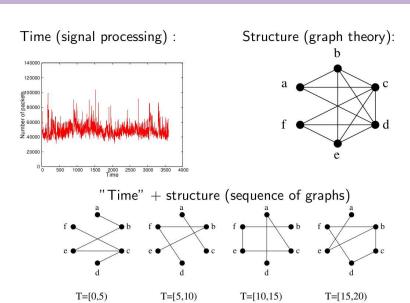
Stream graphs for modelling temporal networks

Tiphaine Viard

Peyresq 2023

Context



Goal

Assessment : progress **limited** by **fundamental** locks

 \rightarrow Loss of information, inadequate formalism...

Our goal : A language for interactions comparable to graph theory for networks

- Simple and intuitive
- Generalizes graphs and signal
 - degree? clustering? autocorrelation? Fourier transform? ...?
- Allows applicative progress

Stream graphs

$$S = (T, V, W, E)$$

$$T = [\alpha, \omega] \qquad V = \{u\} \qquad W = \{(t, v)\} \qquad E = \{(t, uv)\}$$

$$\begin{matrix} a & & \\ b & & \\ c & & \\ d & & \\ \hline 0 & 2 & 4 & 6 & 8 & time \end{matrix}$$

c is present from time 4 to time 9: $\{c\} \times [4,9] \in W$ a interacts with b from time 1 to time 3: $\{ab\} \times [1,3] \in E$

$$T_u = \text{presence of node } u$$

 $\rightarrow T_b = [0, 4] \cup [4.5, 10]$
 $T_{uv} = \text{presence of link } uv$
 $\rightarrow T_{ab} = [1, 3] \cup [7, 8]$

Stream graphs

$$S = (T, V, W, E)$$

$$T = [\alpha, \omega] \qquad V = \{u\} \qquad W = \{(t, v)\} \qquad E = \{(t, uv)\}$$

$$c$$

$$d$$

$$0$$

$$2$$

$$4$$

$$6$$

$$8$$
 time

c is present from time 4 to time 9:
$$\{c\} \times [4,9] \in W$$
 a interacts with b from time 1 to time 3: $\{ab\} \times [1,3] \in E$

$$T_u = \text{presence of node } u$$

 $\rightarrow T_b = [0, 4] \cup [4.5, 10]$
 $T_{uv} = \text{presence of link } uv$
 $\rightarrow T_{ab} = [1, 3] \cup [7, 8]$

If $\forall v, T_v = T$, then **link stream**

Stream graphs

c is present from time 4 to time 9:
$$\{c\} \times [4,9] \in W$$
 a interacts with b from time 1 to time 3: $\{ab\} \times [1,3] \in E$

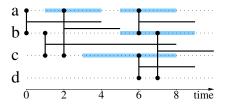
 $T_u = \text{presence of node } u$ $\rightarrow T_b = [0, 4] \cup [4.5, 10]$ $T_{uv} = \text{presence of link } uv$ $\rightarrow T_{ab} = [1, 3] \cup [7, 8]$

If $\forall v, T_v = T$ and $\forall u, v, T_{uv} = \{\emptyset, T\}$, then graph-equivalent

Substreams and clusters

Graphs: Subgraph = G' = (V', E') such that $V' \subseteq V, E' \subseteq E$ Cluster of nodes C = set of nodes

Stream graphs: Substream = S' = (T', V', W', E') such that $T' \subseteq T, V' \subseteq V, W' \subseteq W, E' \subseteq E$ Cluster of nodes C = set of (t, v)



Density

Graphs:

$$u, v \text{ random} = \text{link?}$$

$$\delta(G) = \frac{2m}{n \cdot (n-1)}$$

Stream graphs:
$$uv, t$$
 random = link?
$$\delta(S) = \frac{\sum_{uv \in V \otimes V} T_{uv}}{\sum_{uv \in V \otimes V} T_{u} \cap T_{v}}$$
a
b
c
d
 $\frac{a}{\sqrt{1 + \frac{1}{2}}}$
d
 $\frac{a}{\sqrt{1 + \frac{1}{2}}}$
d
 $\frac{a}{\sqrt{1 + \frac{1}{2}}}$

Graph-equivalent streams: $\delta(S) = \delta(G)$

Density

Graphs:

$$u, v \text{ random} = \text{link?}$$

$$\delta(G) = \frac{2m}{n \cdot (n-1)}$$

Stream graphs:
$$uv, t$$
 random = link?
$$\delta(S) = \frac{\sum_{uv \in V \otimes V} T_{uv}}{\sum_{uv \in V \otimes V} T_{u} \cap T_{v}}$$

$$a$$

$$b$$

$$c$$

$$d$$

$$0$$

$$2$$

$$4$$

$$6$$

$$8$$
time
$$\delta(S) = \frac{10}{22} \approx 0.45$$

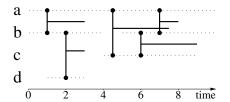
Graph-equivalent streams: $\delta(S) = \delta(G)$

