation

A problem: in 3D the set of Voronoi vertices does not converge to the medial axis !

Slivers ("Flat" tetrahedra)

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

A problem: in 3D the set of Voronoi vertices does not converge to the medial axis !

Solution: the set of poles (subset of Voronoi vertices) converge to the medial axis !

Solution: the set of poles (subset of Voronoi vertices) converge to the medial axis !

Solution: the set of poles (subset of Voronoi vertices) converge to the medial axis !

 π + Pole of x'sVoronoi cell = furthest Voronoi vertex π - Pole = furthest Voronoi vertex in opposite direction

The "crust" [Amenta et.al 98]

1)Compute Del(X)

The "crust" [Amenta et.al 98]

1)Compute Del(X)2)Compute the poles

The "crust" [Amenta et.al 98]

1)Compute Del(X)2)Compute the poles3)Compute Del(X U {poles})

The "crust" [Amenta et.al 98]

Compute Del(X)
 Compute the poles
 Compute Del(X U {poles})
 Extract the triangles

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

The "crust" [Amenta et.al 98]

Compute Del(X)
 Compute the poles
 Compute Del(X U {poles})
 Extract the triangles

See also the "co-cone" method [Amenta, Bern, Dey]

Validity of "co-cone" and "crust": if X is an \epsilon-sampling of S, with \epsilon < 0.1

For all point p of S, there is a point x in X nearer to p than ε Ifs(p)

lfs(p) = d(p, medial axis)

Validity of "co-cone" and "crust": if X is an \epsilon-sampling of S, with \epsilon < 0.1

Sampling density proportional to 1/lfs

Ifs measures curvature and thickness

sored by ACM SIGGRAPH

Validity of "co-cone" and "crust": if X is an \epsilon-sampling of S, with \epsilon < 0.1

Sampling density proportional to 1/lfs

Ifs measures curvature and thickness

The "Crust" [Amenta, Bern, Kamvysselis 98]

Further reading:

- •The "co-cone" family of methods (See Nina Amenta, Tamal Dey's website)
- •The "eigencrust" [Kolluri and Shewchuk]
- •Boissonnat and Yvinec, Computational Geometry
- •Polygon Mesh Processing

The "Crust" [Amenta, Bern, Kamvysselis 98]

(Re)-meshing [Du et.al], [Alliez et.al - SIGGRAPH], [Yan et.al - SGP]

... and more

Deformations – Elastons sampling [Martin et.al, SIGGRAPH2010]

... and more

Elaston

connectivity

Elastons New elastons Lloyd clustering inserted

Deformations – Elastons sampling [Martin et.al, SIGGRAPH2010]

Fluids – Free surface sampling [Bridson et.al, SIGGRAPH2010] [Wotjan et.al, SIGGRAPH2010]

... and more

Color quantization [Leung et.al, GPU Pro, AK Peters, 2010]

Sponsored by ACM SIGGRAPH

Centroidal Voronoi Tesselation from the information theory perspective...

2. Remeshing... Ø SIGGRAPHASIA2011 HONG KONG What is the optimal colormap? B xi = (ri,gi,bi) Colormap entry G

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

2. Remeshing... SIGGRAPHASIA2011 HONG KONG Centroidal Voronoi Tesselation What is the optimal colormap? B xi = (ri,gi,bi) Colormap entry G $Vor(i) = \{ x / d(x,xi) < d(x,xj) \} \forall i \neq j$

Sponsored by ACM SIGGRAP

What is the optimal colormap?

A « bad » colormap entry / Voronoi cell

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

What is the optimal colormap?

A « bad » colormap entry / Voronoi cell

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

What is the optimal colormap?

Sponsored by ACM SIGGRAPH

What is the optimal colormap?

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

What is the optimal colormap?

What is the optimal colormap?

2. Remeshing... Of Centroidal Voronoi Tesselation SIGGRAPHASIA2011 HONG KONG

What is the optimal colormap?

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

The classical method:

Lloyd's algorithm = gradient descent

$$F = \sum_{i} \int \left\| x_{i} - x \right\|^{2} dx$$

$$Vor(i)$$

2. Remeshing... SIGGRAPHASIA2011 Centroidal Voronoi Tesselation

The classical method:

Lloyd's algorithm = gradient descent

The classical method:

Lloyd's algorithm = gradient descent

If xi coincides with the centroid of Vor(i), we got a stationary point of F (therefore a « good sampling »)

Sponsored by ACM SIGGRAPH

The classical method:

Lloyd's algorithm = gradient descent

If xi coincides with the centroid of Vor(i), we got a stationary point of F (therefore a « good sampling ») Vor(X): Centroidal Voronoi Tesselation

Sponsored by ACM SIGGRAPH

Disclaimer:

This presentations contains live demos. Crashes may occur. The presenter assumes no liability.

