Diffusion et propagation de l'information

17ème école d'été de Peyresq en traitement du signal et des images

Francesco Pinotti

francesco-pinotti.netlify.app francesco.pinotti@biology.ox.ac.uk

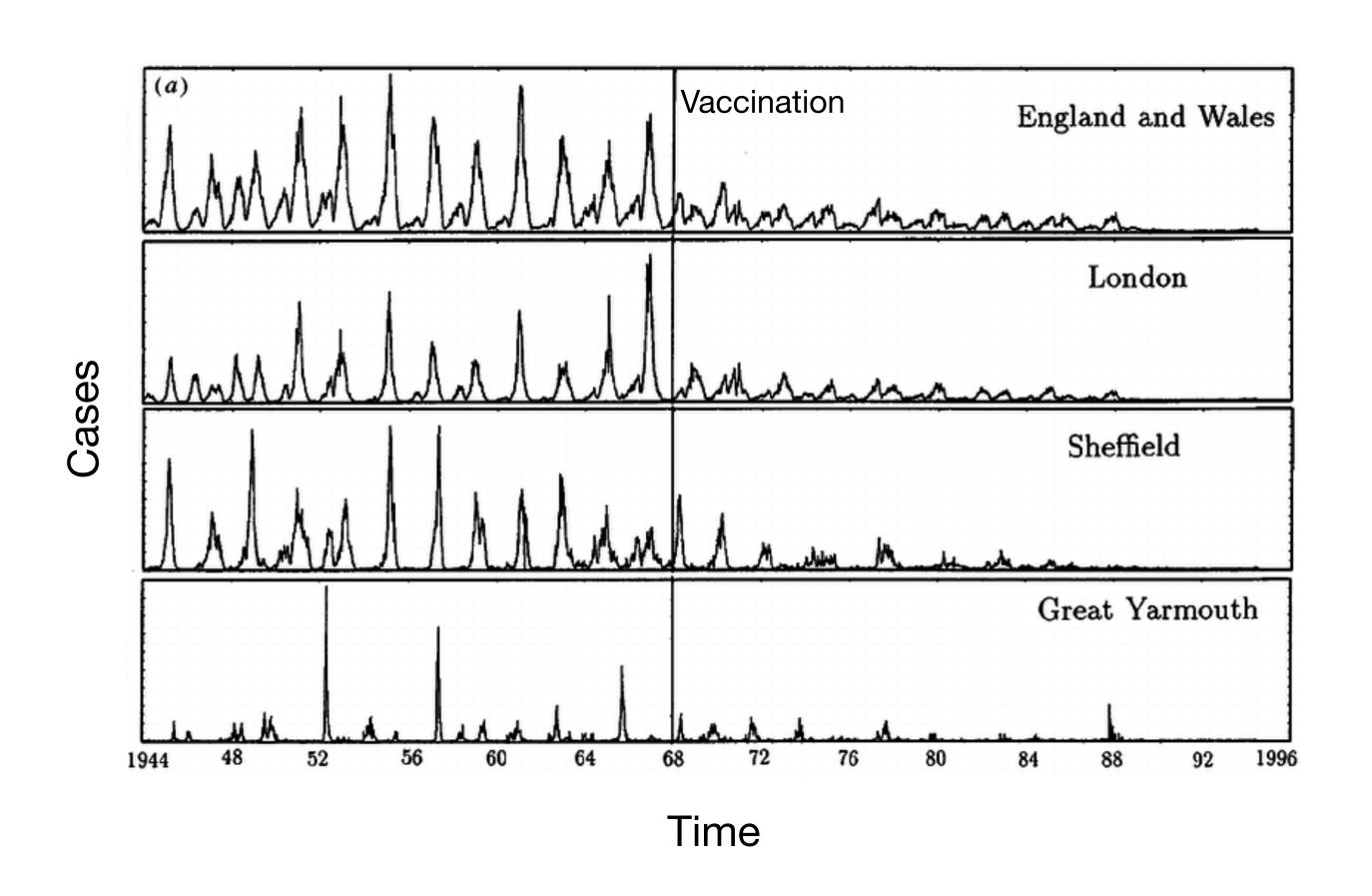


Outline

- Modelling epidemics
- Epidemics on networks
- Spatial and metapopulation models
- Agent-based models

Modelling epidemics

Measles (1944-1996)

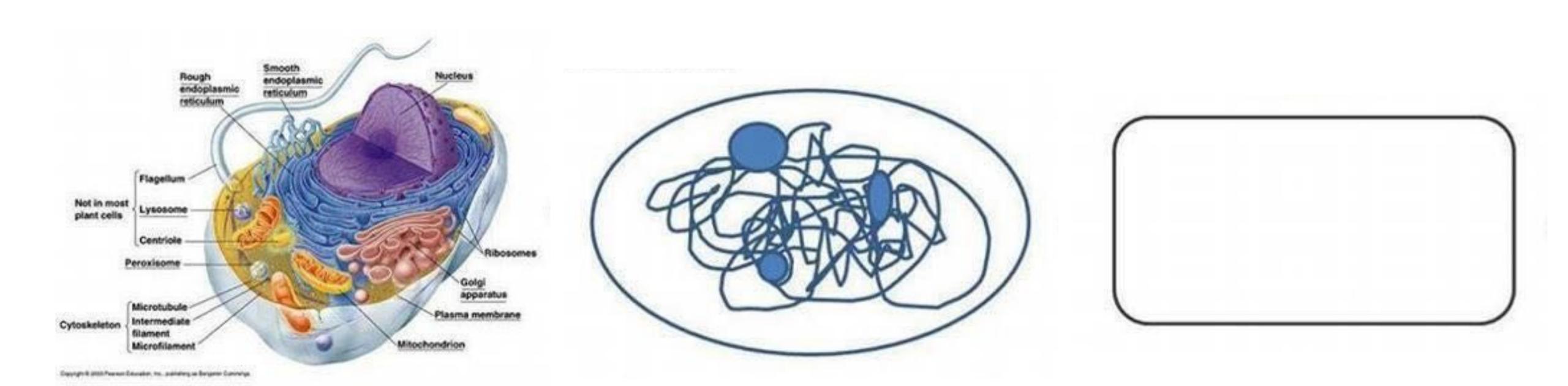


Potential questions

- Why 2 year gaps before vaccination?
- National vs subnational epidemics?
- Impact of vaccination?

Mathematical modelling

The view of a cell by:

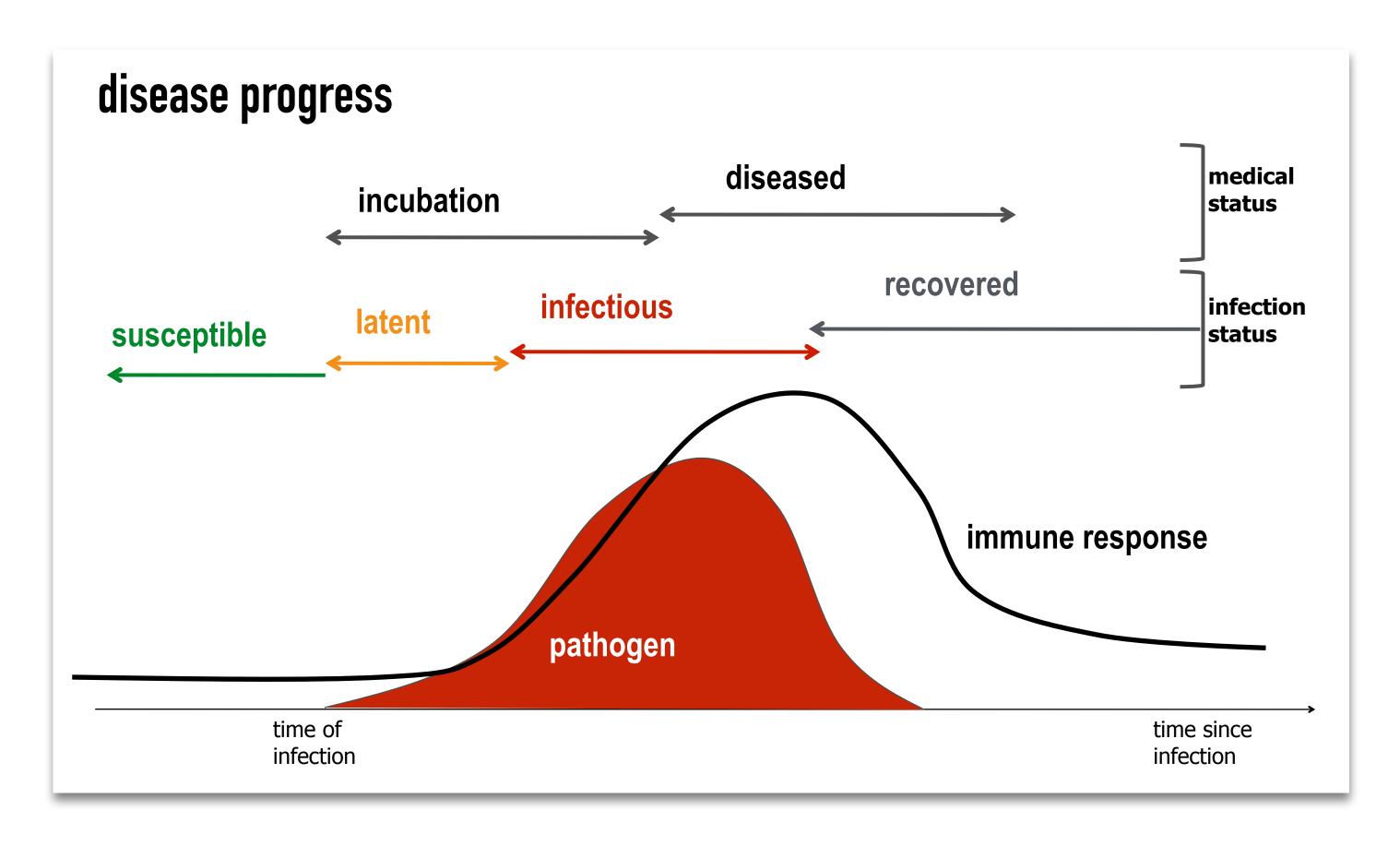


a biologist

a chemist

a physicist

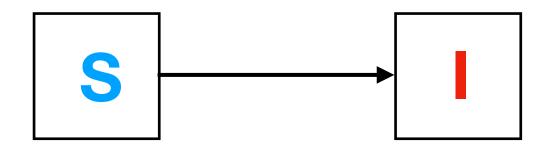
How infection works



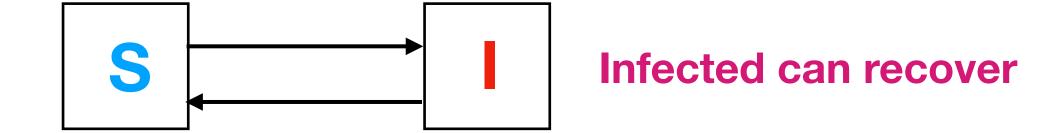
Credits: Chiara Poletto

Compartmental models

Susceptible-Infected model (SI)

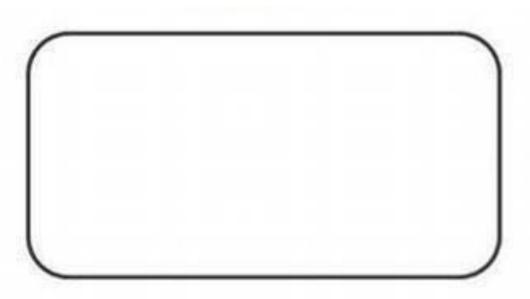


Susceptible-Infected-Susceptible model (SIS)



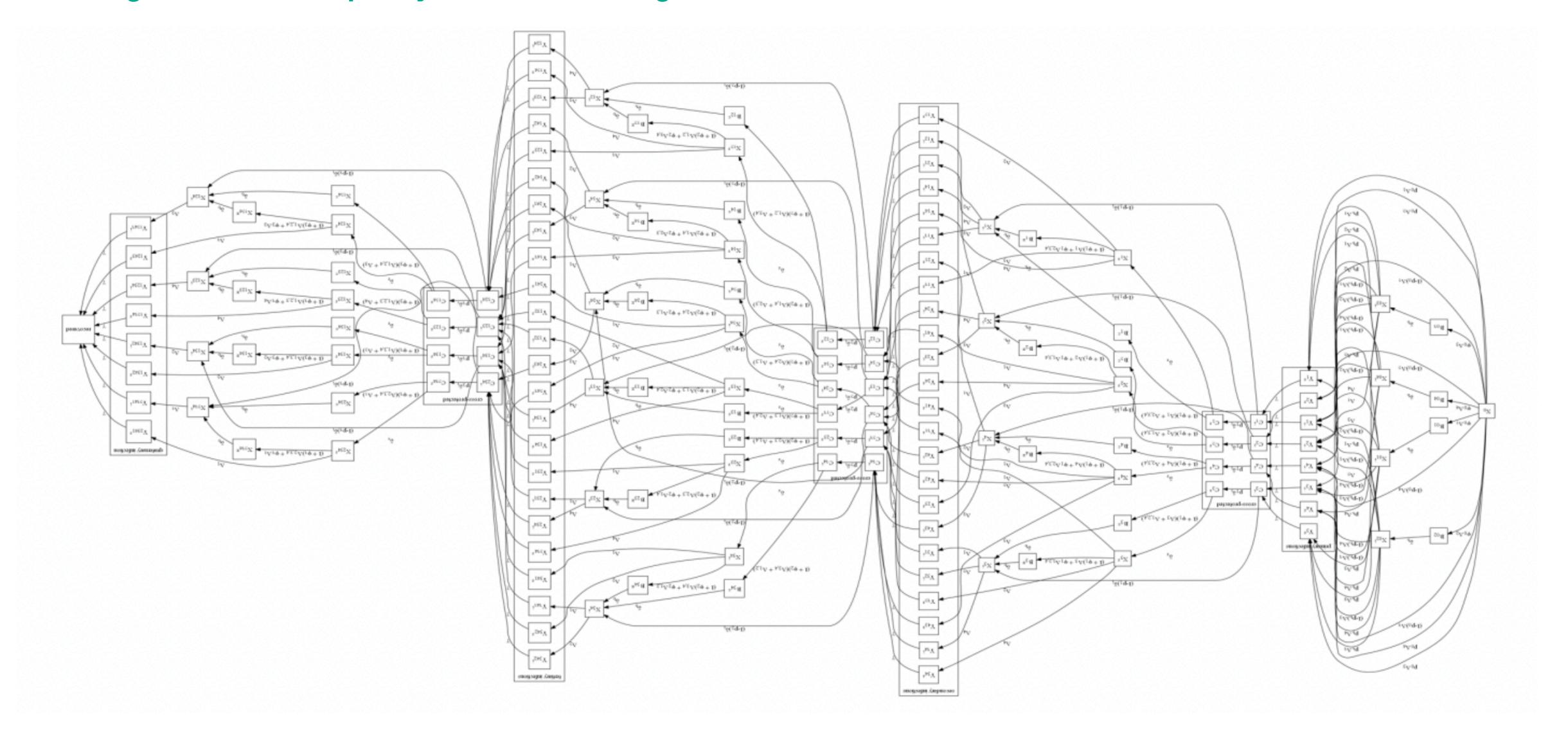
Individuals are sorted into different compartments according to infection status

Susceptible-Infected-Recovered model (SIR)



A cell as seen by a physicist

Things can escalate quickly: a model for Dengue virus



One-body reactions

Require a single entity

$$A \xrightarrow{\alpha} B$$

"An entity of type \mathbf{A} spontaneously morphs into \mathbf{B} at rate α "

Examples: disease progression

The number of A's evolves according to:

$$\frac{d}{dt}n_A = -\alpha \cdot n_A$$

Reaction rate $\propto n_A$

Note: time to reaction is exponentially distributed: Pr(no re

 $Pr(\text{no reaction up to } t) = e^{-\alpha t}$

Two-body reactions

Require two entities

$$\begin{array}{c} \beta \\ A + B \longrightarrow A + A \end{array}$$

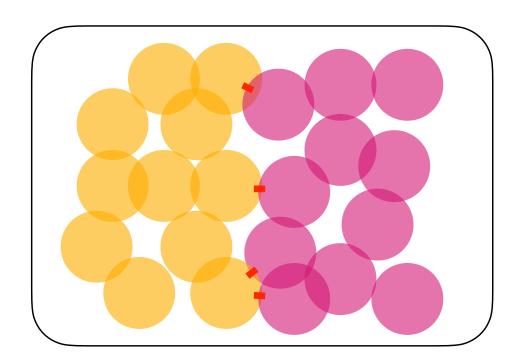
"An entity of type $m{B}$ meets an entity of type $m{A}$ and morphs into $m{A}$ at rate $m{\beta}$ "

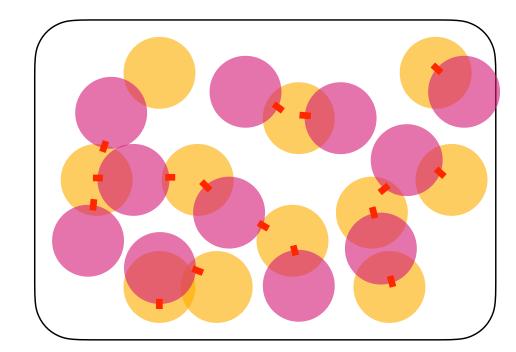
Example: pathogen transmission

The number of A's evolves according to:

$$\frac{d}{dt}n_A = \beta \cdot c_{AB}$$
 Mean number of encounters between types A and B

 $c_{A,B}$ depends on how ${\bf A}$ and ${\bf B}$ are arranged with respect to each other

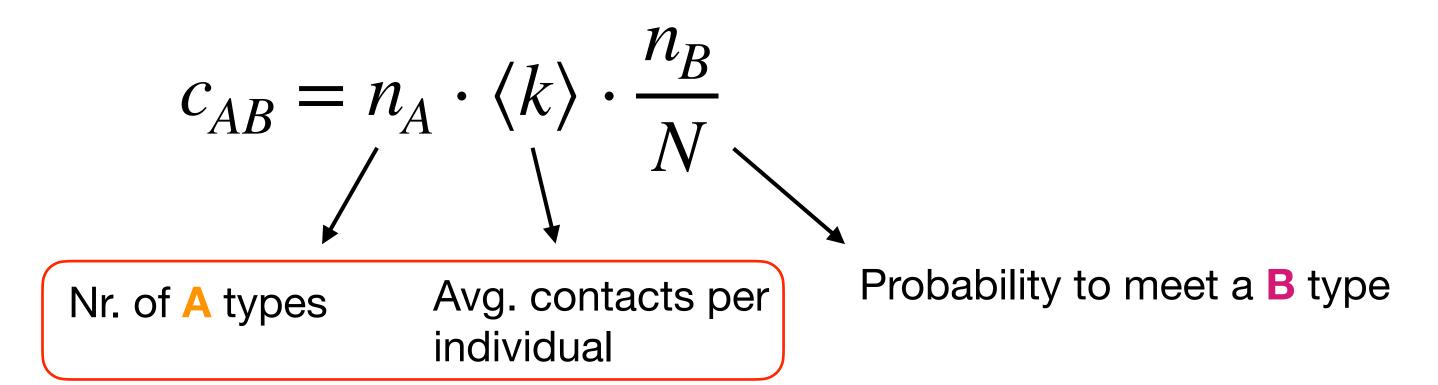




A simplification: homogeneous mixing

Key idea: individuals are all equivalent and mix completely at random

- Host equivalence: all hosts make the same number of contacts $\langle k \rangle$
- Contact equivalence: same probability to bump into Barack Obama or Francesco Pinotti

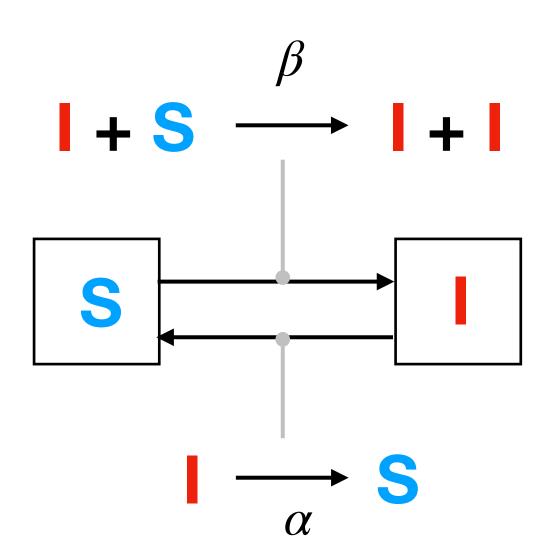


$$A + B \longrightarrow A + A$$

$$\frac{d}{dt}n_A = -\beta \langle k \rangle \frac{n_A n_B}{N}$$

Total contacts of A types

SIS dynamics: homogeneous mixing



Population size is constant

$$\frac{d}{dt}(n_S + n_I) = 0 \qquad \longrightarrow \qquad n_S = N - n_I$$

One equation is enough

$$\frac{d}{dt}n_I = +\beta \cdot \frac{n_I(N - n_I)}{N} - \alpha n_I$$

SIS equations

$$\frac{d}{dt}n_S = -\beta \cdot \frac{n_I}{N} \cdot n_S + \alpha n_I$$

$$\frac{d}{dt}n_I = +\beta \cdot \frac{n_I}{N} \cdot n_S - \alpha n_I$$

Define $I = n_I/N$

$$\frac{dI}{dt} = +\beta \cdot I(1 - I) - \alpha I \equiv F(I)$$

Fixed point analysis

Solve
$$F(I^*) = 0$$

$$I_1^* = 0$$

$$I_2^* = 1 - \frac{\alpha}{\beta}$$

Endemicity

SIS dynamics: homogeneous mixing

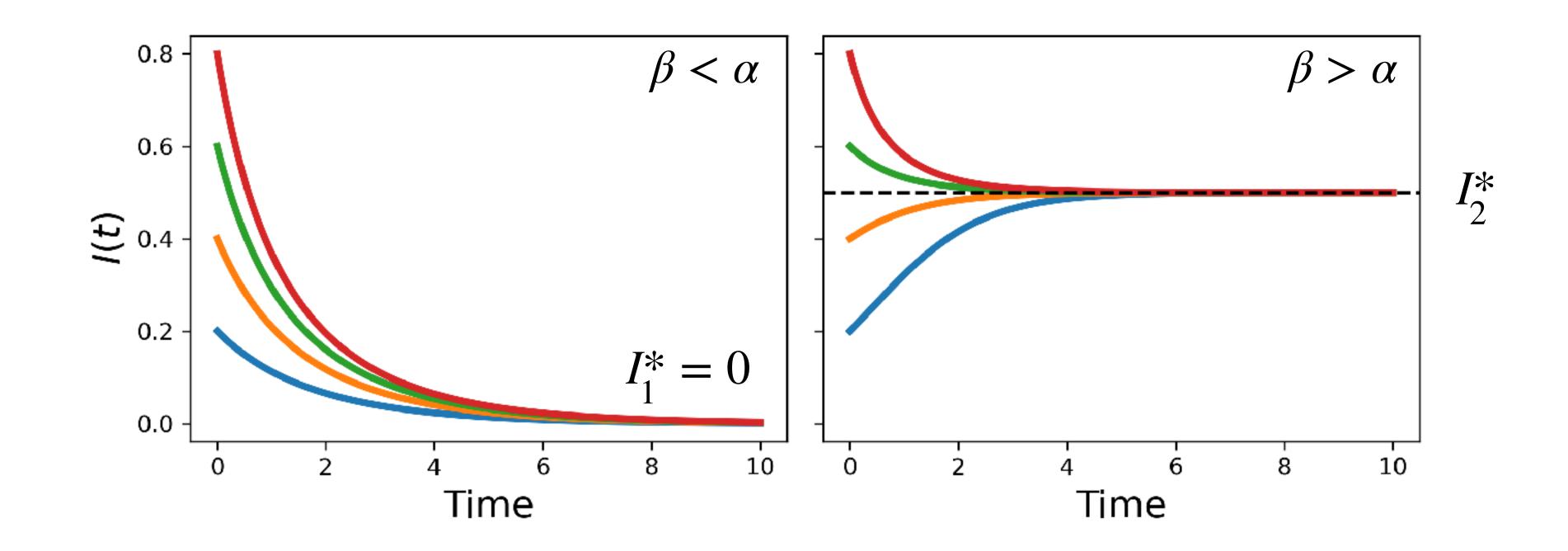
Linear stability analysis

Assume
$$I(t = 0) \approx 0$$

$$\frac{dI}{dt} \approx (\beta - \alpha)I$$

 $\beta < \alpha$: I decays to I_1^* (extinction)