Neighborhood

Graphs: Neighborhood = set of nodes $N(u) = \{v : uv \in E\} \ d(u) = |N(u)|$

Stream graphs:

Neighborhood = cluster
$$N(u) = \{(t, v) : (t, uv) \in E\}$$
 $d(u) = \frac{|N(u)|}{|T|}$



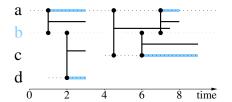
Graphs, stream graphs: $\sum_{u} d(u) = 2m$

Neighborhood

Graphs : Neighborhood = set of nodes $N(u) = \{v : uv \in E\} \ d(u) = |N(u)|$

Stream graphs:

Neighborhood = cluster
$$N(u) = \{(t, v) : (t, uv) \in E\}$$
 $d(u) = \frac{|N(u)|}{|T|}$



Graphs, stream graphs: $\sum_{u} d(u) = 2m$

Degrees

$$d(v) = \frac{|N(v)|}{|T|} = \int_t \frac{d_t(v)}{|T|} dt$$

$$d(t) = \sum_v \frac{d_t(v)}{|V|}$$

$$\hat{d}(v) = \int_t \frac{d_t(v)}{|T_v|} dt$$

$$\hat{d}(t) = \sum_v \frac{d_t(v)}{|V_t|}$$

$$d(V) = \sum_{v \in V} \frac{|T_v|}{|W|} d(v)$$

$$d(T) = \int_t \frac{|V_t|}{|W|} d(t) dt$$

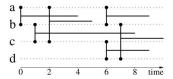
$$d(S) = \sum_{v} \frac{1}{|V|} d(v) = \frac{2 \cdot |E|}{|T \times V|} = \int_{t} \frac{1}{|T|} d(t) dt$$
$$\hat{d}(S) = \frac{\sum_{v} \int_{t} d_{t}(v) dt}{|W|} = \frac{2 \cdot |E|}{|W|} = \frac{2m}{n}$$

Link stream $\Rightarrow d(v) = \hat{d}(v), d(t) = \hat{d}(t), d(V) = d(T) = d(S) = \hat{d}(S)$

Graphs:

$$cc(u) = \delta(N(u))$$

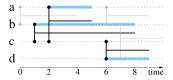
$$cc(u) = \delta(N(u))$$



Graphs:

$$cc(u) = \delta(N(u))$$

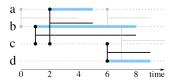
$$cc(u) = \delta(N(u))$$

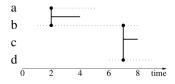


Graphs:

$$cc(u) = \delta(N(u))$$

$$cc(u) = \delta(N(u))$$



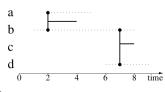


Graphs:

$$cc(u) = \delta(N(u))$$

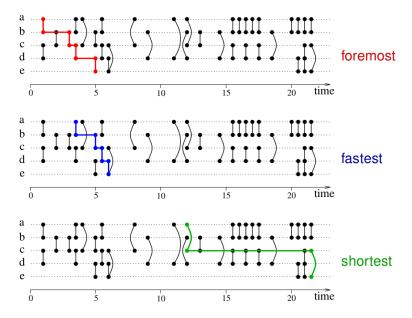
$$cc(u) = \delta(N(u))$$



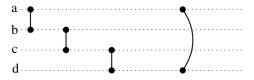


$$cc(c) = \frac{3}{5} = 0.6$$

Paths



Monsters: connected parts



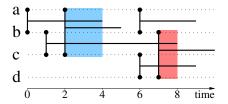
Cliques

Graphs:

Clique X = subgraph G(X) with density 1 **Max.** if included in no other clique

Stream graphs:

Clique X = cluster with density 1 **Max.** if included in no other clique



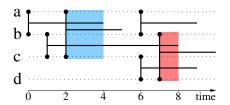
Cliques

Graphs: G(X)

Clique X = subgraph G(X) with density 1 **Max.** if included in no other clique

Stream graphs:

Clique X = cluster with density 1 **Max.** if included in no other clique



Computing maximal compact cliques of S in $\mathcal{O}(2^n n^2 m^3 + 2^n n^3 m^2)$ time, and $\mathcal{O}(2^n n m^2)$ space

Defined notions

Fundamental notions

Stream graphs, link streams
Size, duration, uniformity and compacity
Substreams clusters