Lloyd's Relaxation:

(Geometric point of view) Loop Move the x_i's to the g_i's Re-triangulate End loop

- + Provably decreases F [Du et.al]
- + Reasonably easy to implement
- Slow (linear) convergence

Theorem: F is C² almost everywhere

[Liu, Wang, L, Sun, Yan, Lu and Yang 09]

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

<u>Theorem:</u> F is C² almost everywhere

[Liu, Wang, L, Sun, Yan, Lu and Yang 09]

What's the point ?

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

<u>Theorem:</u> F is C² almost everywhere

[Liu, Wang, L, Sun, Yan, Lu and Yang 09]

What's the point ?

Faster CVT algorithm (Newton)More general (quads)

CVT in 2D

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

CVT in 2D

CVT on surfaces

Constrained CVD [Qiang Du et.al 1999] [Yan, L, Liu, Sun and Wang SGP 2009]

CVT in 2D CVT on surfaces

CVT in volumes [Yan, Wang, L, Liu]

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

Validity of Restricted Voronoi Diagram / Restricted Delaunay Triangulation

Theorem : [Edelsbrunner & Shah 1997] Topological Ball Property: if each face of the Restricted Voronoi Diagram is homeomorphic to a disc, then the Restricted Delaunay Triangulation is homeomorphic to the surface S

Validity of Restricted Voronoi Diagram / Restricted Delaunay Triangulation

Theorem : [Edelsbrunner & Shah 1997] Topological Ball Property: if each k-face of the Restricted Voronoi Diagram is homeomorphic to a disc, then the Restricted Delaunay Triangulation is homeomorphic to the surface S

Theorem: [Amenta & Bern 1999] if X is an ϵ -sampling of S, with ϵ < 0.1, then the Restricted Delaunay triangulation is homeomorphic to the surface S

"take home" message

Def. 1: CVT is what you obtain when moving the points to the centroids of their Voronoi cells

Tells you "how to compute it"

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

"take home" message

Def. 1: CVT is what you obtain when moving the points to the centroids of their Voronoi cells

Tells you "how to compute it"

Def. 2: CVT is what you obtain by minimizing the quantization noise power

$$F = \sum_{i} \int \left\| x_{i} - x \right\|^{-1} dx$$

$$Vor(i)$$

Tells you "what it is" !

"take home" message

Def. 1: CVT is what you obtain when moving the points to the centroids of their Voronoi cells

Tells you "how to compute it"

Def. 2: CVT is what you obtain by minimizing the quantization noise power

$$F = \sum_{i} \int_{Vor(i)} x_{i} - x \quad \| \, dx$$

•Faster solution mechanism

Tells you "what it is" ! •Generalizations

2. Remeshing... Motivations – Why Hexes ?

Tet Meshing

- 1. Fully Automated
- 2. Millions of elements in minutes/seconds
- 3. Adequate for some analysis
- 4. Inaccurate for other Analysis

Hex Meshing

- 1. Partially Automated, some Manual
- 2. Millions of elements in days/weeks/months
- 3. Preferred by some analysts for solution quality

Standard CVT:
$$F = \sum_{i} \int_{Vor(i)} (x_i - x) \|^2 dx$$

Sponsored by ACM SIGGRAPH

Standard CVT:
$$F = \sum_{i} \int_{Vor(i)}^{1} (x_i - x) \|^2 dx$$

Lp CVT:
$$F = \sum_{i} \int_{Vor(i)} M(x) (x_i - x) \Big|_{p}^{p} dx$$

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

Lp CVT:

 $F = \sum_{i} \int \left\| M(x) (x_{i} - x) \right\|_{p}^{p} dx$ Vor(i) Anisotropy, encodes desired orientation Riemannian metric $G = M^t M$

Lp CVT:
$$F = \sum_{i} \int \left\| M(x) (x_{i} - x) \right\|_{p}^{p} dx$$

$$Lp \text{ norm: } ||x||_{p} = \sqrt{|x|^{p} + |y|^{p} + |z|^{p}}$$
If p is even: $||x||_{p}^{p} = x^{p} + y^{p} + z^{p}$

Lp CVT:
$$F = \sum_{i} \int \left\| M(x) (x_{i} - x) \right\|_{p}^{p} dx$$
Vor(i)

Optimization with LBFGS (quasi-Newton)

For each iterate $X^{(k)}$: Compute $F(X^{(k)})$ and $\nabla F(X^{(k)})$

p = 2 M(x) = ppal dir. of curvature.

www.SIGGRAPH.org/ASIA2011

Sponsored by ACM SIGGRAPH

p = 2 M(x) = Normal anisotropy.

CSG-Remeshing

www.SIGGRAPH.org/ASIA2011

www.SIGGRAPH.org/ASIA2011

www.SIGGRAPH.org/ASIA2011

Further reading on (re)meshing

VD: Papers by Nina Amenta, Tamal Dey, Herbert Edelsbrunner CVT: Papers by Qiang Du, Maria Emelianenko, Max Gunzberger

Space Tesselations, Okabe *Meshing ("Le* maillage *facile")*, Paul-Louis George and Pascal Frey Computational Geometry, Jean-Daniel Boissonnat and M. Yvinec Polygon Mesh Processing Botsch, Kobbelt, Pauly, Alliez, L. Chapter 6