 $\beta > \alpha: I \text{ flows to } I_2^* \text{ (endemicity)}$



The basic reproductive number

The condition for endemicity can be expressed as:

$$R_0 \equiv \frac{\beta}{\alpha} > 1$$
 Basic reproductive number

 R_0 is the mean number of secondary infections generated by an infected in an entirely susceptible population

$$R_0 = \beta \langle k \rangle \times \frac{1}{\mu}$$

Average number of infected contacts

X

Average infection duration

We reintegrated $\langle k \rangle$

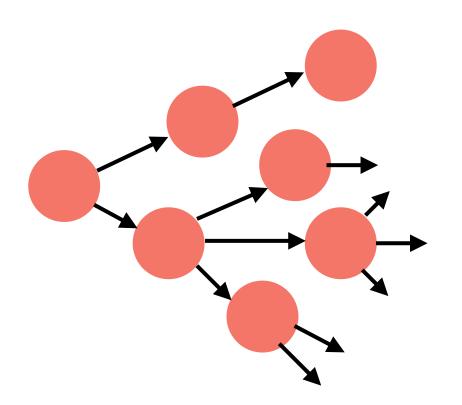
The basic reproductive number

The condition for endemicity can be expressed as:

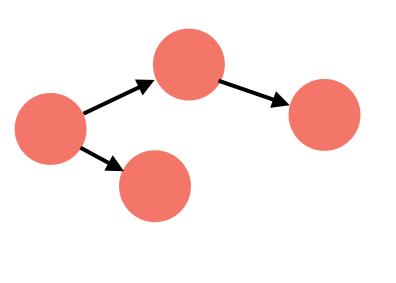
$$R_0 \equiv \frac{\beta}{\alpha} > 1$$
 Basic reproductive number

 R_0 is the mean number of secondary infections generated by an infected in an entirely susceptible population

 $R_0 > 1$: Exponential growth

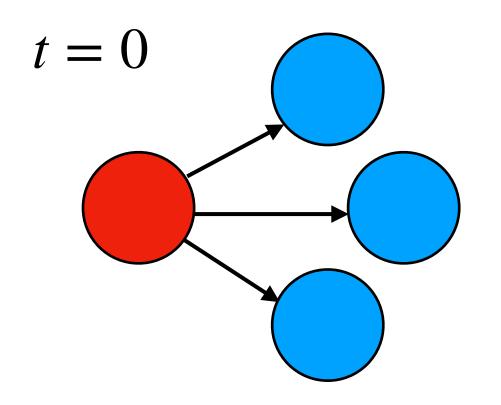


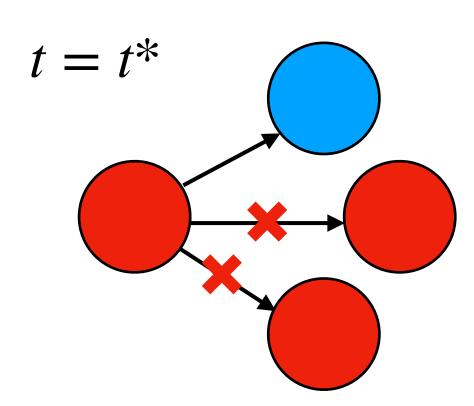
 $R_0 < 1$: Stuttering chains

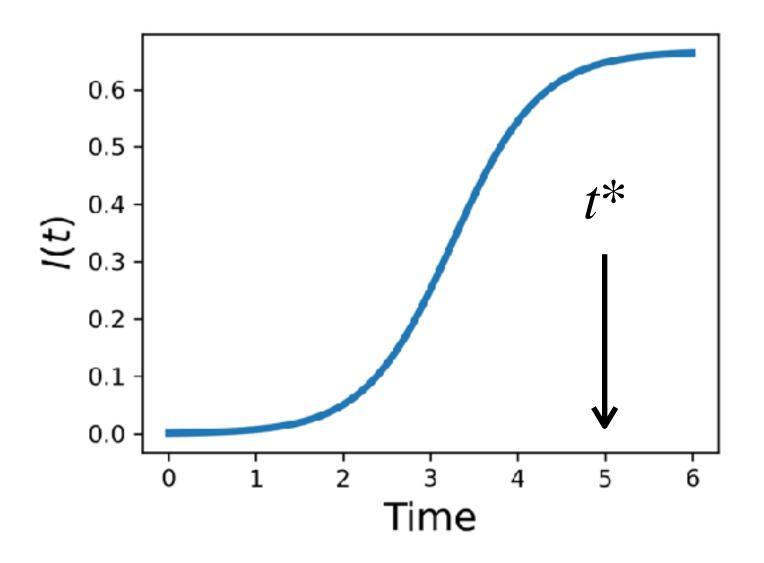


$R_0 > 1$: unlimited exponential growth?

Epidemic slows down with fewer susceptible people







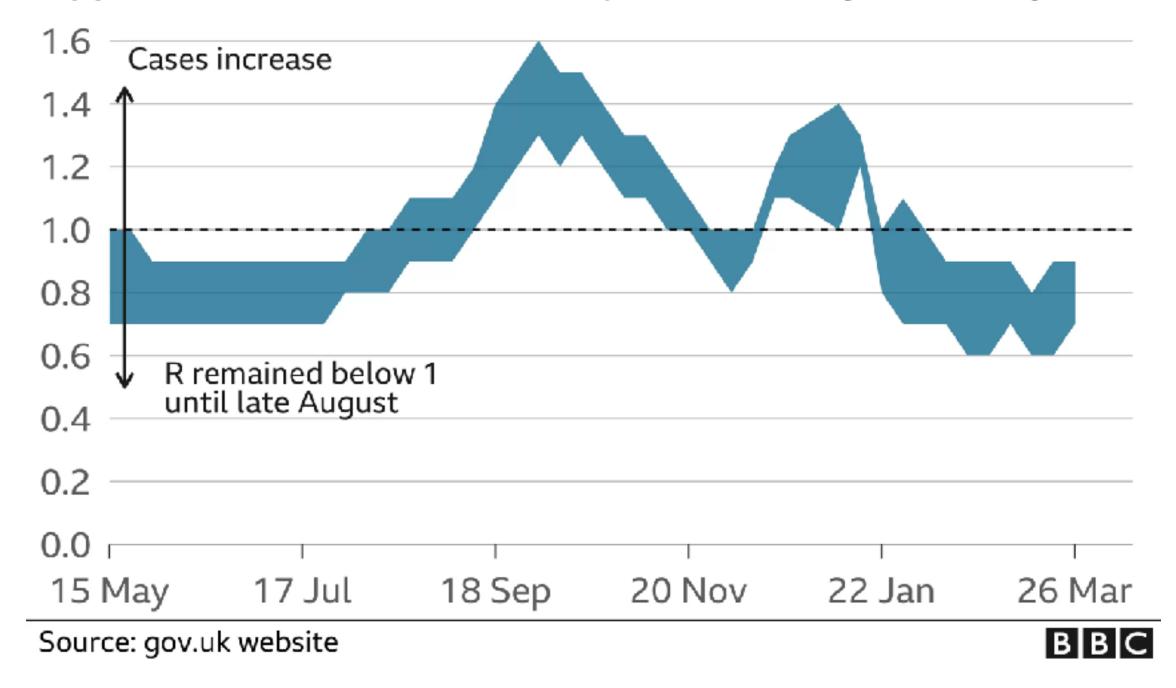
Effective reproductive number:

$$R_t = R_0 \cdot S(t)$$
 Reproductive Pop-level potential susceptibility

- $R_t > 1$ epidemic grows
- R_t < 1 epidemic grows
- $R_t = 1$ equilibrium

How R has changed over time

Upper and lower R estimates, updated weekly since May



 R_t for SARS-CoV2 in England

Effective reproductive number:

$$R_t = R_0 \cdot S(t)$$
 Reproductive Pop-level potential susceptibility

- $R_t > 1$ epidemic grows
- $R_t < 1$ epidemic grows
- $R_t = 1$ equilibrium

Vaccination

Immunising people reduces S and hence R_{t} . If $R_{t} < 1$ no epidemic occurs.

We vax a fraction u of people (everyone is susceptible initially):

$$R_t = R_0(1 - u)$$

Herd-immunity threshold

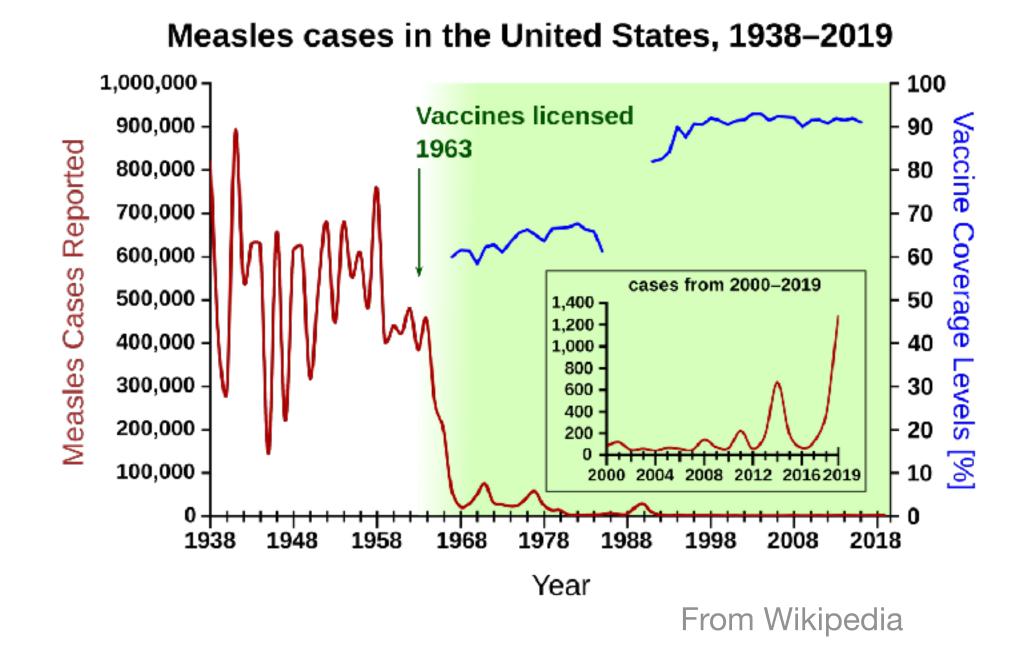
$$R_t < 1$$

$$u > u^* = 1 - \frac{1}{R_0}$$

- + No need to vax everyone
- –Vaccine is not perfect
- —Immunity waning
- Demographic turnover
- –Vaccine hesitancy

Measles:

$$R_0 \approx 15$$
 $u^* \approx 0.93$



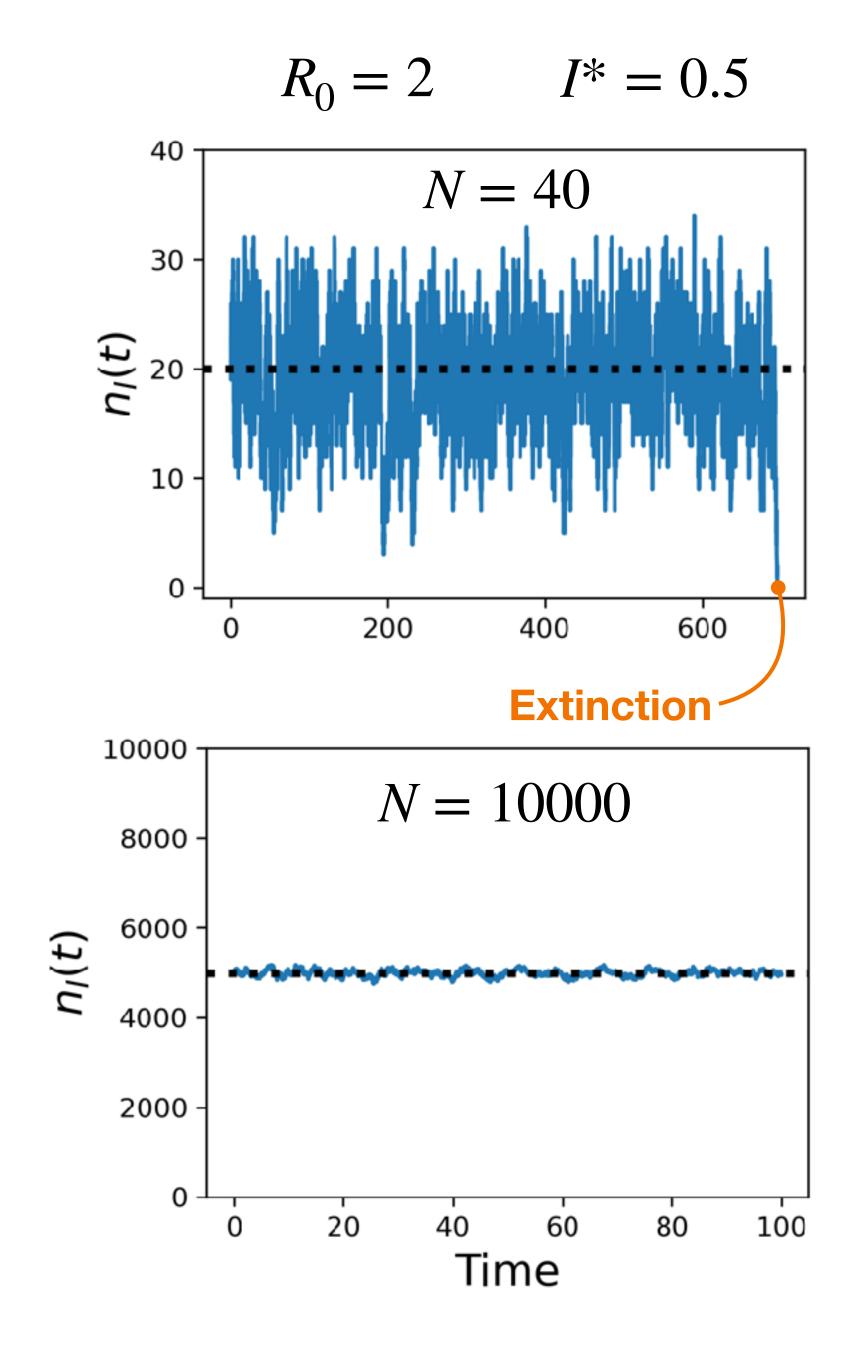
Stochastic epidemics

- Deterministic ODEs describe the average behaviour of an outbreak.
- Outbreaks are inherently random and discrete
- What does I(t) = 0.0001 mean when there are only 40 individuals?
- Deterministic ODEs fail to describe rare extinction events

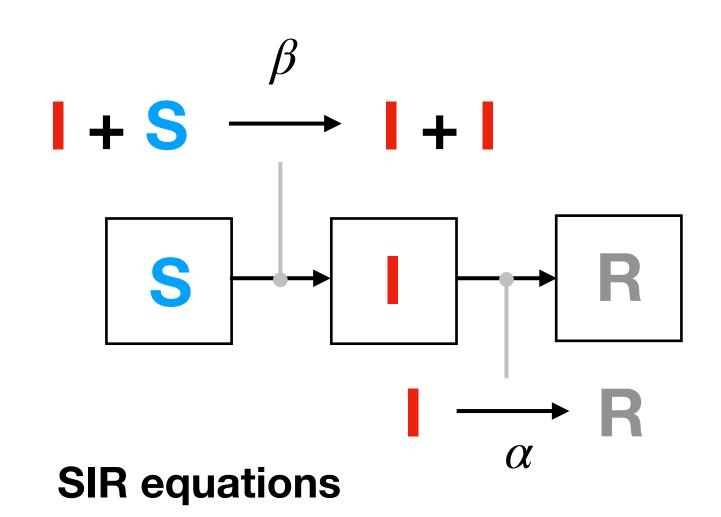
Master equation

$$\frac{d}{dt}P_{t}(n_{I}) = w_{+}(n_{I} - 1) \cdot P_{t}(n_{I} - 1) + w_{-}(n_{I} + 1) \cdot P_{t}(n_{I} + 1) - [w_{+}(n_{I}) + w_{-}(n_{I})] \cdot P_{t}(n_{I})$$

$$w_{+}(n_{I}) = \frac{\beta n_{I}(N - n_{I})}{N} \qquad w_{-}(n_{I}) = \mu n_{I}$$



SIR dynamics: homogeneous mixing

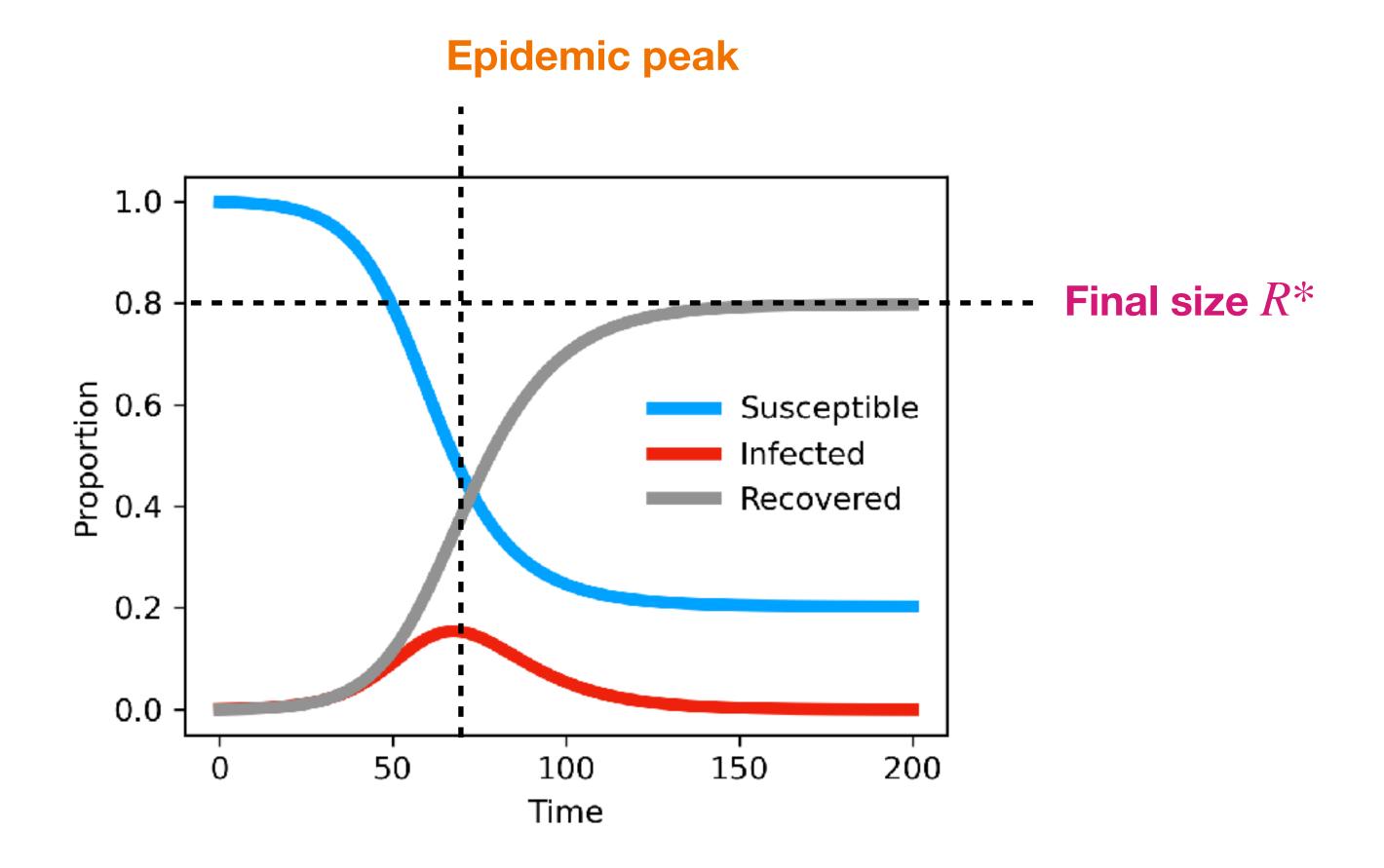


$$\frac{d}{dt}S = -\beta SI$$

$$\frac{d}{dt}I = +\beta SI - \alpha I$$

$$\frac{d}{dt}R = -\alpha I$$

This model describes a single outbreak when $\beta > \alpha$. The accumulation of immunity leads to the end of the epidemic.