Density-based

Density, cliques Neighbourhood, degree Clustering, transitivity Cluster relations, quotient stream

k-cores

Path-based

Paths and distances

Connectivity

Connected components

Trees

Cascades

Centralities

Generalizations

Line streams

Δ-analysis and instantaneous links Bipartite, weighted, directed, multilayer streams

Clique enumeration algorithm

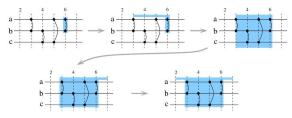
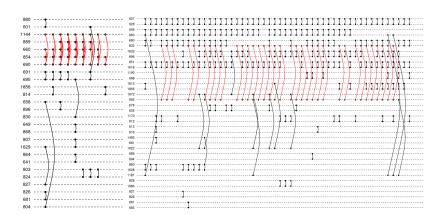


Fig. 2: A sequence of Δ -cliques built by our algorithm to find a maximal Δ -clique (bottom row) from an initial trivial Δ -clique (top-left) in the link stream of Figure $\boxed{1}$ when $\Delta=3$. From left to right and top to bottom: the algorithm starts with $(\{a,b\},[6,6])$, and finds $(\{a,b\},[3,6])$ thanks to lines $\boxed{9}$ to $\boxed{12}$ of the algorithm. It then finds $(\{a,b,c\},[3,6])$ thanks to lines $\boxed{6}$ to $\boxed{8}$. It finds $(\{a,b,c\},[3,7])$ from lines $\boxed{13}$ to $\boxed{16}$, and finally $(\{a,b,c\},[2,7])$ from lines $\boxed{9}$ to $\boxed{12}$

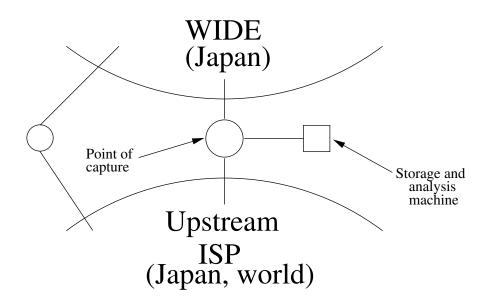
Some mobility results



Dataset

MAWI: 15 years of IP traffic captures

 \rightarrow bipartite by measure



Strong need of progress High volume of data $\rightarrow 88.10^6$ links / hour

Cliques for anomaly detection

Clique = set of machines all interacting on a short period of time

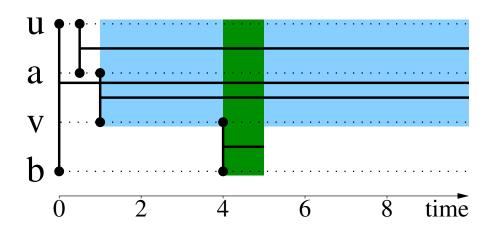
→ DDoS, scan, load balancing...

Enumeration out of reach

→ what makes a good sampling?