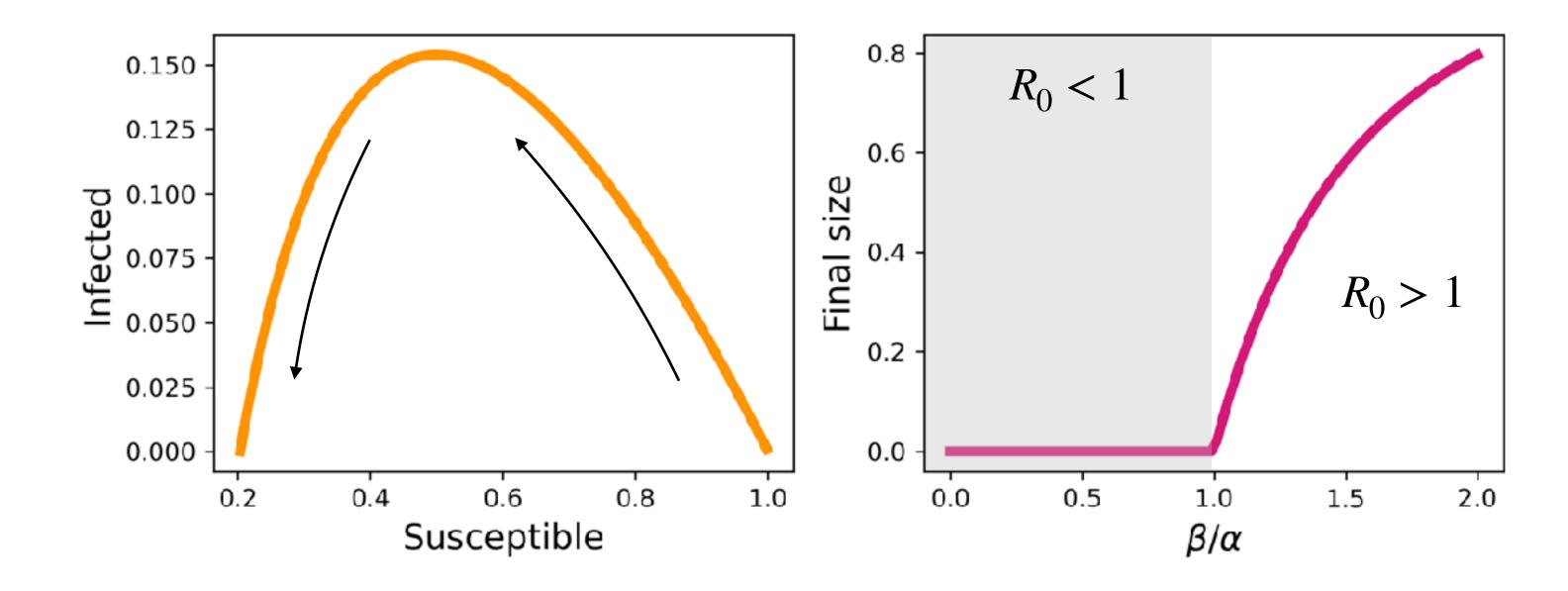
SIR dynamics: final size formula

How many people are infected during a single outbreak? We may not know I(t) or S(t) but can derive S(I)

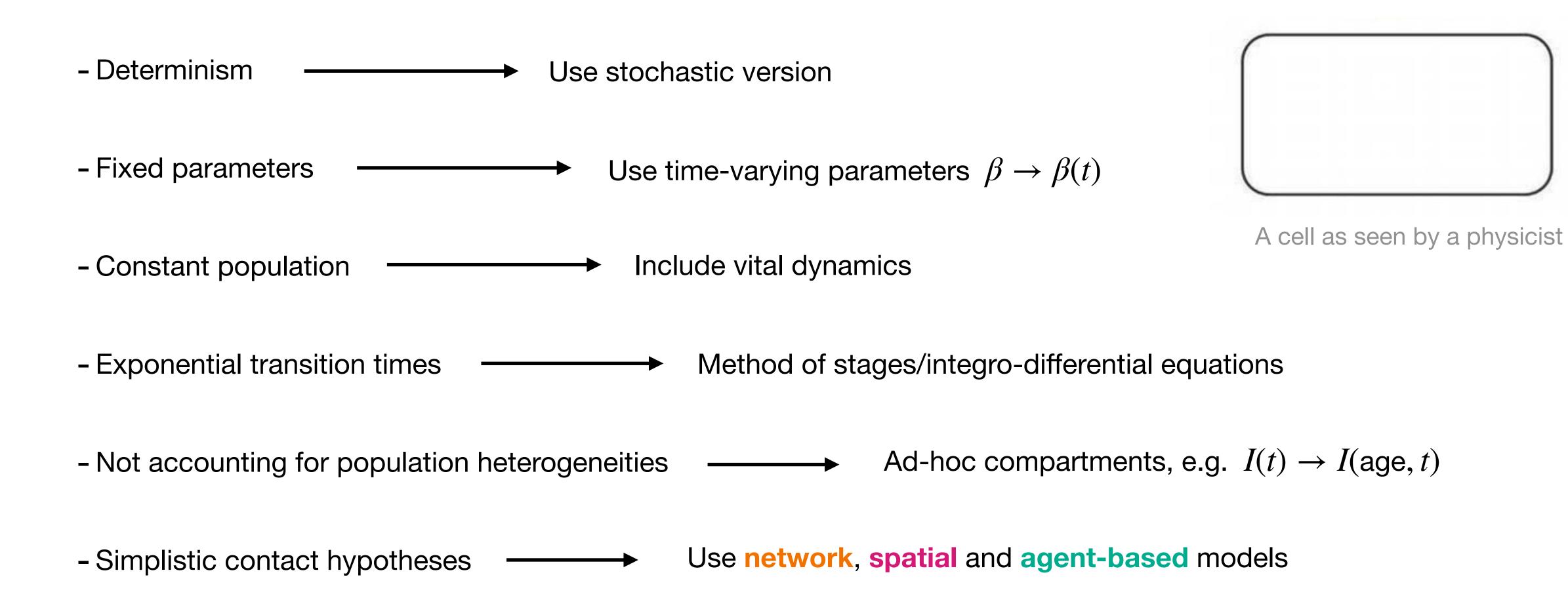
$$\frac{dS}{dI} = \frac{\beta S}{\beta S - \alpha}$$

$$R^* = 1 - S^*$$

$$1 - R^* = \exp\left(-\frac{\beta}{\alpha}R^*\right)$$
 Final size formula



(Some) limitations of simple models



Epidemics on networks

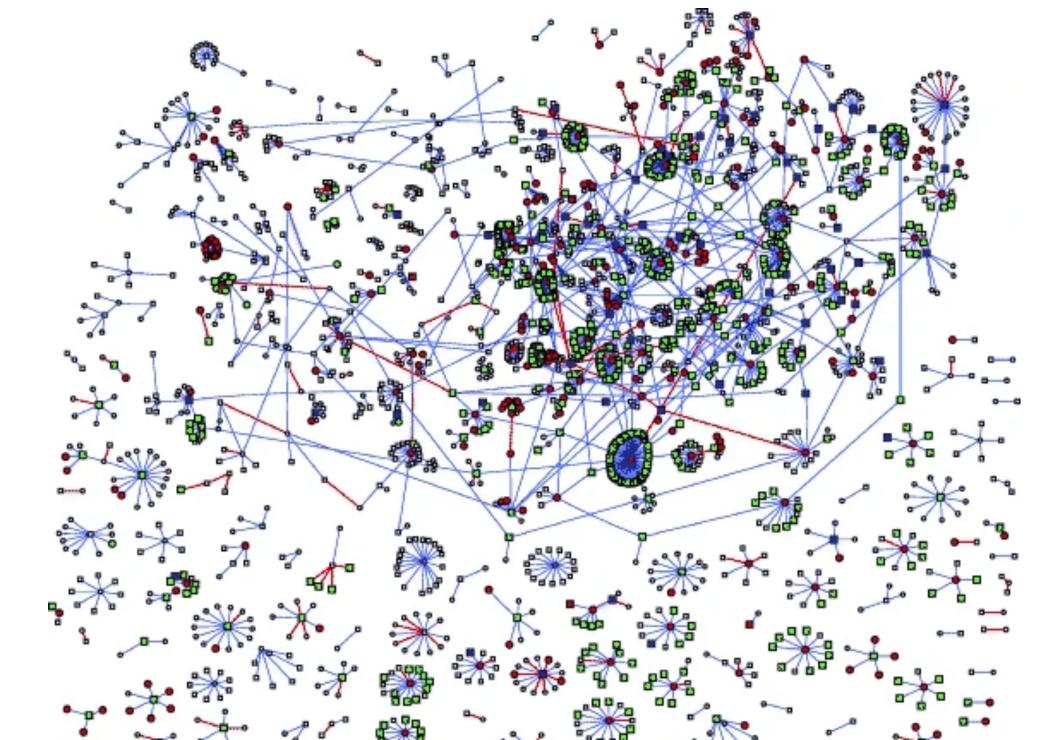
Network epidemiology

Homogeneous mixing assumptions

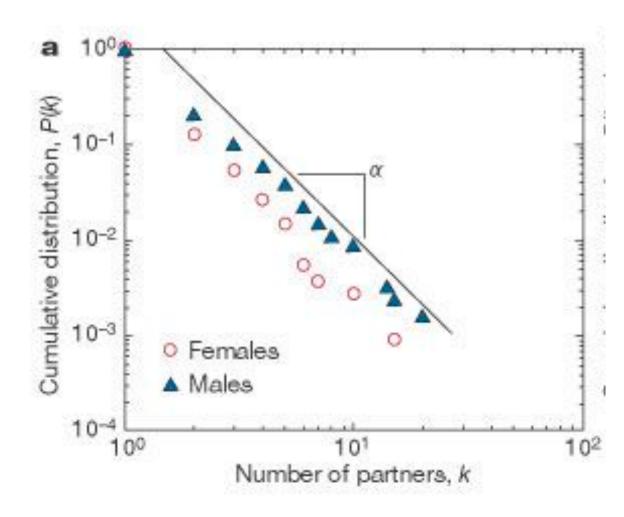
1. Host equivalence ———— Contact heterogeneities

2. Contact equivalence ——— Some contacts more likely than others

Sexual network in a US town



of partners in the last year



$$P(k) \propto k^{-\alpha}, \quad \alpha \simeq 2.3$$

Risk is heterogeneous!!!

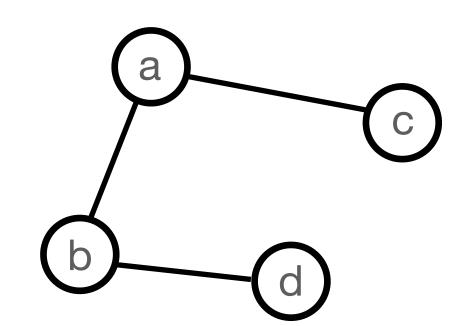
Not just sexual contacts: epidemiological relevance of contacts depends on host & pathogen

Liljeros et al, Nature, 2001 Potterat et al, 2004 Liljeros, 2009

Network basics

We are concerned with simple graphs:

- Undirected edges
- No self-edges
- No multi-edges



Node set

$$V = \{a, b, c, d\}$$

Edge set

$$E = \{(a, b), (a, c), (b, d)\}$$

Adjacency matrix

$$A_{i,j} = 1$$
 if $(i,j) \in E$
 $A_{i,j} = 0$ otherwise

Network basics

Node degree:

$$k_i = \sum_{j} A_{i,j}$$

$$k_a = k_b = 2$$
 $k_c = k_d = 1$

The **degree distribution** is defined as

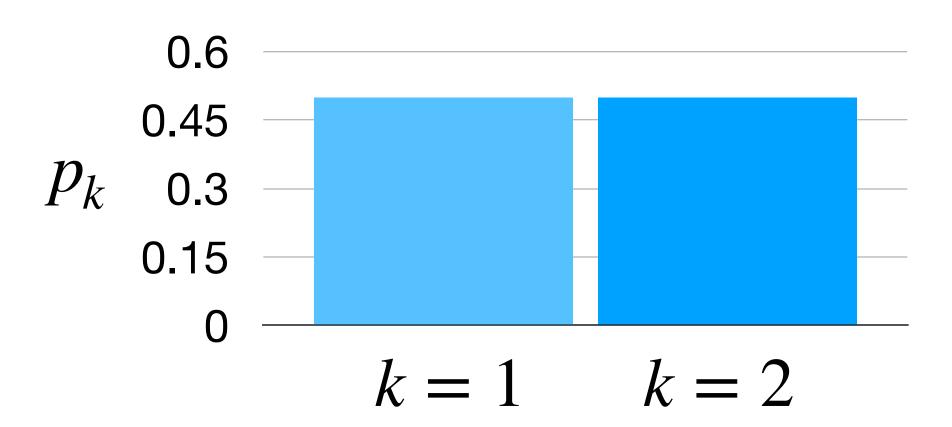
$$p_k = \frac{n_k}{N}$$

Node set

$$V = \{a, b, c, d\}$$

Edge set

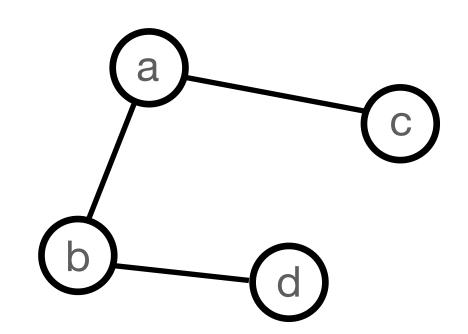
$$E = \{(a, b), (a, c), (b, d)\}$$



Degree moments

Degree moments

$$\langle k^n \rangle = \sum_{k=1}^{\infty} k^n p_k$$



Node set

$$V = \{a, b, c, d\}$$

Edge set

$$E = \{(a, b), (a, c), (b, d)\}$$

Average degree

$$\langle k \rangle = \sum_{k=1}^{\infty} k p_k$$

Degree variance

$$Var(k) = \langle k^2 \rangle - \langle k \rangle^2$$

$$\langle k^2 \rangle \ge \langle k \rangle^2$$

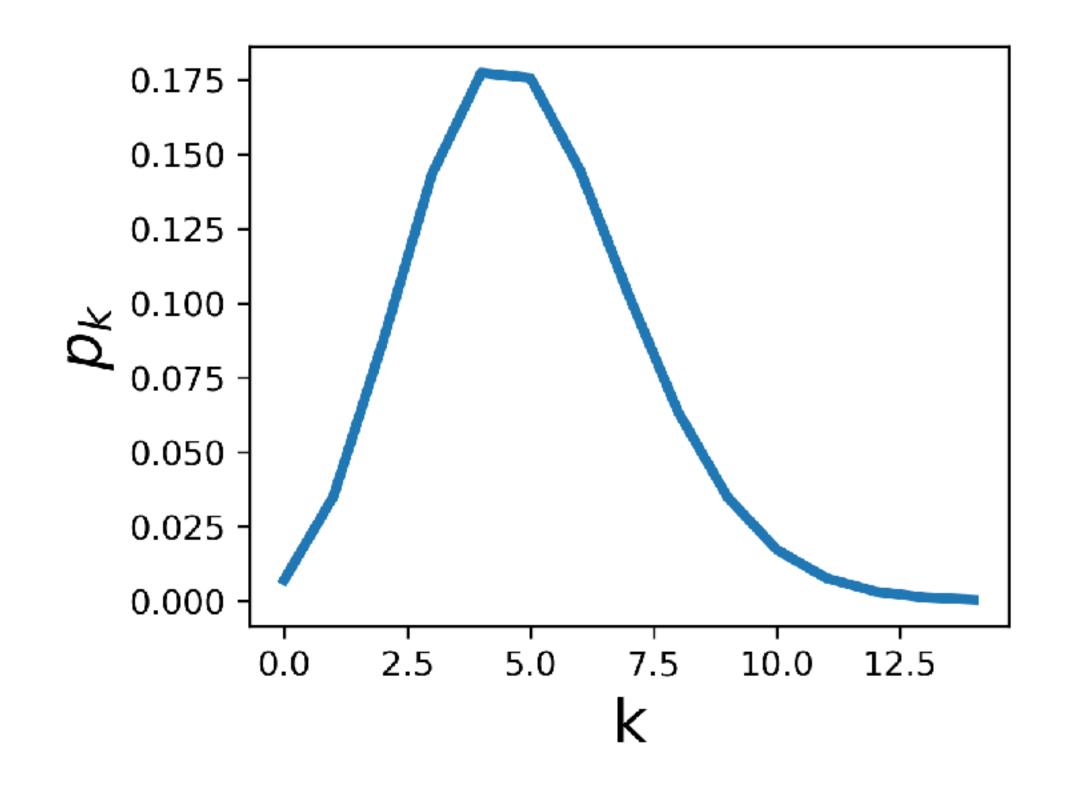
Poisson degree distributions

Poisson degree distribution

$$p_k = e^{-\langle k \rangle} \frac{\langle k \rangle^k}{k!}$$

- It's narrow ($Var(k) = \langle k \rangle$)
- Very small tail because of 1/k!

Example: Erdős-Rényi model



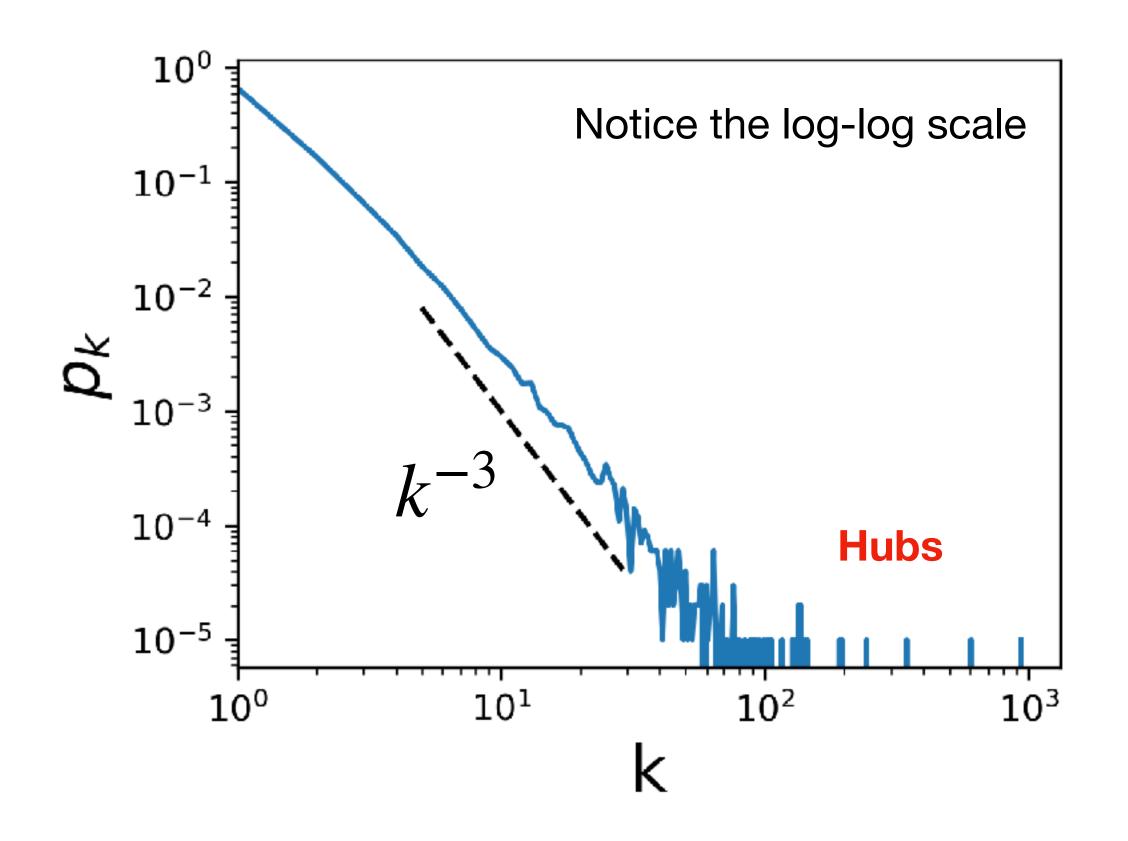
Power-law degree distributions

Power-law degree distribution

$$p_k \propto k^{-\gamma}$$

- Slower decay than exponential
- Wide range of degree values
- Infinite variance when $\gamma < 3$

Example: Barabasi-Albert model (has $\gamma = 3$)

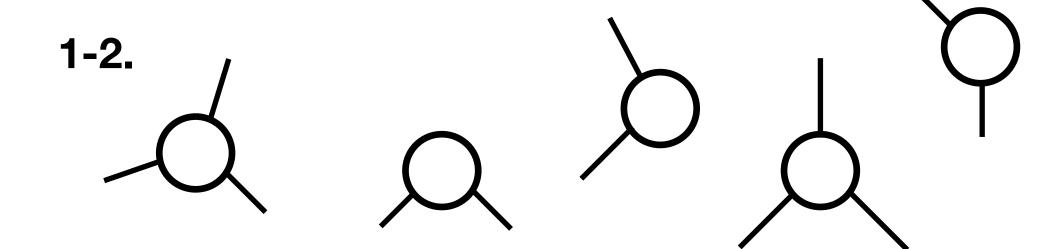


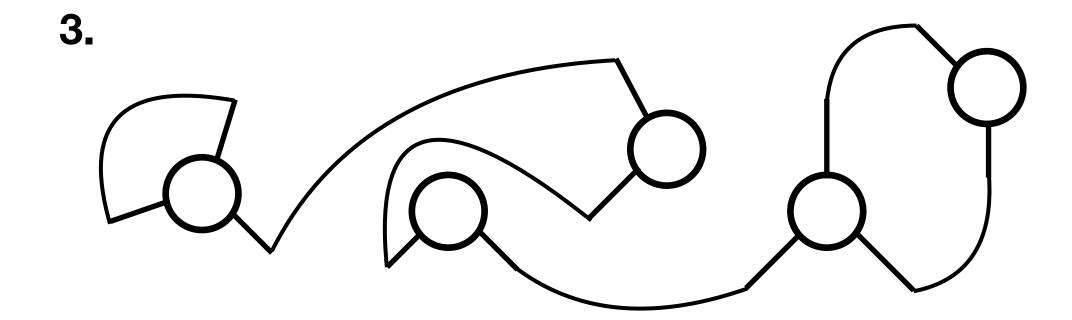
The configuration model

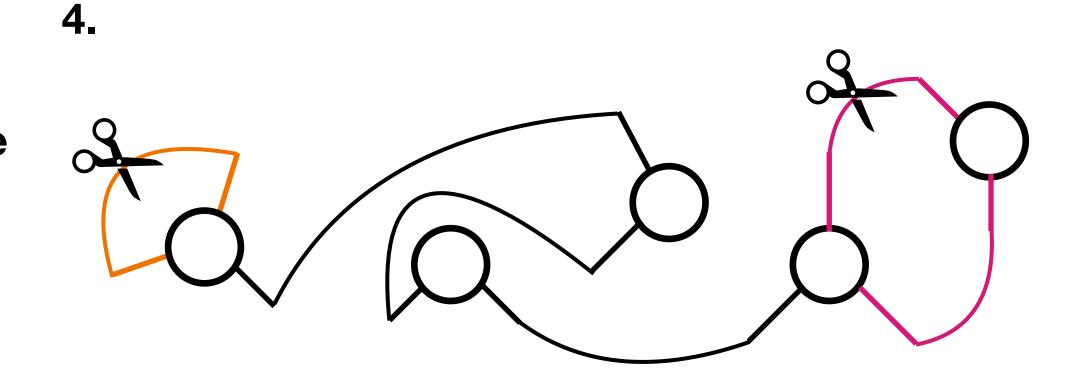
Generate networks with the desired degree distribution

- 1. Start with a list of degrees $\overrightarrow{k} = \{k_1, k_2, ..., k_N\}$
- 2. Create N "stars" with $k_1, k_2, ..., k_N$ stubs each
- 3. Match stubs at random to form edges
- 4. Remove self- and multi-edges or repeat process

Number of self- and multi-edges decreases with network size

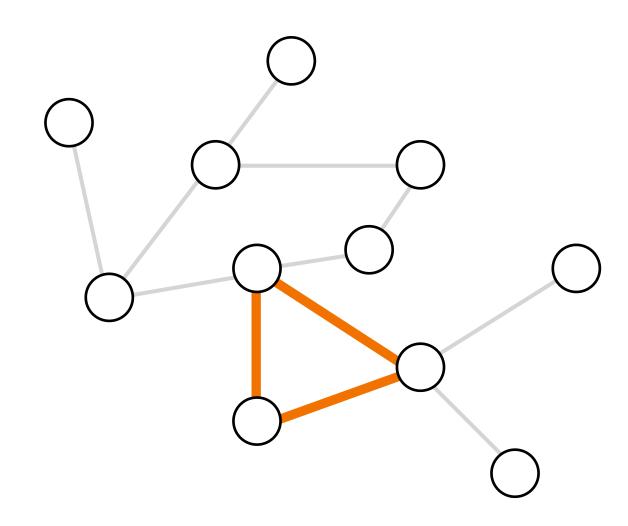






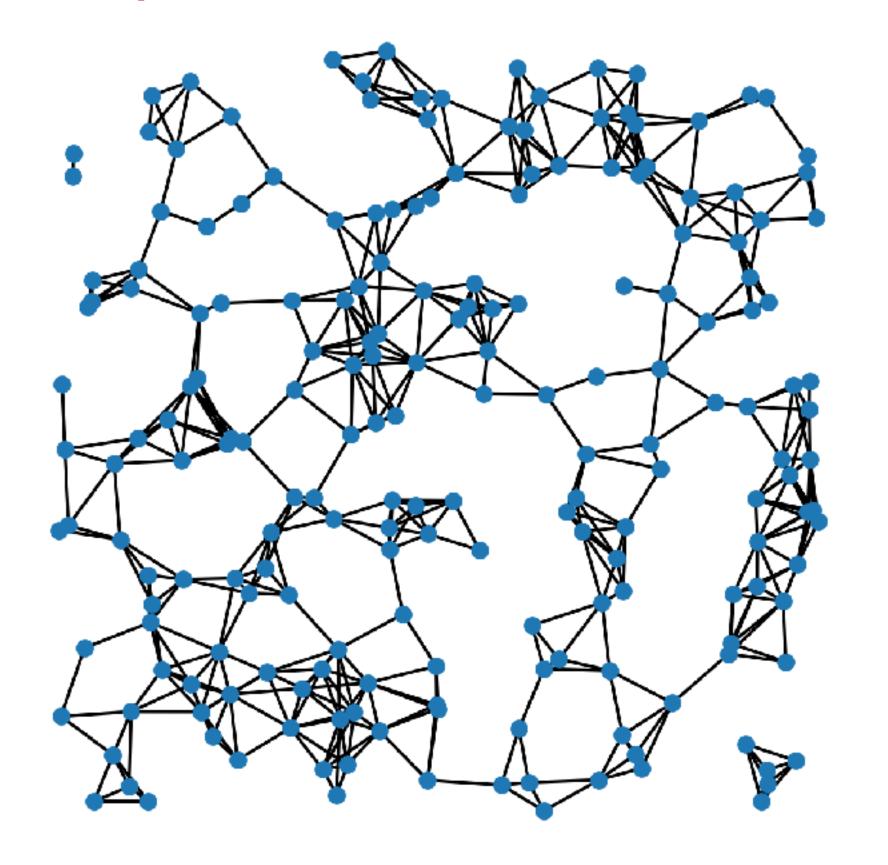
Is the degree distribution all there is to networks?

The CM fails to generate networks with many triangles



CM networks display small clustering

A spatial network



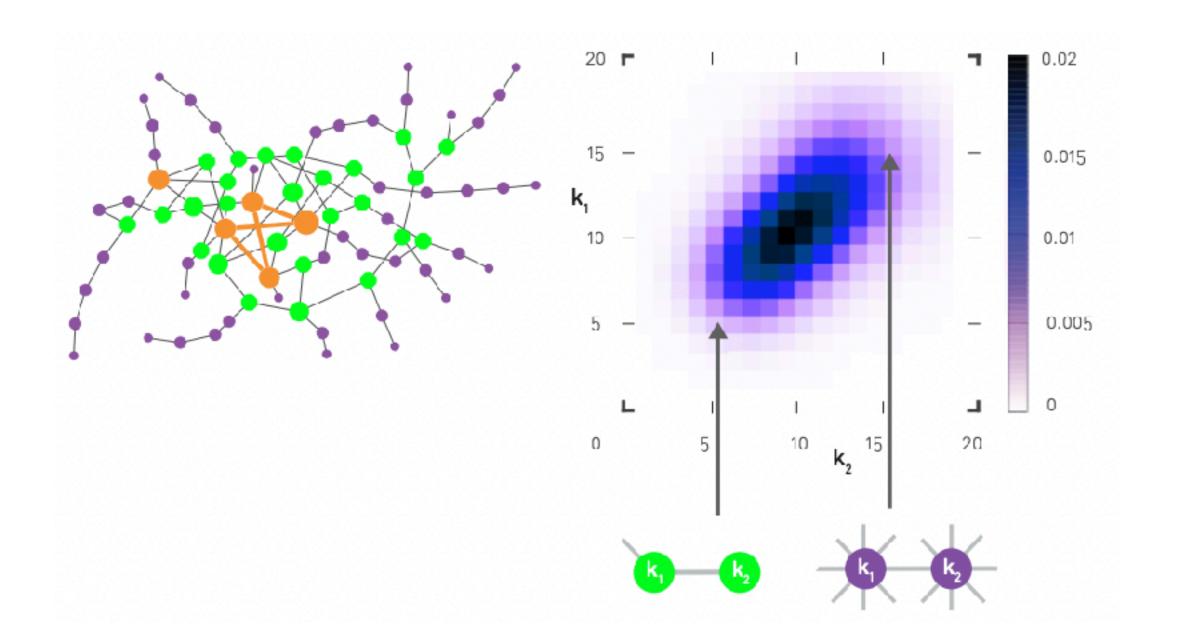
Is the degree distribution all there is to networks?

The CM implies a connection probability:

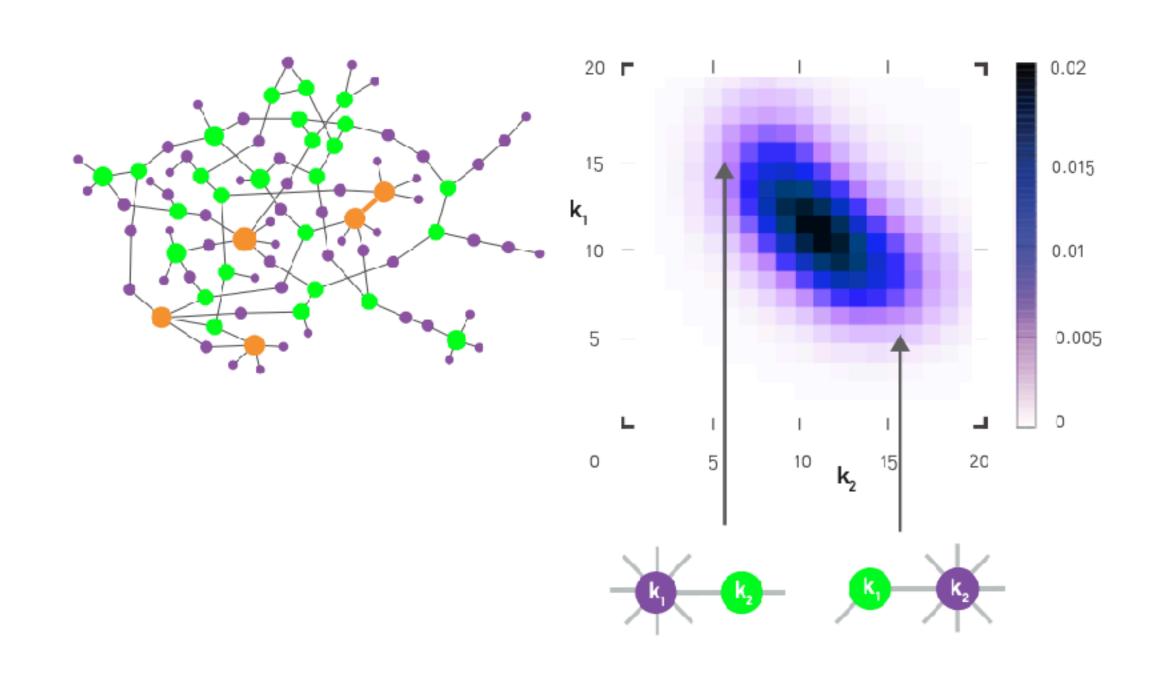
$$p_{i,j} = \frac{k_i k_j}{2 |E|}$$

i.e. nodes choose their connections at random

Assortative networks: nodes with similar degree tend to be neighbours



Disassortative networks: nodes with dissimilar degree tend to be neighbours



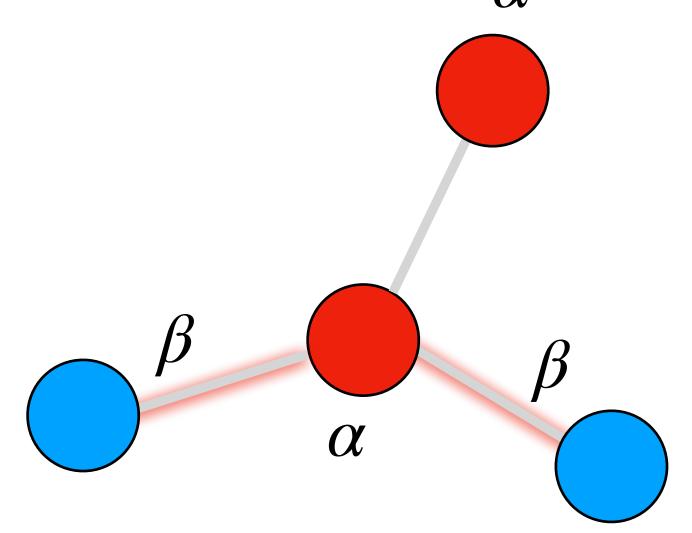
SIS model on networks

Each individual/node is either susceptible ($\mathcal{F}_i=0$) or infected ($\mathcal{F}_i=1$).

Infection propagates along edges at rate eta while recovery occurs at rate lpha

We define the probability $\rho_i(t) = \Pr\{\mathcal{F}_i(t) = 1\}$ that node i is infected at time t

$$\frac{d}{dt}\rho_i(t) = -\alpha\rho_i + \beta\sum_{j\neq i}A_{i,j}\cdot\Pr\{\mathcal{F}_i(t)=0,\mathcal{F}_j(t)=1\}$$
 Two-point correlation



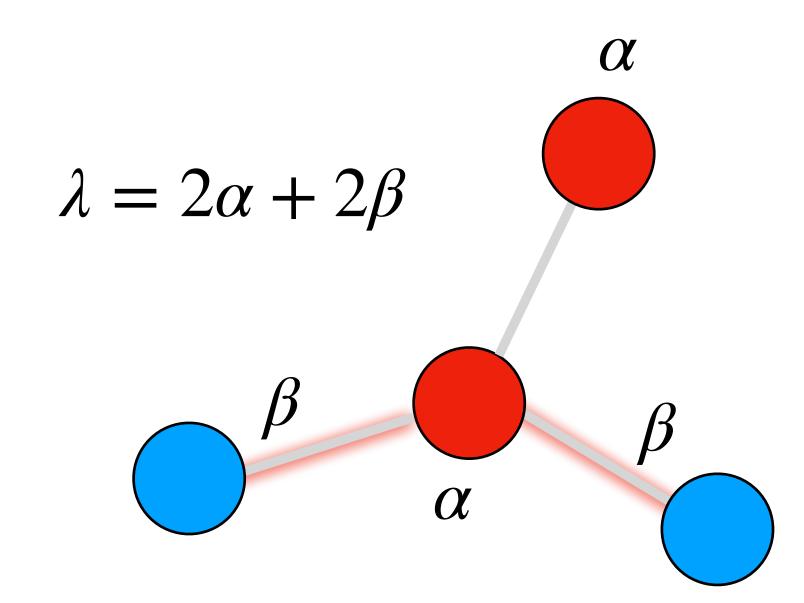
Gillespie-SIS simulations

Key idea: recovery and infection times are exponentially distributed so the time to the next event (recovery or infection) is also exponentially distributed with rate:

$$\lambda = \alpha n_I(t) + \beta \sum_{i,j} A_{i,j} \mathcal{F}_i(t) [1 - \mathcal{F}_j(t)]$$

Then keep repeating the following steps:

- Draw time to next event $\tau_{next} \sim exp(\lambda)$
- Select an event proportionally to its rate
- Update the system according to chosen event



Individual-based mean-field theory

Problem: the hierarchy of n-points correlations

$$\Pr\{\mathcal{I}_i(t) = a\} \longrightarrow \Pr\{\mathcal{I}_i(t) = a, \mathcal{I}_j(t) = b\} \longrightarrow \Pr\{\mathcal{I}_i(t) = a, \mathcal{I}_j(t) = b, \mathcal{I}_k(t) = c\}$$

Two-point correlation

Three-point correlation

IBMF: assuming independence between nodes stops the hierarchy

$$\Pr\{\mathcal{I}_i(t) = 0, \mathcal{I}_j(t) = 1\} \approx \Pr\{\mathcal{I}_i(t) = 0\} \cdot \Pr\{\mathcal{I}_j(t) = 1\} = [1 - \rho_i(t)] \cdot \rho_j(t)$$

IBMF equations

$$\frac{d}{dt}\rho_i(t) = -\alpha\rho_i + \beta(1-\rho_i)\sum_{j\neq i}A_{i,j}\rho_j$$
 Just N equations!

IBMF: epidemic threshold

Initially ρ_i is very small

$$\frac{d}{dt}\rho_i(t) \approx -\alpha\rho_i + \beta \sum_{j \neq i} A_{i,j}\rho_j = \sum_j J_{i,j} \cdot \rho_j$$

Jacobian matrix

$$J_{i,j} = -\alpha \delta_{i,j} + \beta A_{i,j}$$

The eigenvalues Λ_n^J of J decide the fate of initial perturbations:

$$\overrightarrow{\rho} \approx \sum_{n} \overrightarrow{u}_{n} \cdot e^{\Lambda_{n}^{J} \cdot t}$$

Epidemic threshold

– If all the
$$\Lambda_n^J$$
 are negative, $\overrightarrow{\rho}$ shrinks to 0, hence no equilibrium.

– If at least one
$$\Lambda_n^J$$
 (the largest) is positive, the epidemic takes off.

$$\max\{\Lambda_n^J\} = \beta \cdot \max\{\Lambda_n^A\} - \alpha \ge 0$$

$$R_0 = \frac{\beta}{\alpha} \cdot \max\{\Lambda_n^A\} \ge 1$$

Degree-based mean-field approximation

Uses degree-aggregated variables, e.g. density of infected nodes with degree k

$$I_k(t) \equiv \frac{n_{I,k}(t)}{N} = \frac{\sum_{i \in k} \rho_i(t)}{N}$$
 runs over nodes with degree k

Evolves according to:

$$\frac{d}{dt}I_k(t) = -\alpha I_k + \beta(p_k - I_k) \sum_{k'} \frac{kk'}{\langle k \rangle} I_{k'} \qquad \text{Connection probability } \propto kk'$$

Hypotheses:

- Neglects neighbour correlations (like IBMF)
- Nodes with the same degree are dynamically equivalent
- Assumes that the pathogen spreads slowly with respect to the dynamics of pathogens

From IBMF to DBMF

DBMF involves an approximation on top of IBMF.

$$\frac{d}{dt} \sum_{i \in k} \rho_i(t) = -\alpha \sum_{i \in k} \rho_i + \beta \sum_{i \in k} (1 - \rho_i) \sum_{j \neq i} A_{i,j} \rho_j$$

$$\sum_{j \in k'} \sum_{j \in k'} \sum_{j$$

$$\frac{d}{dt}n_{I,k} = -\alpha n_{I,k} + \beta \sum_{k'} \sum_{i \in k} \sum_{j \in k'} (1 - \rho_i) \cdot A_{i,j} \cdot \rho_j$$

$$\frac{d}{dt}n_{I,k} = -\alpha n_{I,k} + \beta \sum_{k'} \sum_{i \in k} (1 - \rho_i) \sum_{j \in k'} \rho_j \cdot \frac{k_i k_j}{N \langle k \rangle}$$

Sum over nodes with some degree and then over all degrees

$$A_{i,j} \to p_{i,j} = \frac{k_i k_j}{N \langle k \rangle}$$

N.B. no degree correlations

$$N\langle k \rangle = 2 |E|$$

From IBMF to DBMF

DBMF involves an approximation on top of IBMF.

$$\frac{d}{dt}n_{I,k} = -\alpha n_{I,k} + \beta \sum_{k'} \sum_{i \in k} (1 - \rho_i) \sum_{j \in k'} \rho_j \cdot \frac{k_i k_j}{N \langle k \rangle}$$

But $k_i = k$ and $k_j = k'$ because $i \in k$ and $j \in k'$

$$\frac{d}{dt}n_{I,k} = -\alpha n_{I,k} + \beta k \sum_{i \in k} (1 - \rho_i) \sum_{k'} \frac{k' \sum_{j \in k'} \rho_j}{N \langle k \rangle}$$

The sums $i \in k$ and $j \in k'$ can now be done explicitly

$$\frac{d}{dt}n_{I,k} = -\alpha n_{I,k} + \beta k(n_k - n_{I,k}) \sum_{k'} \frac{k'I_{k'}}{\langle k \rangle}$$

Divide by N to get the DBMF equation

DBMF: epidemic threshold

Let's find the stationary solution I_k^{st}

$$-I_k^* + \lambda \Theta^* \cdot k(p_k - I_k^*) = 0 \qquad \qquad \Theta(t) = \frac{1}{\langle k \rangle} \sum_k k I_k(t) \qquad \qquad \lambda = \frac{\beta}{\alpha}$$

In terms of Θ^* (still unknown):

$$I_k^* = \frac{\lambda \Theta^* k}{1 + \lambda \Theta^* k} \cdot p_k \qquad \qquad \frac{I_k^*}{p_k} = \frac{\lambda \Theta^* k}{1 + \lambda \Theta^* k}$$

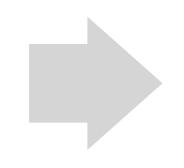
0.8 - Light of the second of t

Probability of infection increases with degree k

DBMF: epidemic threshold

 Θ^* is found using self-consistency. We are interested in the endemic solution $\Theta^* > 0$.

$$\Theta^* = \frac{1}{\langle k \rangle} \sum_{k} k I_k^* = \frac{1}{\langle k \rangle} \sum_{k} \frac{\lambda \Theta^* k^2}{1 + \lambda \Theta^* k} p_k$$

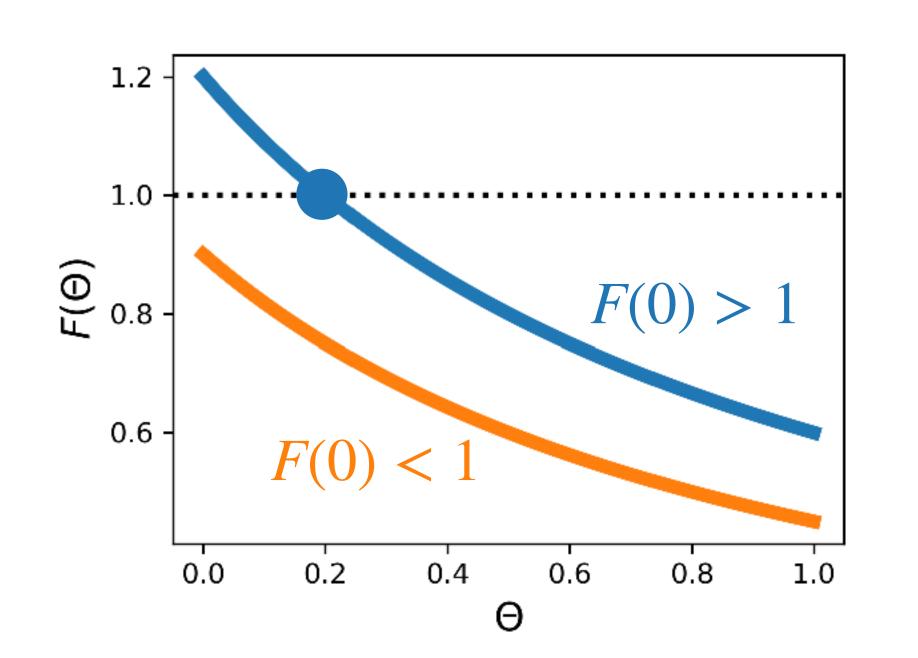


$$\frac{1}{\langle k \rangle} \sum_{k} \frac{\lambda k^2 \cdot p_k}{1 + \lambda \Theta^* k} = 1$$

Has a solution only if $F(0) \ge 1$

$$F(0) = \frac{\lambda}{\langle k \rangle} \sum_{k} k^2 p_k = \frac{\beta}{\alpha} \frac{\langle k^2 \rangle}{\langle k \rangle} \ge 1$$

We just found
$$R_0 = \frac{\beta}{\alpha} \frac{\langle k^2 \rangle}{\langle k \rangle}$$



Impact of contact heterogeneities

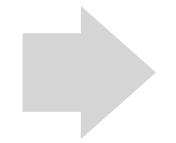
1. Contact heterogeneities facilitate transmission with respect to homogeneous mixing

$$\frac{\beta}{\alpha} \frac{\langle k^2 \rangle}{\langle k \rangle} \ge \frac{\beta}{\alpha} \langle k \rangle$$

Homogeneous mixing R_0

2. Epidemic threshold can vanish in very heterogeneous networks

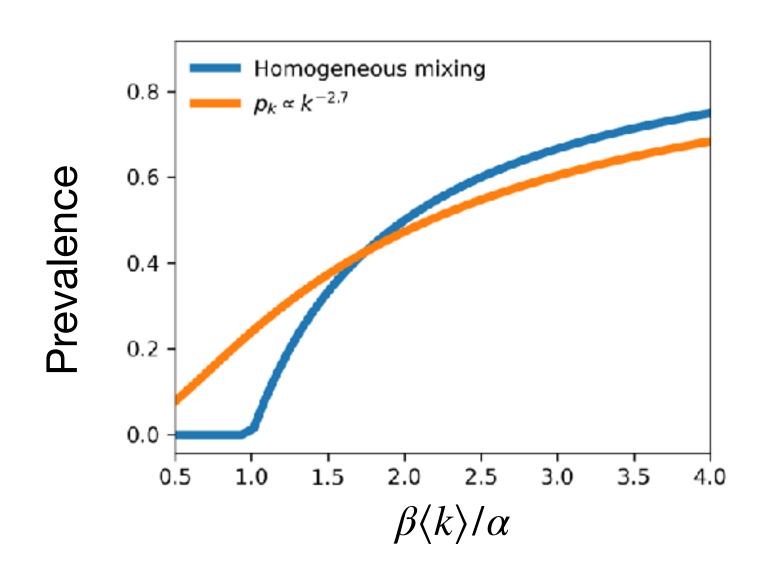
Assume
$$p_k = Ck^{-\gamma}$$



$$\langle k^2 \rangle = \sum_k k^2 p_k = C \sum_k k^{-\gamma + 2} \qquad R_0 \text{ diverges with } \langle k^2 \rangle \text{ when } \gamma < 3$$

3. Smaller prevalence in networks

Low degree nodes do not contribute much to transmission: infection transmits in a part of the Network



Comparison with IBMF

IBMF

$$R_0^{IBMF} = \frac{\beta}{\alpha} \cdot \Lambda_m^A$$

DBMF

$$R_0^{IBMF} = \frac{\beta}{\alpha} \cdot \Lambda_m^A$$

$$R_0^{DBMF} = \frac{\beta}{\alpha} \cdot \frac{\langle k^2 \rangle}{\langle k \rangle}$$

Remember: DBMF makes a further approximation wrt IBMF

General result for random graphs

$$\Lambda_m^A = \max\{\sqrt{k_{max}}, \frac{\langle k^2 \rangle}{\langle k \rangle}\} \qquad k_{max} : \text{typical maximum degree}$$

Assume $p_k = Ck^{-\gamma}$ in a finite network of size N

$$\Lambda_m^A = \begin{cases} \sqrt{k_{max}} & \text{if } \gamma > 2.5\\ \frac{\langle k^2 \rangle}{\langle k \rangle} & \text{if } \gamma < 2.5 \end{cases}$$

Vaccination in heterogeneous networks

Which nodes should we vax?