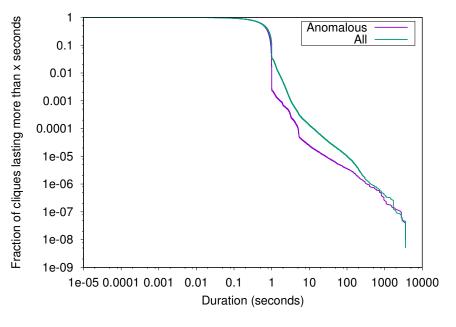
A **star** is a trivial clique

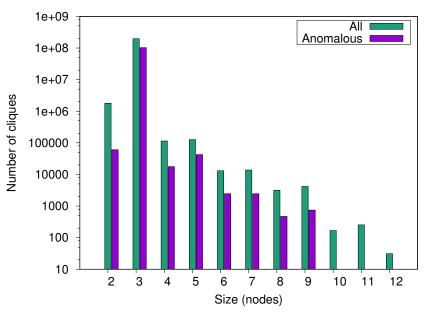
→ large balanced cliques

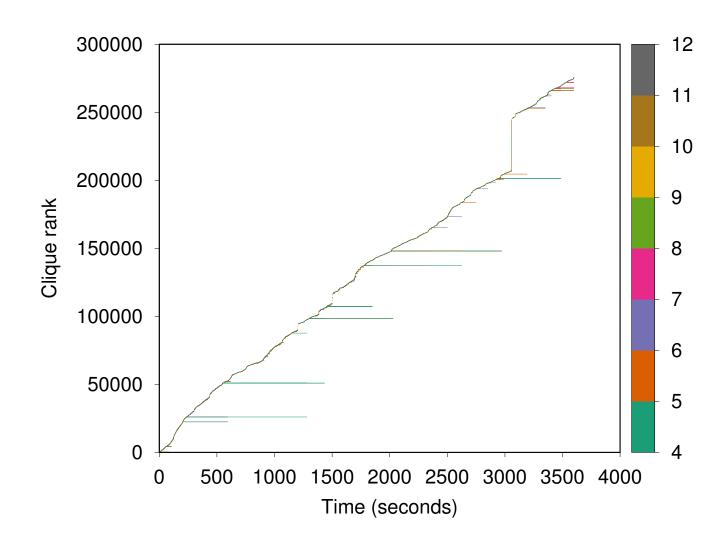


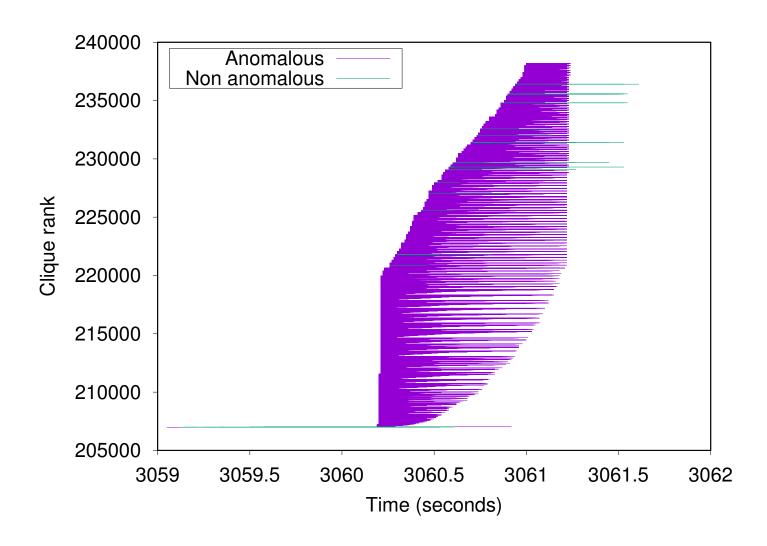
Sampled cliques

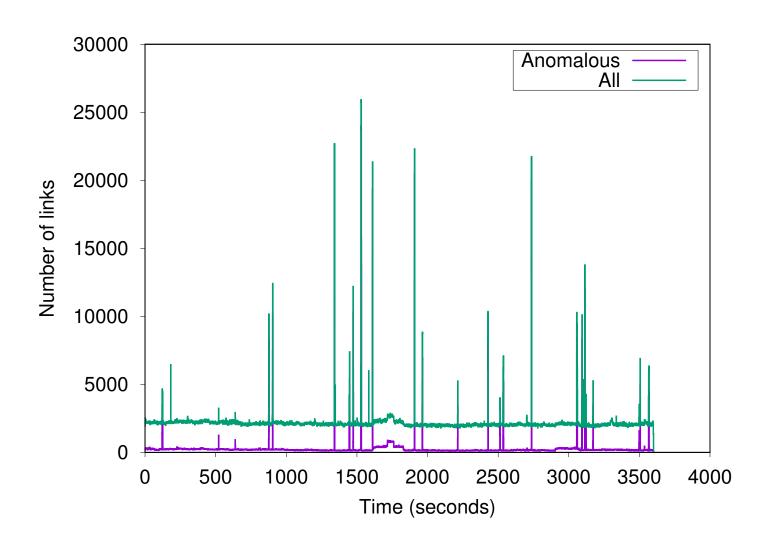
 $1.3 \cdot 10^7$ cliques $1.9 \cdot 10^6$ distinct 106 days

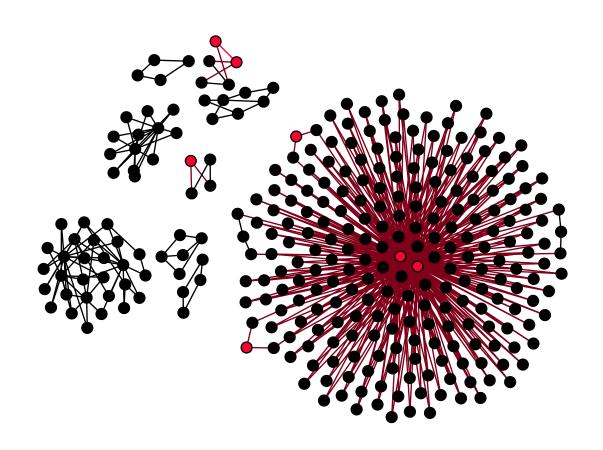












Thank you Peyresq!

Some papers:

Stream graphs: https://arxiv.org/abs/1710.04073

Extensions: https://arxiv.org/abs/1906.04840

github.com/TiphaineV

tiphaine.viard@telecom-paris.fr