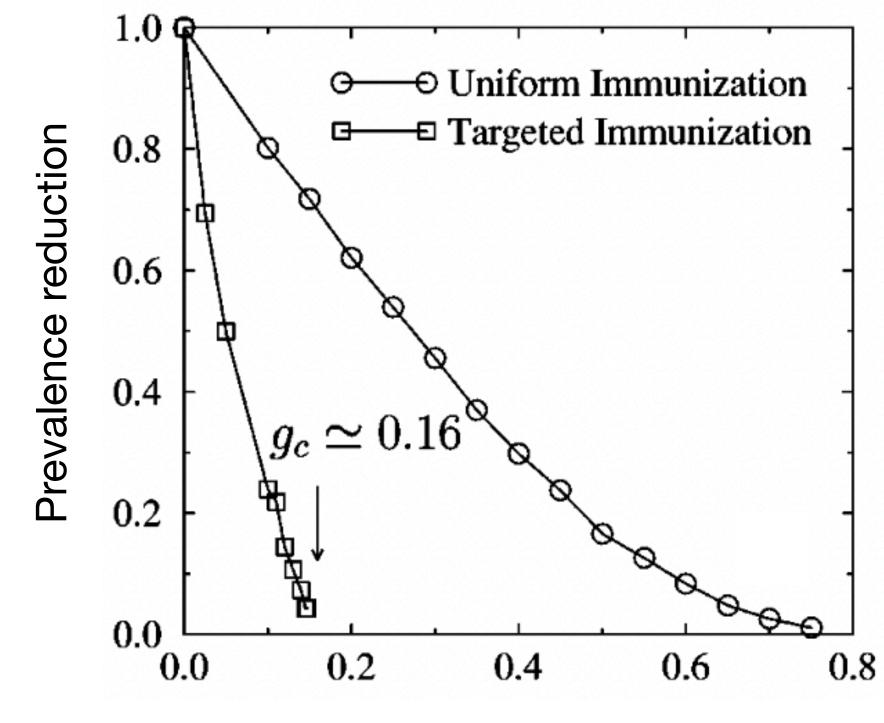
- Uniform vaccination: select nodes at random
- Targeted vaccination: start from most connected nodes

The targeted strategy is better because it removes nodes that contribute the most to transmission (and their contacts)

$$R_0^{DBMF} = \frac{\beta}{\alpha} \cdot \frac{\langle k^2 \rangle}{\langle k \rangle}$$

Suggests increasing returns from vaxing high-degree nodes

SIS model on network with $p_k \propto k^{-3}$

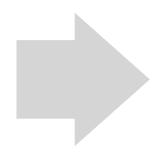


Proportion vaxxed

DBMF analysis of SIR dynamics

Nodes with larger degrees are depleted faster

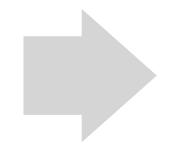
$$\frac{d}{dt}S_k(t) = -\beta k S_k \Theta$$



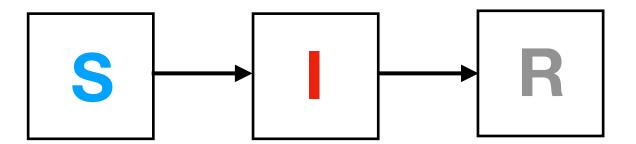
$$S_k(t) \approx e^{-\beta k \int_0^t \Theta(u) du}$$

Same epidemic threshold of SIS model

$$\frac{d}{dt}I_k(t) = -\alpha I_k + \beta k S_k \Theta$$



$$R_0 = \frac{\beta}{\alpha} \frac{\langle k^2 \rangle}{\langle k \rangle}$$



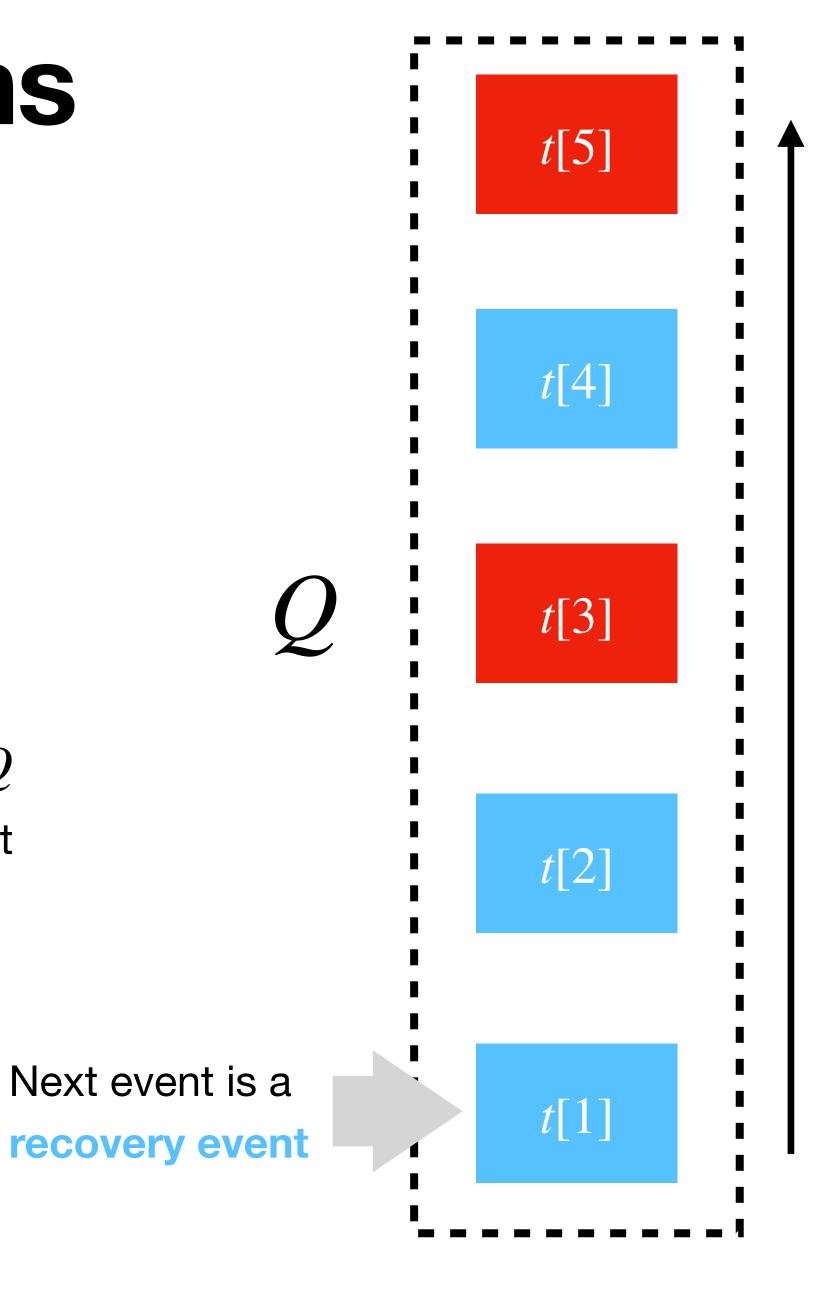
Keep a time-ordered list Q of recovery and infection events.

Apply events sequentially. Note that an event may spawn new events and thus modify ${\cal Q}$ itself.

Assume node i is infected at time t:

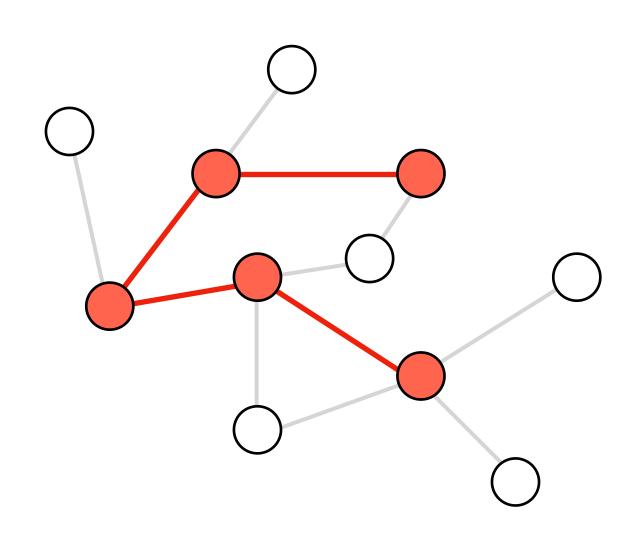
- Draw an infectious period $\tau \sim exp(\alpha)$ and push a recovery event into Q
- For each susceptible neighbour j draw an infection time $\tau_j \sim exp(\beta)$, but push an infection event only if $\tau_j < \tau$ (i.e. before it recovers)

Discard infection events hitting infected or recovered nodes



Percolation analysis of SIR dynamics

Key idea: retrospectively, an outbreak looks like the result of percolation



Not occupied

Occupied

Infection travels along one edge with probability

$$T = \frac{\beta}{\alpha + \beta}$$

Bond occupation probability

A large outbreak corresponds to an infinitely large percolating cluster

When percolation occurs mean cluster size $\langle s \rangle$ diverges

Desired result (don't know T_c yet)

- If $T < T_c$ then $\langle s \rangle$ is finite (no percolation/small outbreaks only)
- If $T > T_c$ then $\langle s \rangle$ is infinite (percolation/large outbreak)

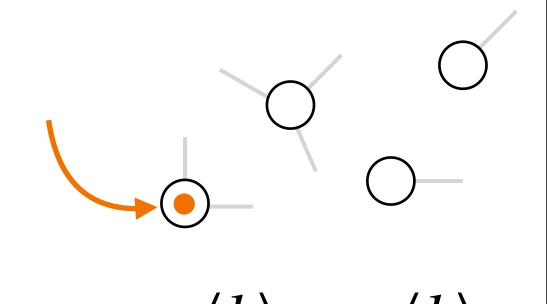
Interlude: choosing a random node

What is the probability that a randomly chosen node has degree k? Depends on how the node is selected!

Strategy A:

Pick a random node label

Answer: p_{k}

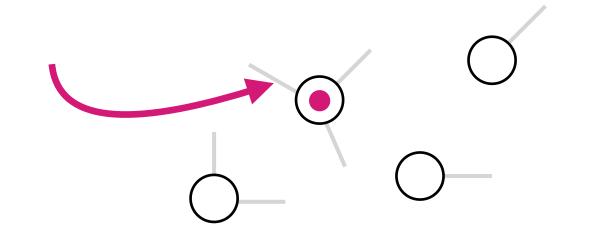


Strategy B:

First pick a random edge and then one node at its ends (or pick a stub)

Answer: $q_k = \frac{kp_k}{\langle k \rangle}$

A k=10 node is 10x more likely to be chosen than a k=1 node because 10 edges lead to it.



Friendship paradox

$$\langle k \rangle_B = \frac{\langle k^2 \rangle}{\langle k \rangle}$$

Interlude: probability generating functions

Let p_n denote a discrete probability distribution. We define the PGF $G(x) = \sum_n p_n x^n$

Properties

- 1. G(x) encodes p_n
- 2. G(x) allows to calculate the moments of p_n
- 3. Convolution: if Z = X + Y, then $G_Z(u) = G_X(u)G_Y(u)$
- 4. Composition: if $Z = X_1 + X_2 + \ldots + X_K$ where K itself is random, then $G_Z(u) = G_K(G_X(u))$

Moments

$$G(x=1) = \sum_{n} p_n = 1 \qquad \frac{d}{dx}G(x=1) = \sum_{n} np_n = \langle n \rangle$$

Examples

1. Bernoulli "One egg hatches with probability T"

Let
$$X = \begin{cases} 0 \text{ with prob. } 1 - T \\ 1 \text{ with prob. } T \end{cases}$$

$$G_X(u) = (1 - T) \cdot u^0 + T \cdot u^1 = 1 - T + Tu \quad \text{(PGF definition)}$$

2. Binomial "One hen lays a fixed number M of eggs, each hatching with probability T"

$$Y \sim Binomial(M, T)$$
. Because $Y = X_1 + ... + X_M$: $G_Y(u) = G_X^M(u) = (1 - T + Tu)^M$ (Property 3: addition)

3. Binomial with random number of draws "One hen lays a random number M of eggs, each hatching with probability T"

$$G_Y(u) = G_M(G_X(u)) = G_M(1 - T + Tu)$$
 (Property 4: composition)

Back to SIR and percolation

Pick a random node. How large is the cluster containing it?

Assume node has degree k , but only $l \leq k$ edges are occupied

$$s = 1 + s_1 + s_2 + s_3$$

$$k = 5$$

$$l = 3$$

$$S_3$$

$$S_2$$

$$S_3$$

$$S_2$$

$$S_3$$

$$S_2$$

$$S_3$$

$$S_2$$

$$S_3$$

$$S_2$$

$$S_3$$

$$S_2$$

$$S_3$$

$$S_4$$

$$S_2$$

$$s = 1 + \sum_{i=1}^{l} s_i$$

Back to SIR and percolation

Pick a random node. How large is the cluster containing it?

Assume node has degree k, but only $l \leq k$ edges are occupied

Define:

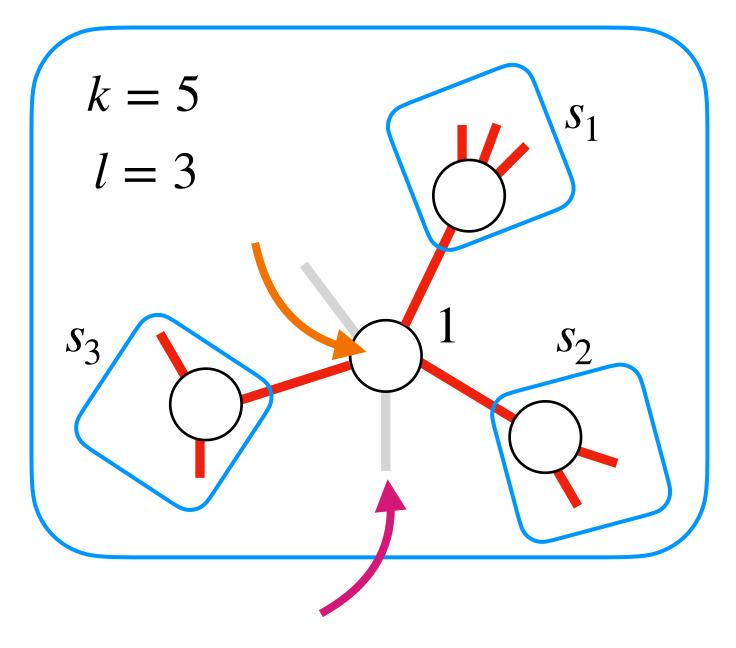
- The PGF of cluster sizes when the first node is picked with strategy A: $H_A(u)$
- The PGF of cluster sizes when the first node is picked with strategy B: $H_B(u)$
- The PGF of the degree distribution $G_A(u)$ (needed with strategy A)

The PGF of the excess degree distribution
$$G_B(u) = \sum_k \frac{(k+1)p_{k+1}}{\langle k \rangle} u^k$$
 (needed with strategy B)

Cluster size can be found recursively (exact on trees)

$$s = 1 + \sum_{i=1}^{l} s_i$$

$$s = 1 + s_1 + s_2 + s_3$$



$$\langle s \rangle = H_A'(1)$$

Cluster size PGF

Pick a random node. How large is the cluster containing it?

Assume node has degree k , but only $l \leq k$ edges are occupied

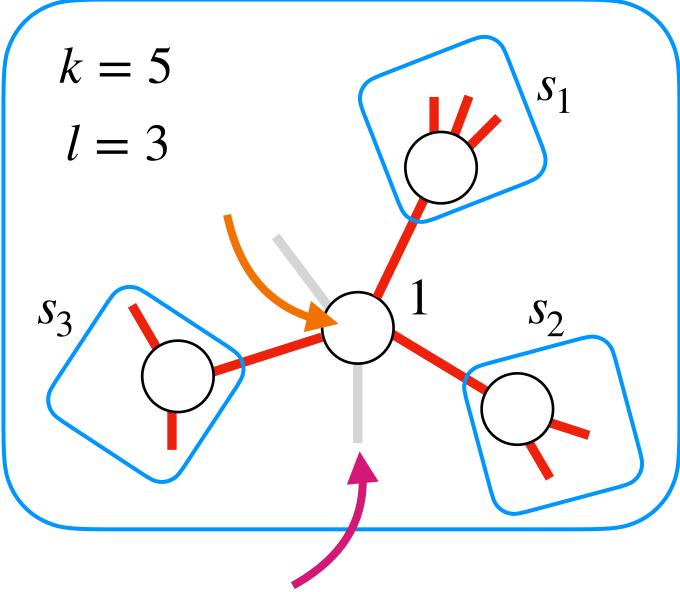
Cluster size can be found recursively (exact on trees)

$$s = 1 + \sum_{i=1}^{l} s_i$$

Using strategy A to pick the initial node:



$$s = 1 + s_1 + s_2 + s_3$$



Sub-clusters are entered by following an edge (strategy B)

Cluster size PGF

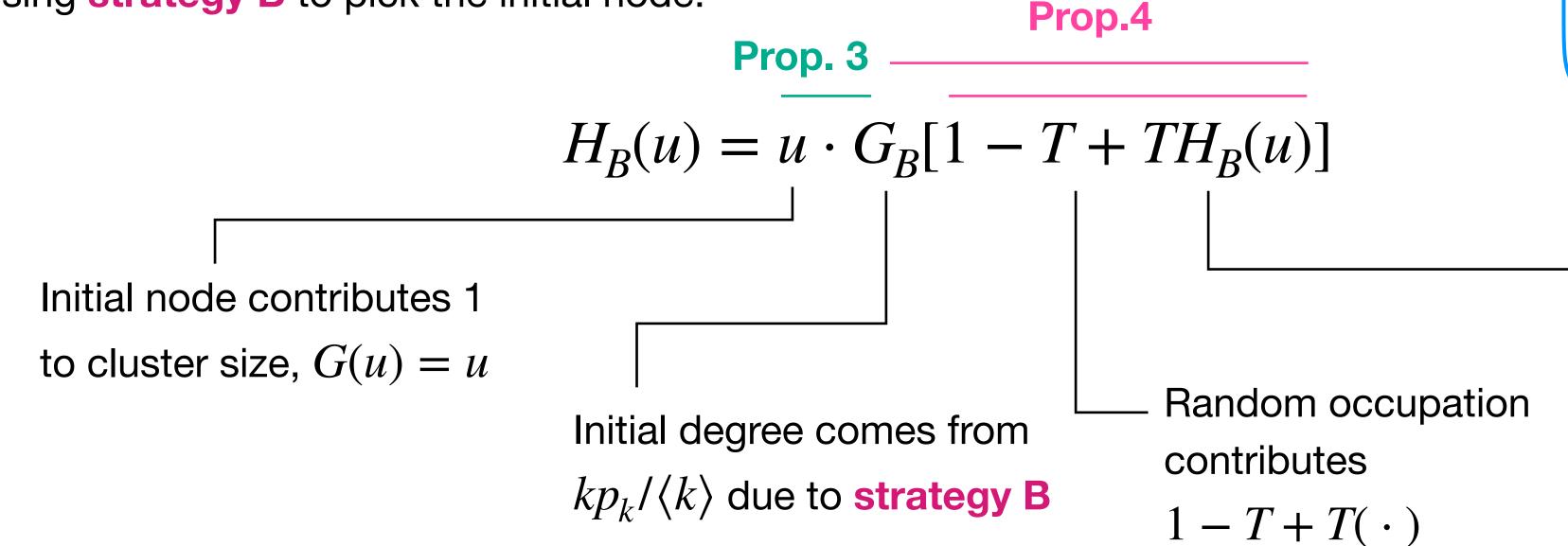
Pick a random node. How large is the cluster containing it?

Assume node has degree k , but only $l \leq k$ edges are occupied

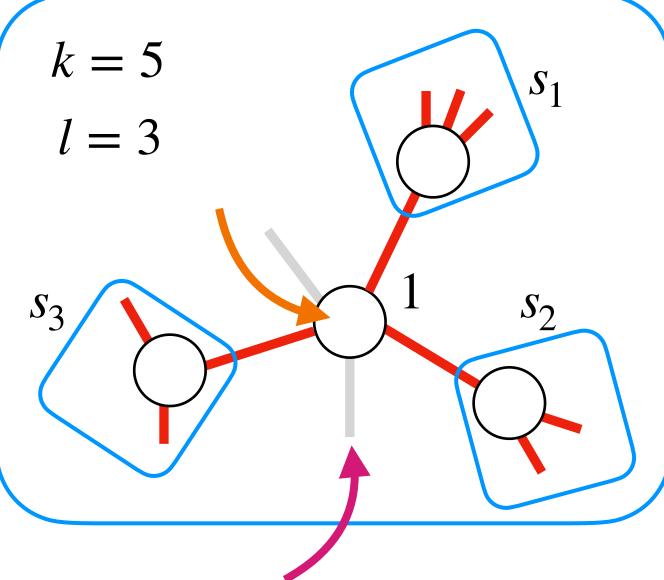
Cluster size can be found recursively (exact on trees)

$$s = 1 + \sum_{i=1}^{l} s_i$$

Using strategy B to pick the initial node:



$$s = 1 + s_1 + s_2 + s_3$$



Sub-clusters are entered by following an edge (strategy B)

Mean cluster size

Finally, use **property 2** to obtain mean cluster size from PGFs

$$H_{A}(u) = u \cdot G_{A}[1 - T + TH_{B}(1 - T + Tu)] \qquad \langle s \rangle = H'_{A}(1) = 1 + TG'_{A}(1)H'_{B}(1)$$

$$H_{B}(u) = u \cdot G_{B}[1 - T + TH_{B}(1 - T + Tu)] \qquad H'_{B}(1) = \frac{1}{1 - TG'_{B}(1)}$$

Mean cluster size:

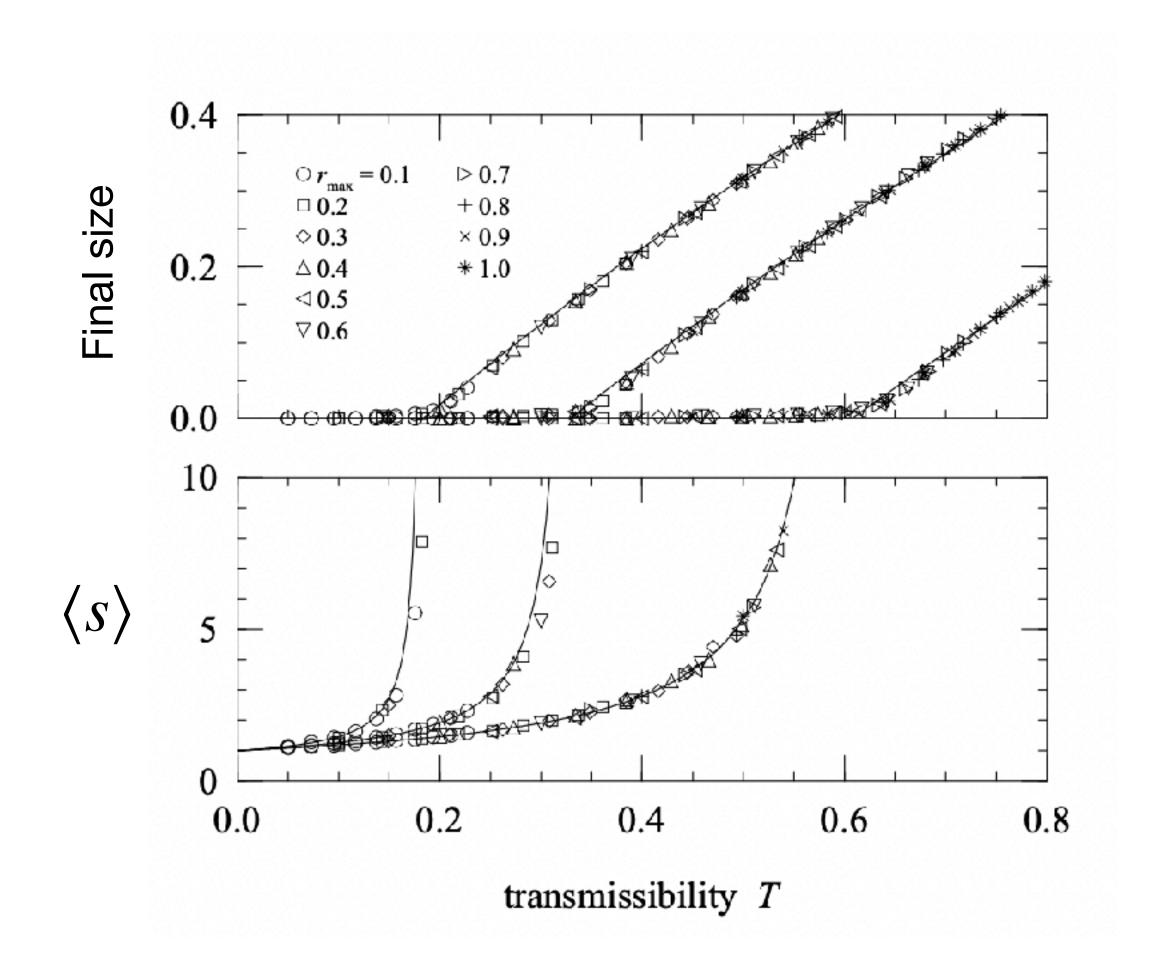
$$\langle s \rangle = 1 + \frac{TG'_{A}(1)}{1 - TG'_{B}(1)}$$

Percolation threshold

Using
$$T = \frac{\beta}{\beta + \alpha}$$
 a large outbreak occurs when:

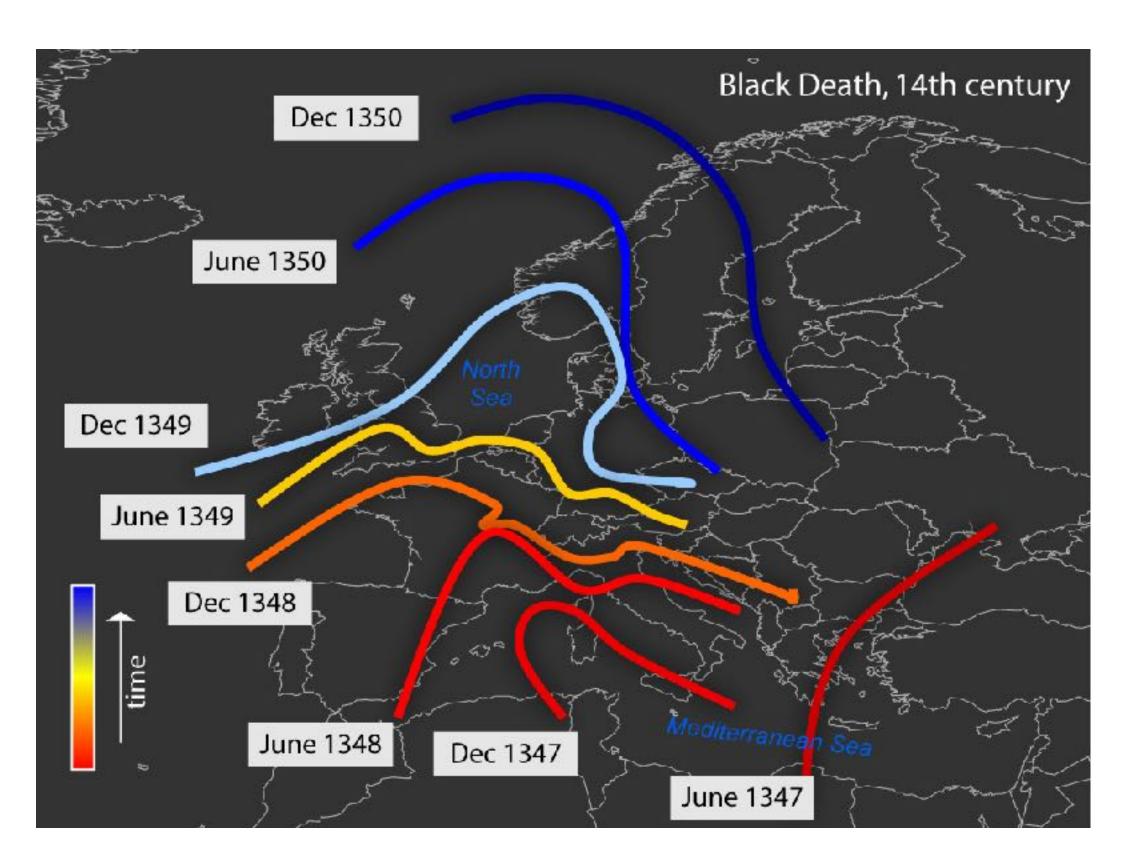
$$\frac{\beta}{\alpha} \ge \frac{\langle k \rangle}{\langle k^2 \rangle - 2\langle k \rangle}$$

Exact on trees, works well with loopy networks



Spatial and metapopulation models

The Black Death (1347-1350)



Credits: Langer, Sci Amer 1964; Chiara Poletto Front velocity:

$$v = 2\sqrt{D(R_0 - 1)\alpha} \approx 140 \text{ miles} \cdot \text{y}^{-1}$$

Noble, Nature, 1974

Where:

 R_0 : Basic reproductive number

 α : Recovery/death rate

D: Diffusion constant

Relates to host dispersal

Diffusion in space

Let $f(\vec{r}, t)$ denote the density of hosts in space and time

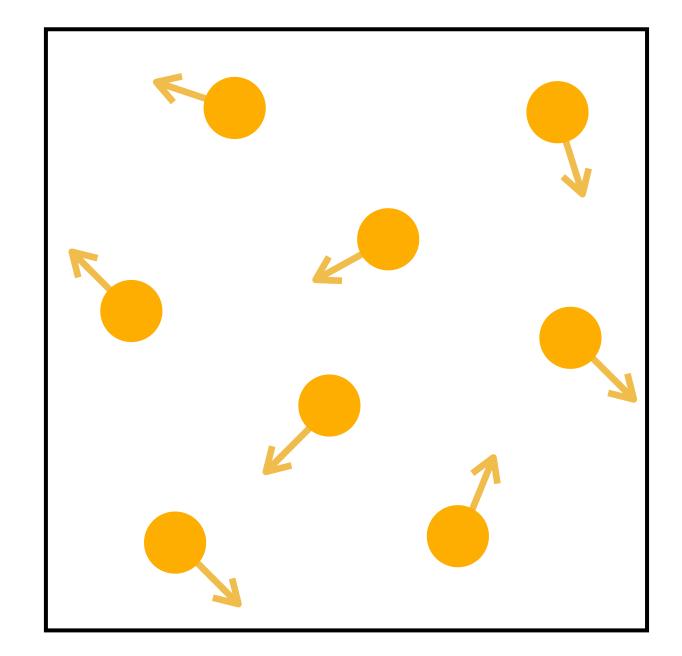
$$\frac{\partial f(\vec{r},t)}{\partial t} = D \frac{\partial^2 f(\vec{r},t)}{\partial x^2} + D \frac{\partial^2 f(\vec{r},t)}{\partial y^2}$$

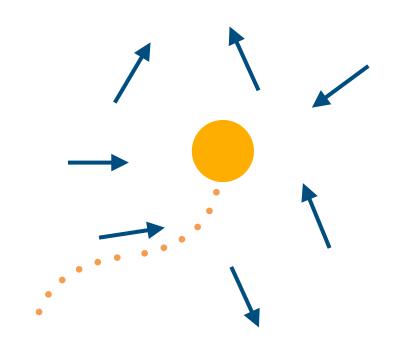
2D Laplacian: $D \nabla^2 f$

This PDE describes hosts moving as random walkers:

It is equivalent to an equation of motion with a random force $\overrightarrow{\eta}$

$$\frac{d\vec{r}}{dt} = \overrightarrow{\eta}$$

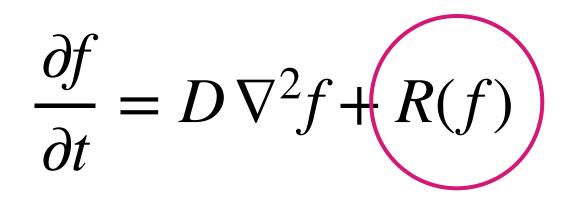




 $\overrightarrow{\eta}$ pulls the walker in random directions all the time

Reaction-diffusion equations

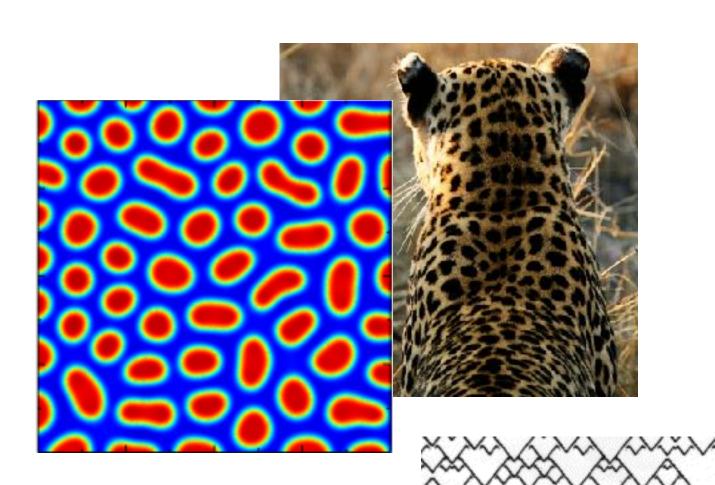
- Diffusion alone is boring
- Diffusion & local reactions create interesting patterns

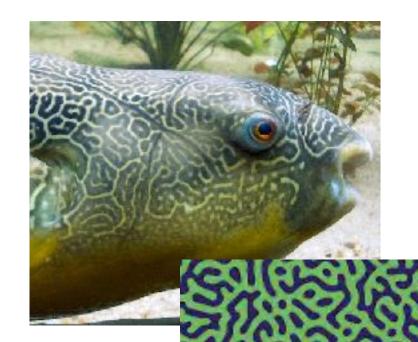


Reaction term

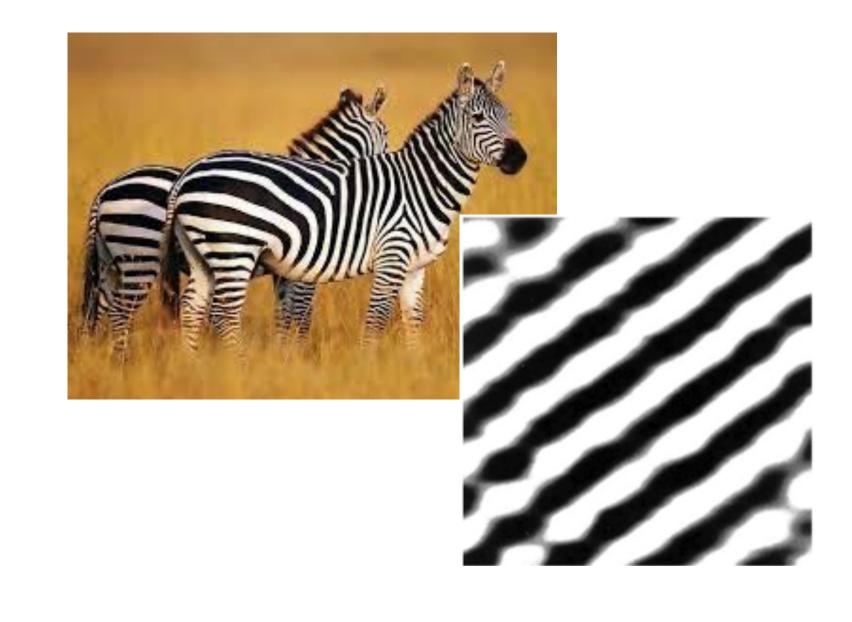
E.g. local death:

$$R(\overrightarrow{x},t) = -\alpha f(\overrightarrow{x},t)$$



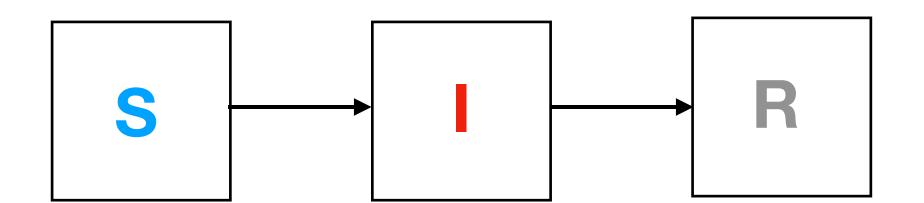


Turing patterns are found everywhere!



SIR model in 1D

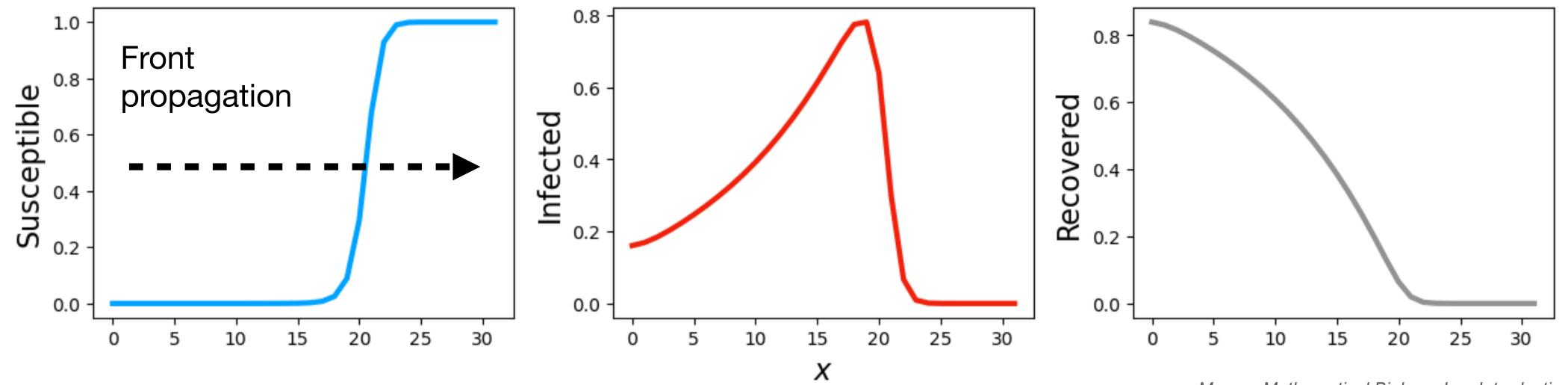
$$\frac{\partial S}{\partial t} = D \frac{\partial^2 S}{\partial x^2} - \beta SI \qquad \frac{\partial I}{\partial t} = D \frac{\partial^2 I}{\partial x^2} + \beta SI - \alpha I$$



Travelling wave solution:

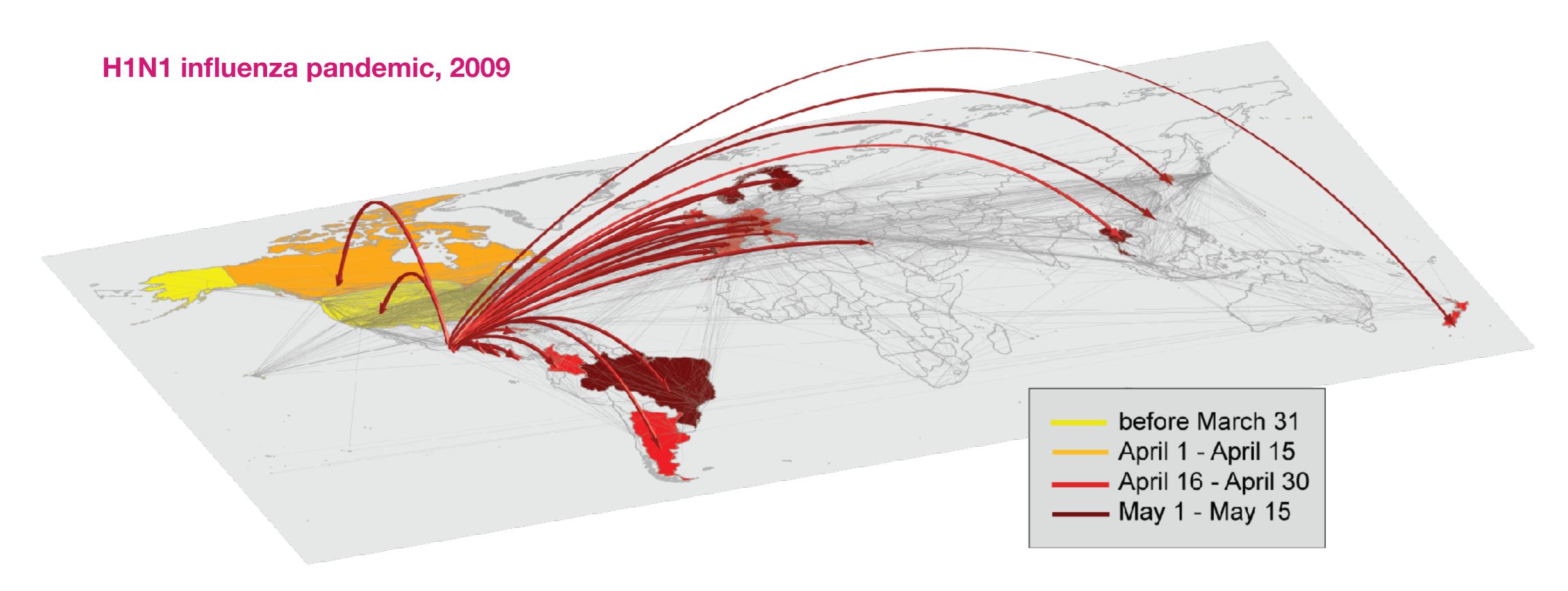
$$I(x,t) \to I(z=x-vt)$$
 with velocity: $v=2\sqrt{D(\beta-\alpha)}$

$$v = 2\sqrt{D(\beta - \alpha)}$$



Murray, Mathematical Biology: I an Introduction, 2007

Pathogens now fly first class



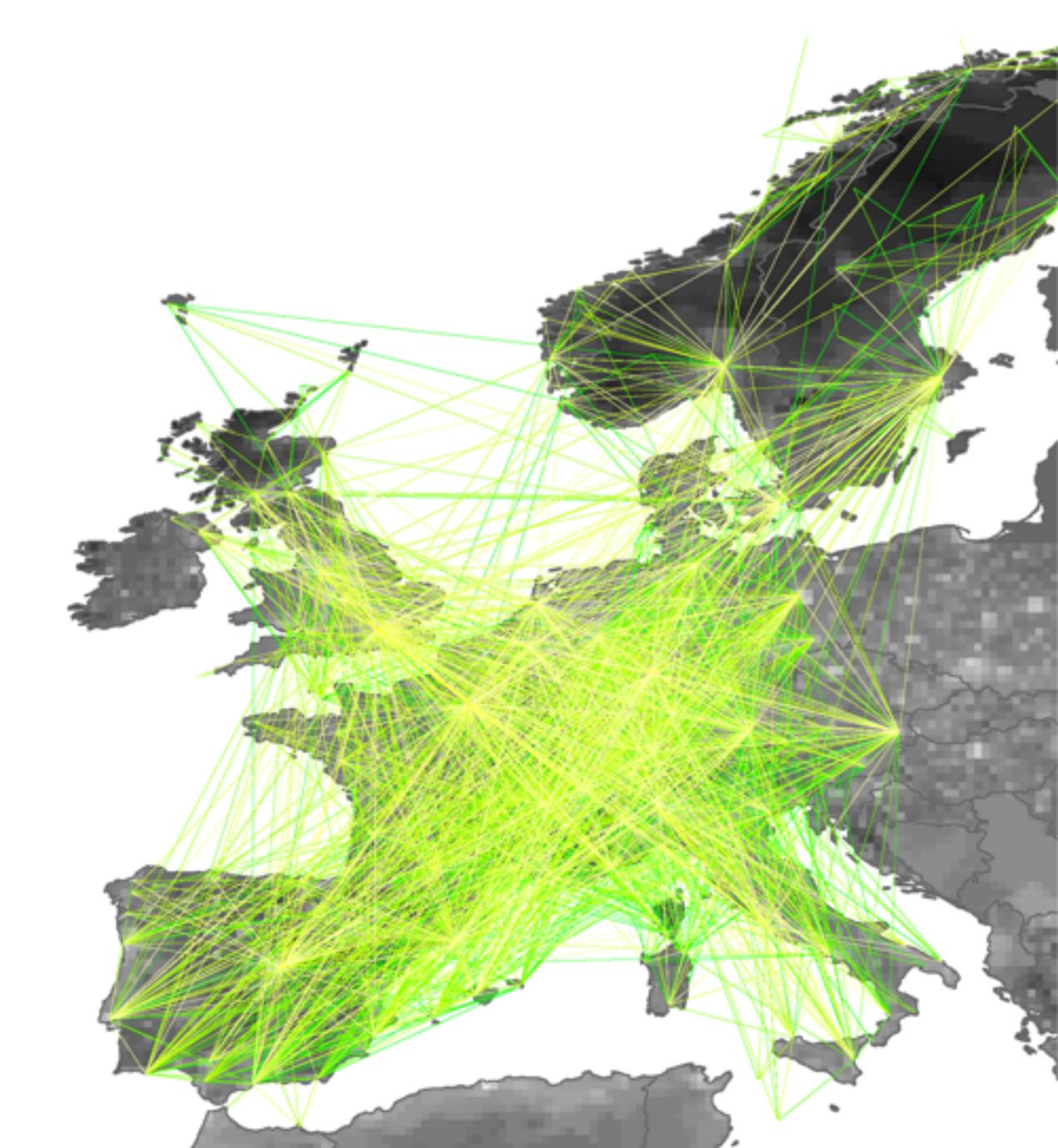
Credits: Chiara Poletto

Geographic distance can't explain pathogen arrival times

Mobility network data

Air travel: data collected by the International Air Transport Association (IATA)

How many people travelled daily on a given route?

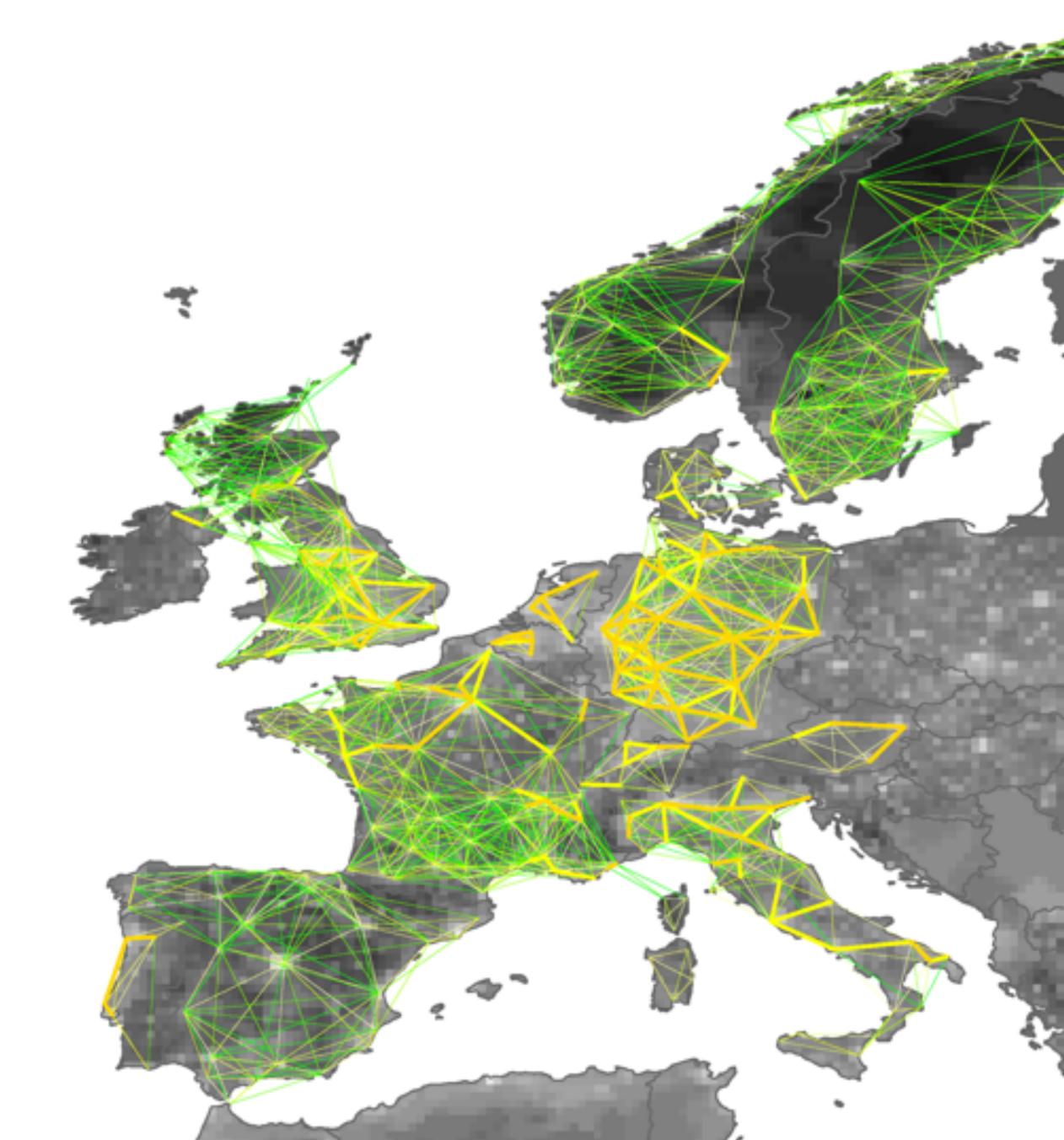


Hufnagel et al PNAS 2004 Colizza et al PLoS Med 2007 Balcan et al PNAS 2009

Mobility network data

Commuting: census data from different countries

How many people living at one location commute to another location?



Balcan et al PNAS 2009

Metapopulations

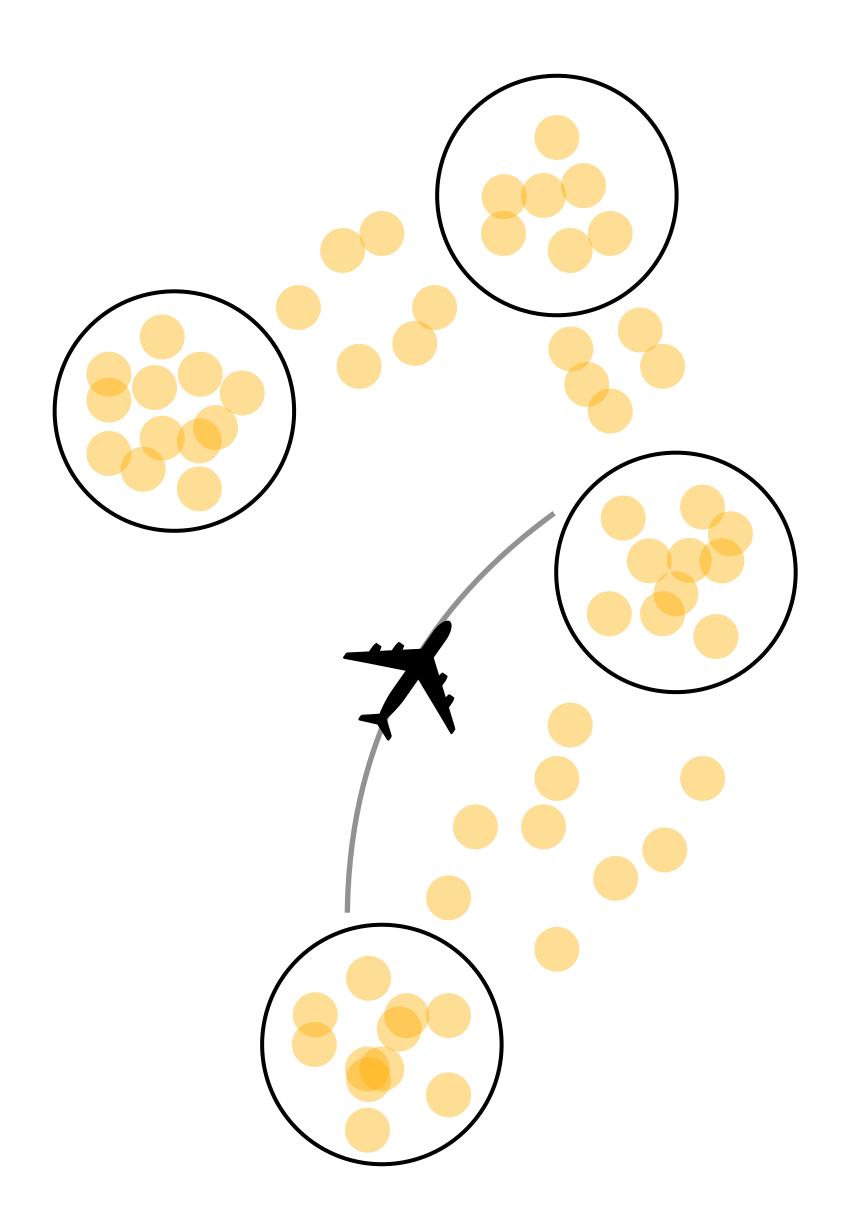
A metapopulation is a population that has been partitioned in smaller subpopulations contained in discrete patches

Subpopulations may interact with each other through individual movements (coupling/flows)

An example relevant to infectious disease epidemiology:

Patches: airports and surrounding areas

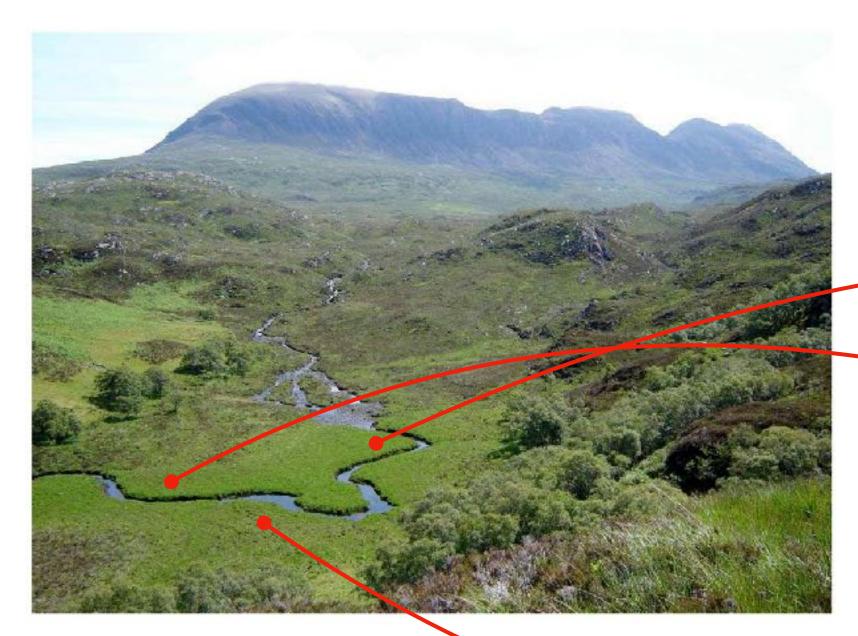
Coupling: air travel fluxes



An example from ecology

Water voles occupy a fragmented habitat made of short stretches of grassland along rivers

Water voles can migrate between patches

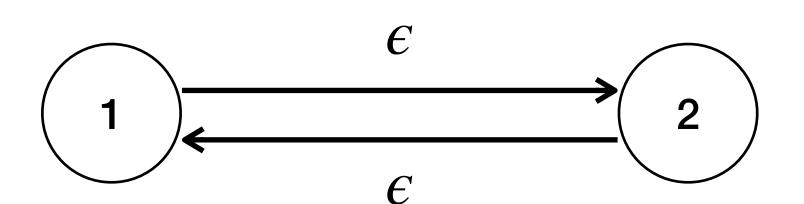


Diffusion on networks

Let us consider 2 subpopulations (nodes) with simple diffusion

$$\frac{dN_1}{dt} = \epsilon N_2 - \epsilon N_1$$

$$\frac{dN_2}{dt} = \epsilon N_1 - \epsilon N_2$$



It is assumed that any individual travels at rate ϵ (coupling)

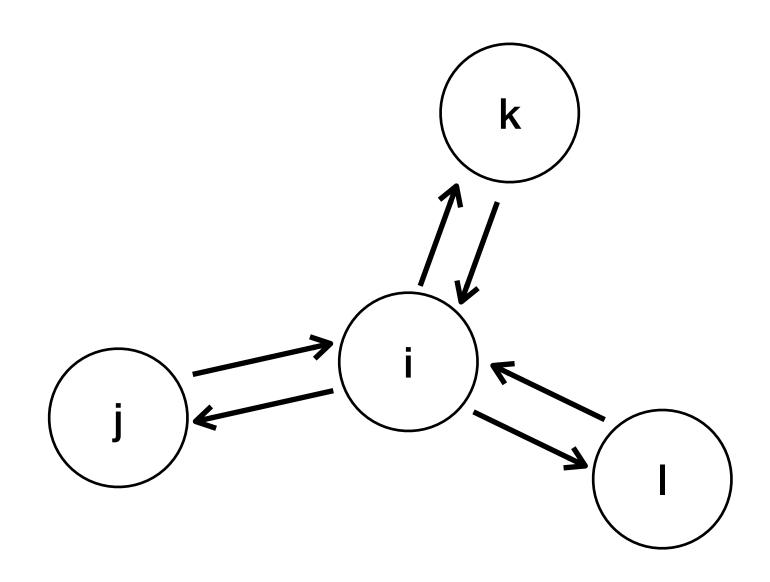
Diffusion on networks

When considering multiple nodes:

$$\frac{dN_i}{dt} = \epsilon(N_j + N_k + N_l) - 3\epsilon N_i$$

We find a general pattern:

$$\frac{dN_i}{dt} = -\epsilon \sum_{j} L_{i,j} \cdot N_j(t)$$



Graph Laplacian

$$L_{i,j} = \begin{cases} k_i & \text{if } i = j \\ -A_{i,j} & \text{if } i \neq j \end{cases}$$

Recovering spatial diffusion

The graph laplacian extends the operator ∇^2 to networks.

Let us consider a special graph: a 1D array of evenly spaced (spacing: δ) nodes

$$-\sum_{j} L_{i,j} \cdot f_j = f(x - \delta) + f(x + \delta) - 2f(x)$$

Expanding:
$$f(x \pm \delta) \approx f(x) \pm \delta f'(x) + \frac{\delta^2}{2} f''(x)$$

Hence:
$$-\sum L_{i,j} \cdot f_j \approx \delta^2 \frac{\partial^2 f}{\partial x^2}$$

We obtain the Laplace operator!

Heterogeneous rates

Host at some locations are more likely to travel than others. Also, some destinations are more popular than others.

$$\frac{dN_i}{dt} = -\epsilon_i N_i + \sum_j \epsilon_{j,i} \cdot N_j$$

 $\epsilon_{i,j}$: rate of travelling from i to j

$$\epsilon_i = \sum_j \epsilon_{i,j}$$
: total rate of travelling from i

If an average of $w_{i,j}$ individuals travel from i to j in one day, we can estimate these rates:

$$\epsilon_i = rac{\sum_j w_{i,j}}{ar{N}_i}$$

$$\epsilon_{i,j} = \hat{\epsilon}_i \cdot \boxed{\frac{w_{i,j}}{\sum_j w_{i,j}}}$$
 Total people leaving in i

 $\epsilon_{i,j} = \hat{\epsilon}_i \cdot \left| \frac{w_{i,j}}{\nabla} \right|$ Probability of choosing j as a destination when leaving from i

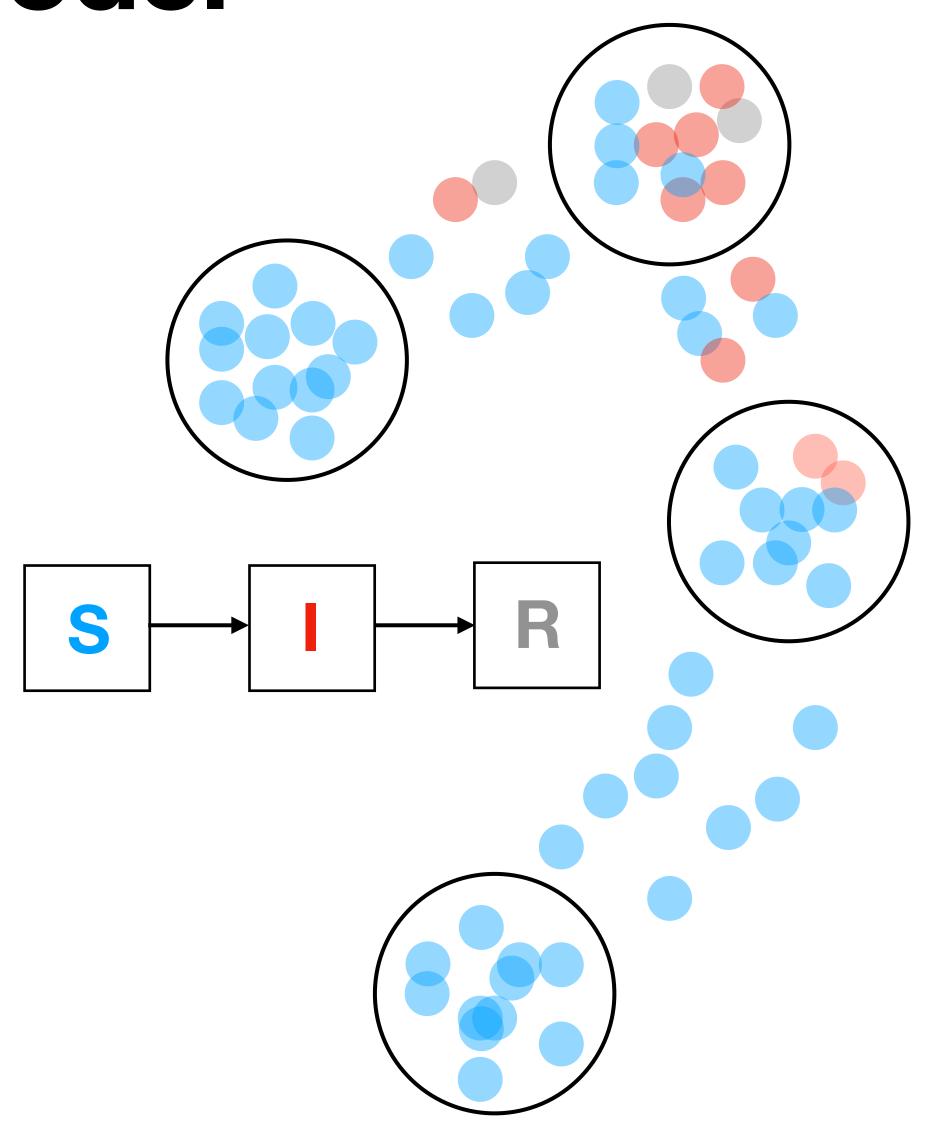
SIR metapopulation model

Still a reaction-diffusion system

$$\frac{dS_i}{dt} = -\beta \frac{S_i I_i}{N_i} - \epsilon_i S_i + \sum_j \epsilon_{j,i} \cdot S_j$$

$$\frac{dI_i}{dt} = \beta \frac{S_i I_i}{N_i} - \alpha I_i - \epsilon_i I_i + \sum_j \epsilon_{j,i} \cdot I_j$$

$$\frac{dR_i}{dt} = \alpha I_i - \epsilon_i R_i + \sum_j \epsilon_{j,i} \cdot R_j$$



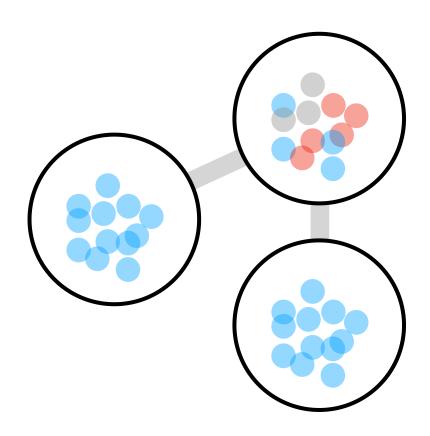
Global invasion threshold

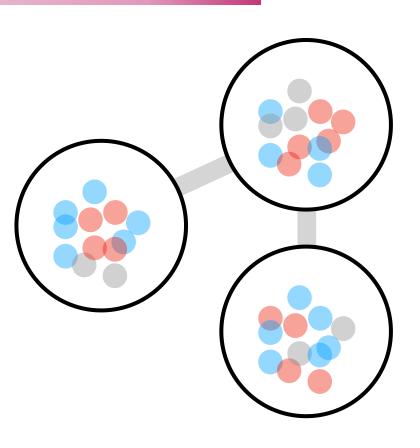
Local spread occurs when $R_0=\beta/\alpha>1$ but does not guarantee global spread (many patches invaded)

$$\epsilon = 0$$

 $\epsilon \to \infty$

No global spread





Local spread occurs when $R_0 = \beta/\alpha > 1$ but does not guarantee global spread (many patches invaded)

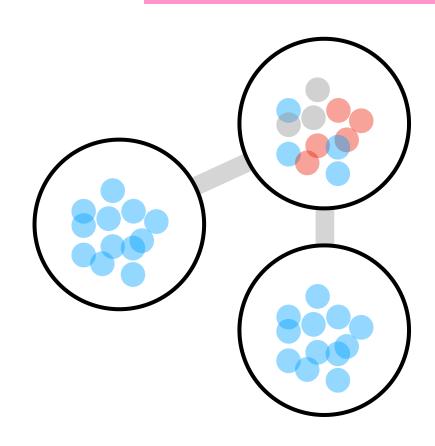
$$\epsilon = 0$$

$$\epsilon = \epsilon_c$$

$$\epsilon \rightarrow \infty$$

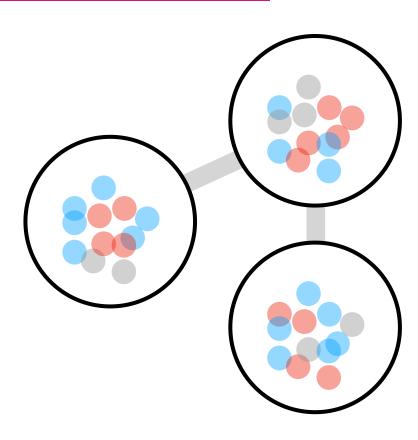
No global spread

Global spread

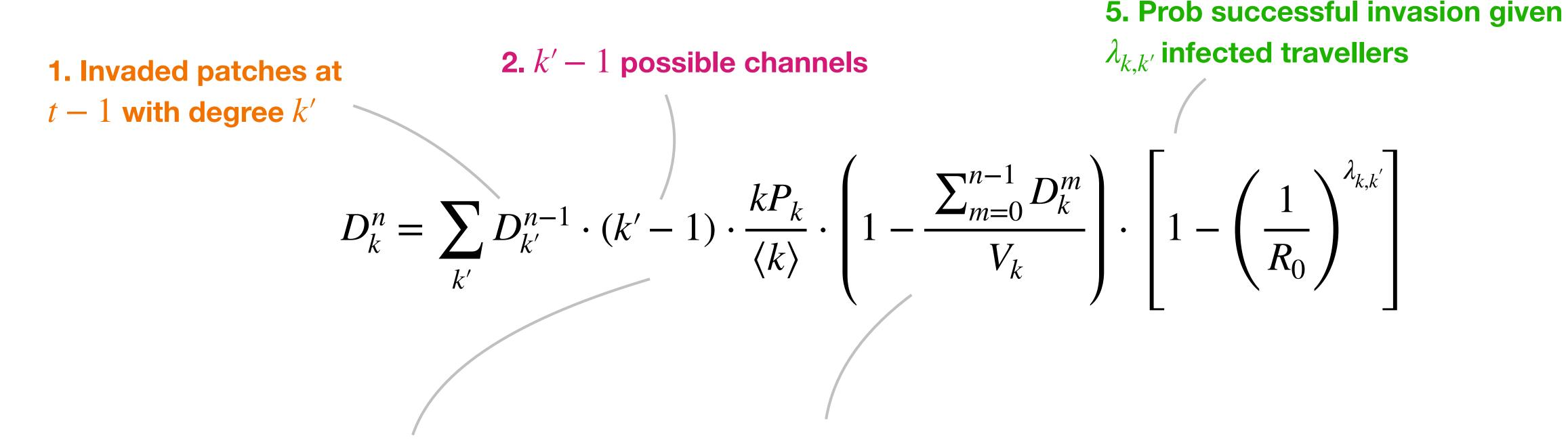


Global invasion requires $\epsilon > \epsilon_c$ for fixed R_0

Equivalently: $R_g(R_0, \epsilon) > 1$



Let D_k^n be the number of patches with degree k invaded at generation n



3. Prob connecting to a degree k patch

4. Prob uninvaded degree k patch

 V_k : #patches with degree k

Initially almost all patches are uninvaded and $\lambda_{k,k'} \approx \bar{\lambda} \ll 1$:

$$D_k^n = \sum_{k'} D_{k'}^{n-1} \cdot (k'-1) \cdot \frac{kP_k}{\langle k \rangle} \cdot \bar{\lambda} \left(R_0 - 1 \right)$$

Define
$$\theta^n = \sum_k D_k^n (k-1)$$

$$\theta^{n} = \frac{\langle k^{2} \rangle - \langle k \rangle}{\langle k \rangle} \cdot \frac{2(R_{0} - 1)^{2}}{R_{0}^{2}} \frac{\epsilon \bar{N}}{\alpha} \cdot \theta^{n-1}$$

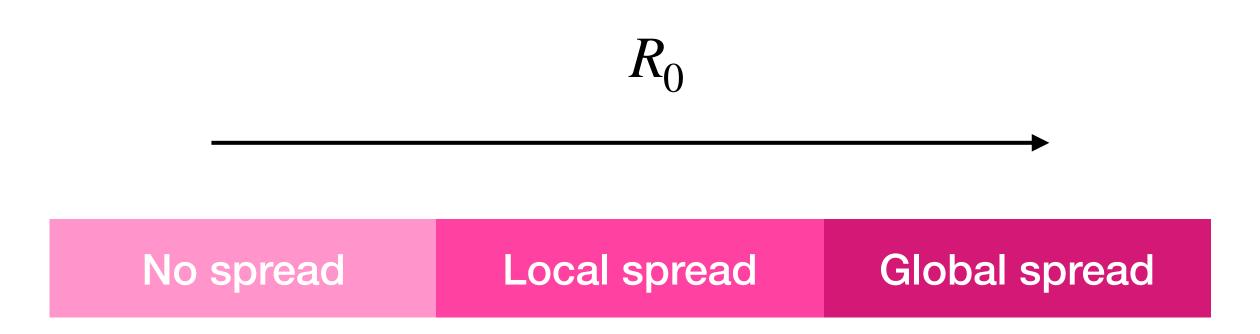
1. Prop infected

3. Prop selecting edge

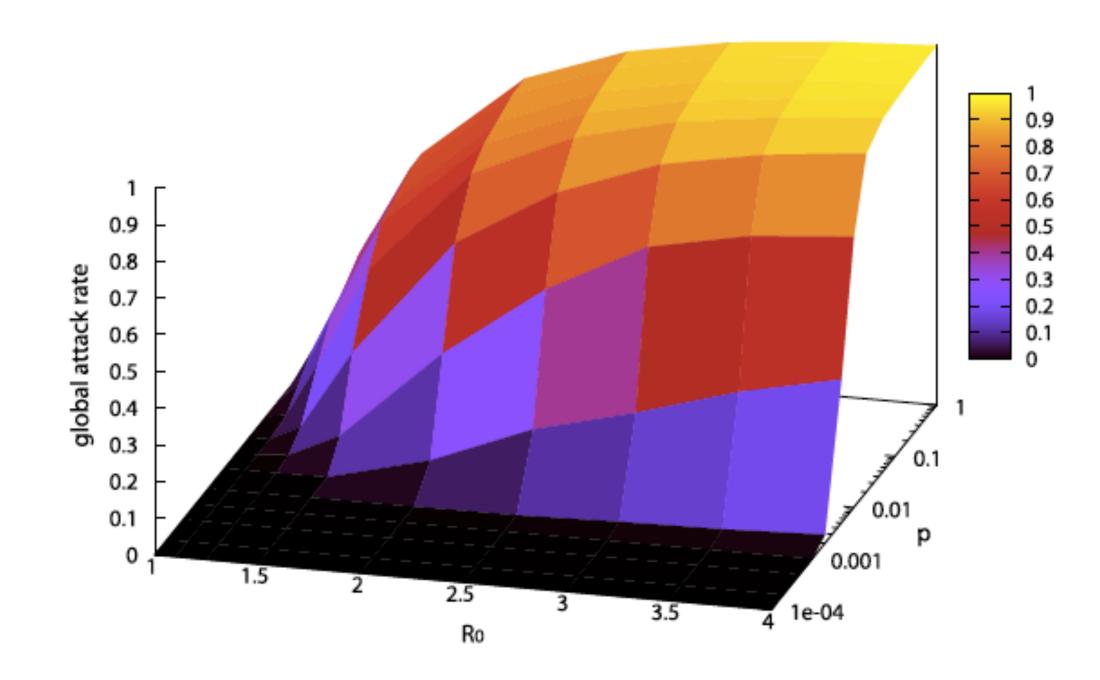
$$\bar{\lambda} = \bar{N} \frac{2(R_0 - 1)}{R_0^2} \cdot \frac{\epsilon}{\alpha} \cdot \frac{1}{\langle k \rangle}$$

2. Prop travelling while infectious

$$R_g(R_0,\epsilon)$$



$$R_g = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \cdot \frac{2(R_0 - 1)^2}{R_0^2} \frac{\epsilon \bar{N}}{\alpha}$$



Effective distance

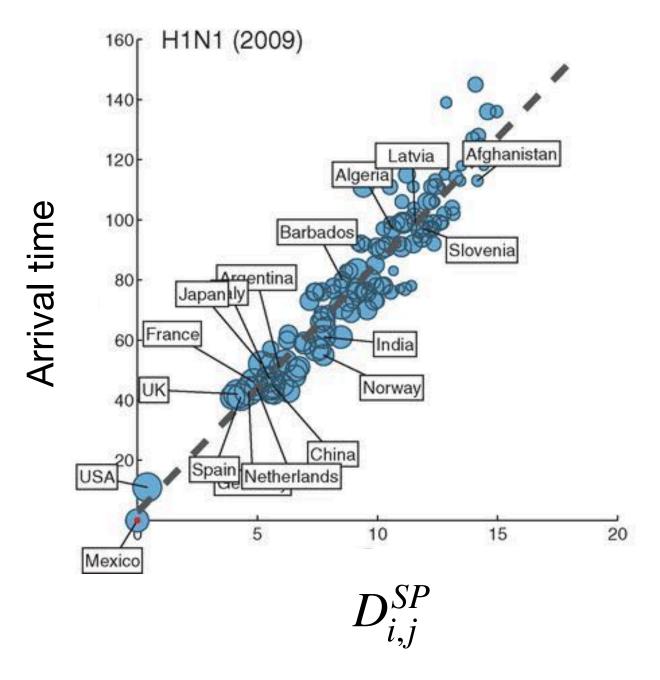
Passenger flows, not geographic distance, predict arrival times

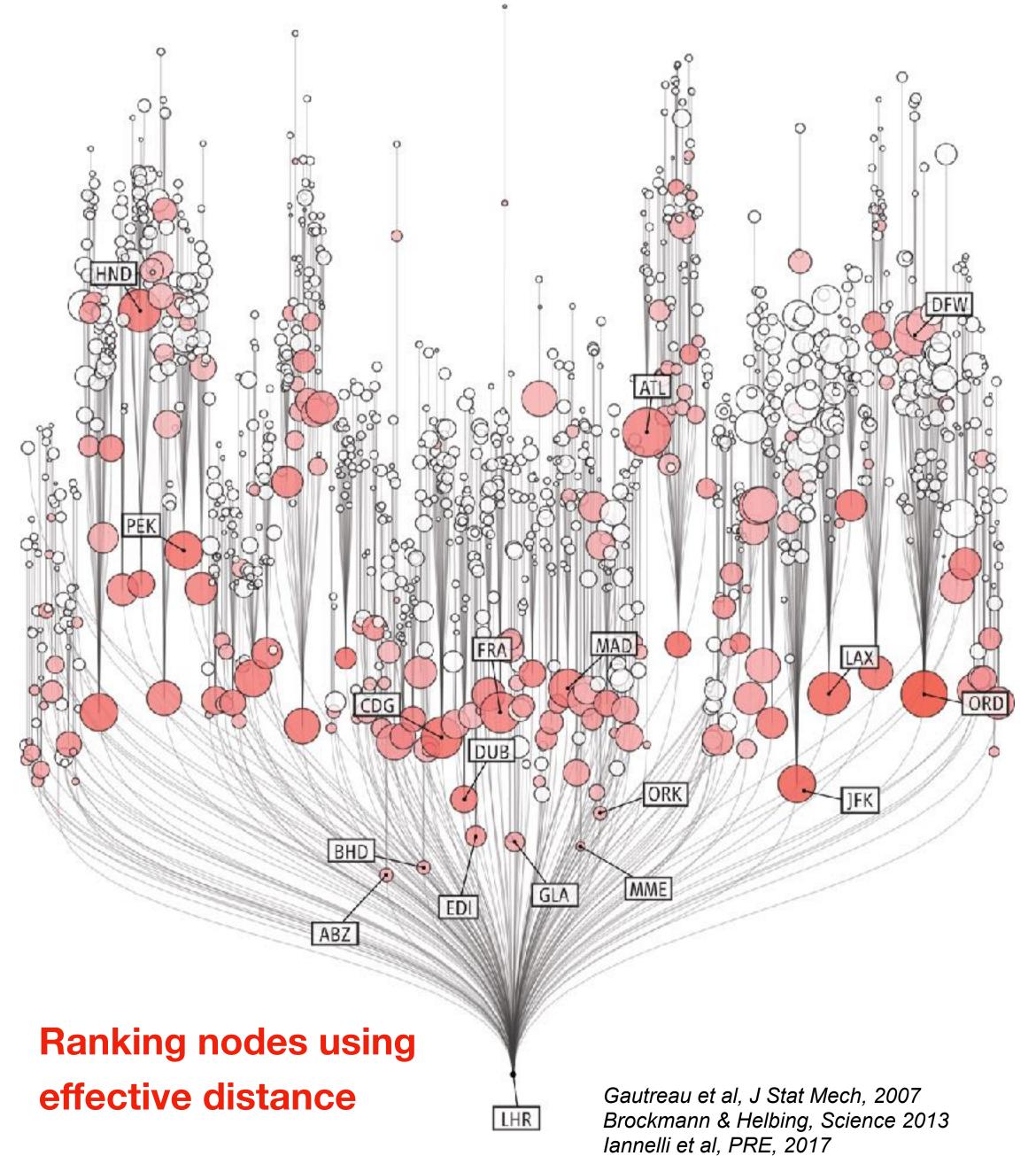
Shortest path distance

$$D_{i,j}^{SP} = \sum_{(m,n) \in SP_{i,j}} D_{m,n}$$

Effective distance

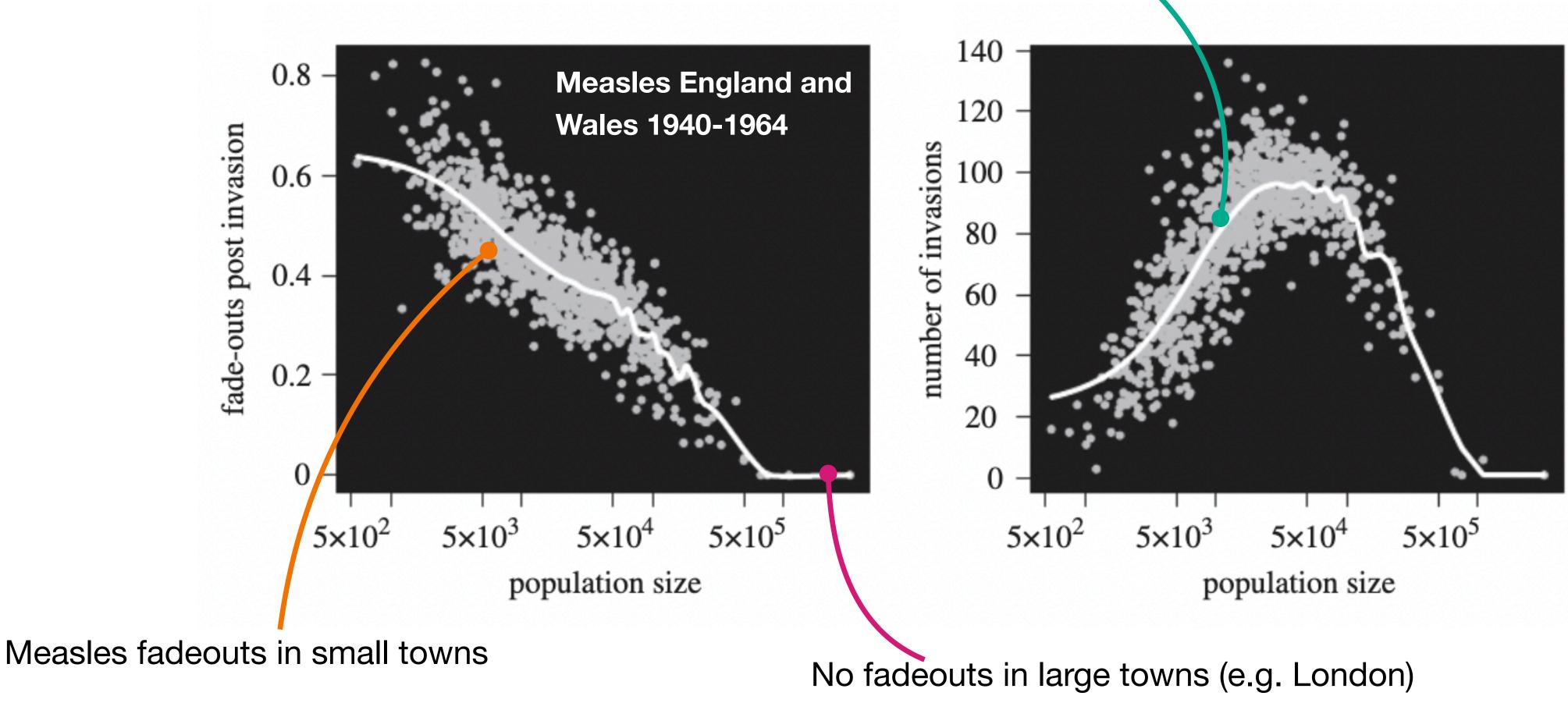
$$D_{i,j} = 1 - ln \left(\frac{\epsilon_{i,j}}{\sum_{j} \epsilon_{i,j}} \right)$$





Persistence in a metapopulation

Local extinction is possible but global extinction is unlikely due to re-invasions



Recurrent mobility

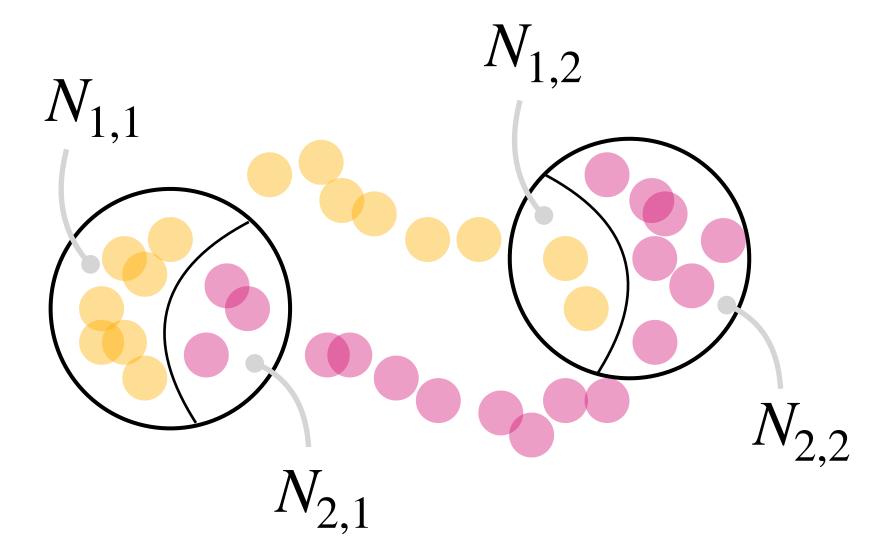
People are not random walkers: they move for a wide range of reasons (commuting, leisure, buying groceries..) but then return to their house after some time

This can be accounted for in a metapopulation framework by tracking who lives where

$$N_{i,j}$$
: # of hosts living in \emph{i} but currently in \emph{j}

$$\frac{dN_{i,i}}{dt} = -\epsilon_i N_{i,i} + \tau^{-1} \sum_j N_{i,j}$$

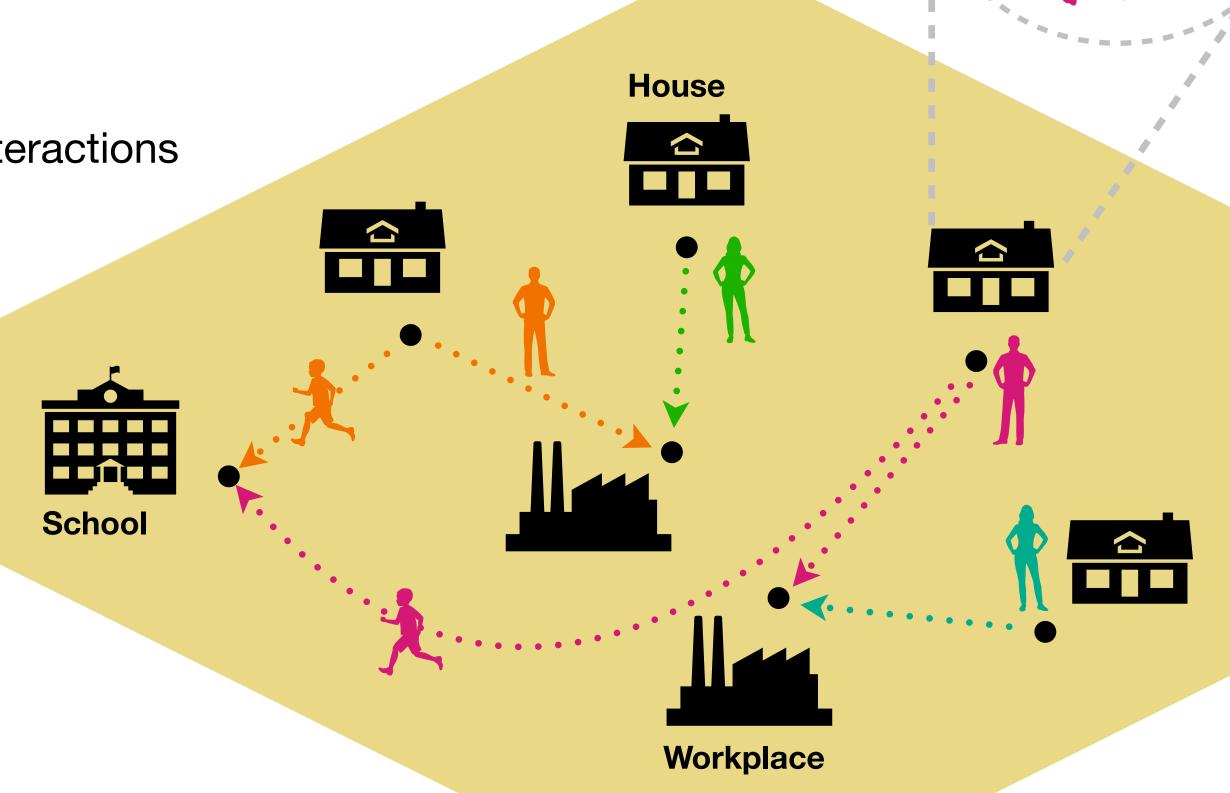
$$\frac{dN_{i,j}}{dt} = -\tau^{-1}N_{i,i} + \epsilon_{i,j}N_{i,i}$$



 τ : Time spent at destination

Agent-based models

- Computer simulation models
- Agents with complex behaviours/interactions
- Multi-scale
- Flexible & extendable
- Difficult to fit

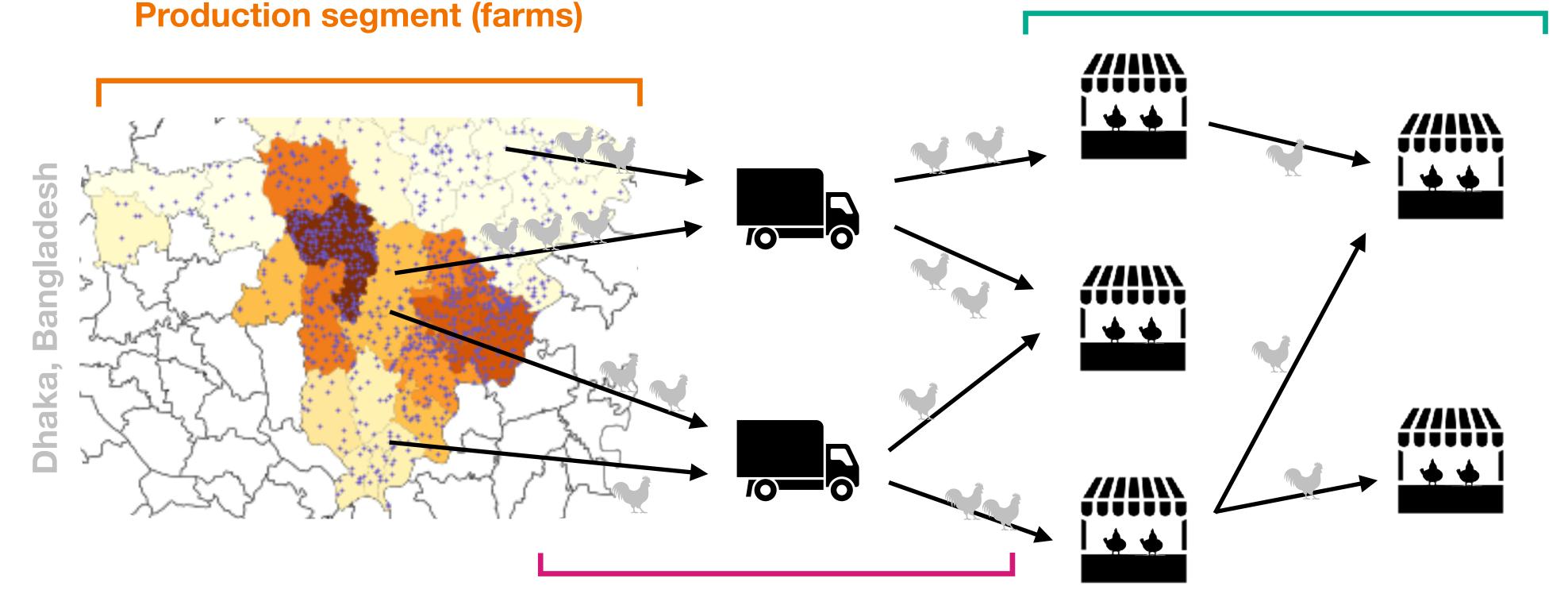


Networks can be useful when designing ABMs

An ABM for poultry movements

An ABM to simulate transmission in a poultry supply chain

Market trade (vendors)



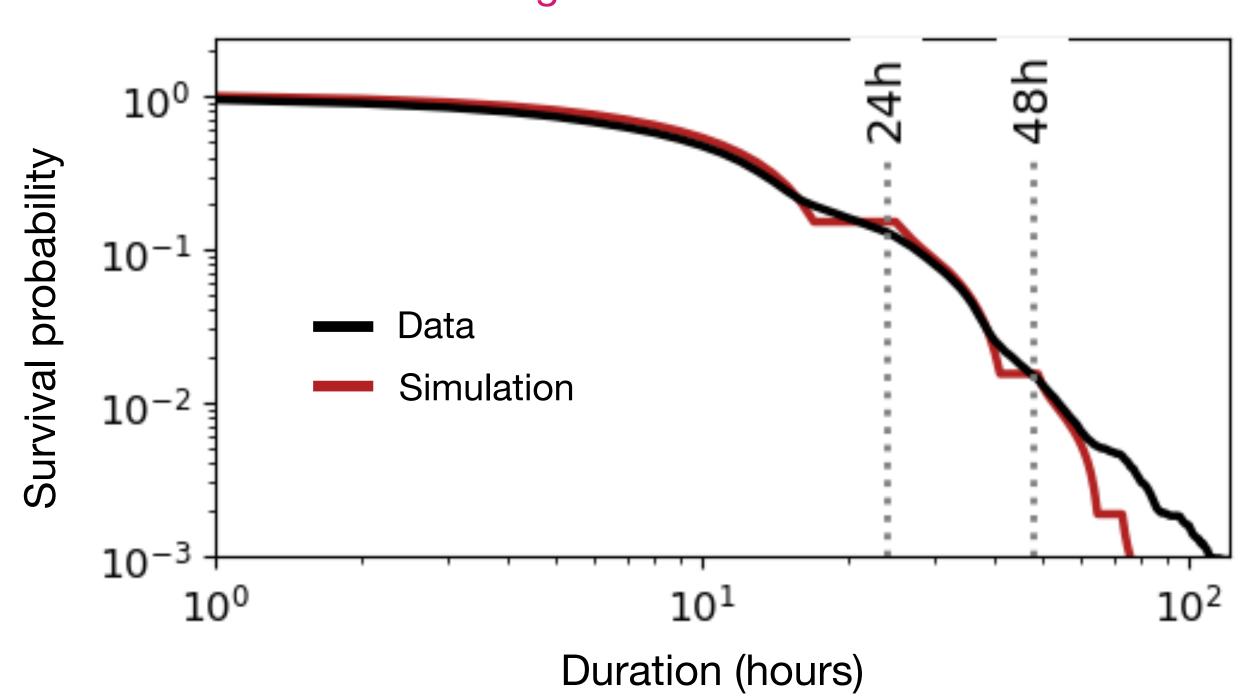
Upstream distribution (middlemen)

Realistic poultry movements

ABM is informed by extensive field data

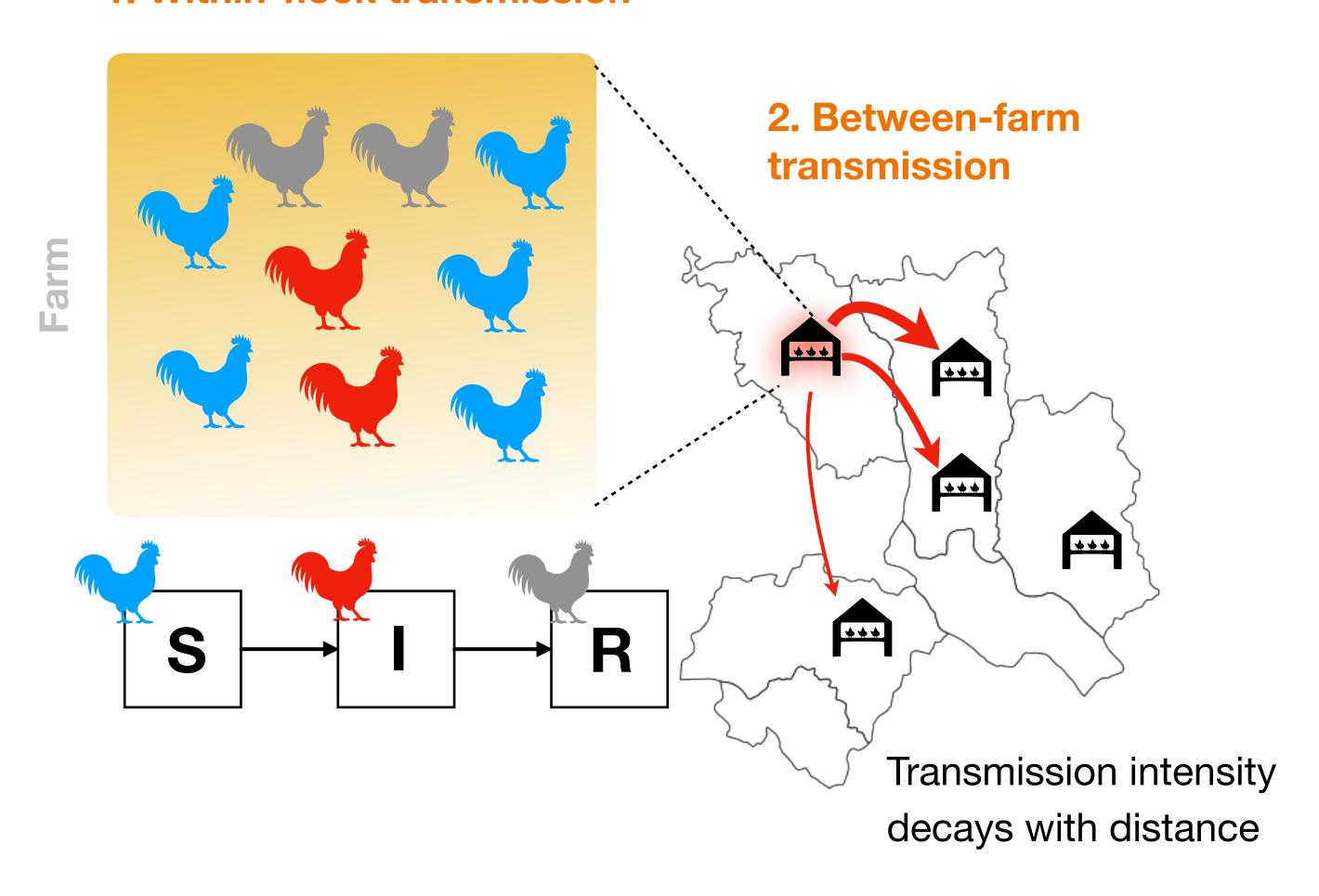
Region-to-market poultry flux Where do chickens come from? 1.0 0.8 Simulated flux 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 Expected flux

Length of stay in markets How long before a chicken is sold?



Simulating Avian Influenza transmission

1. Within-flock transmission



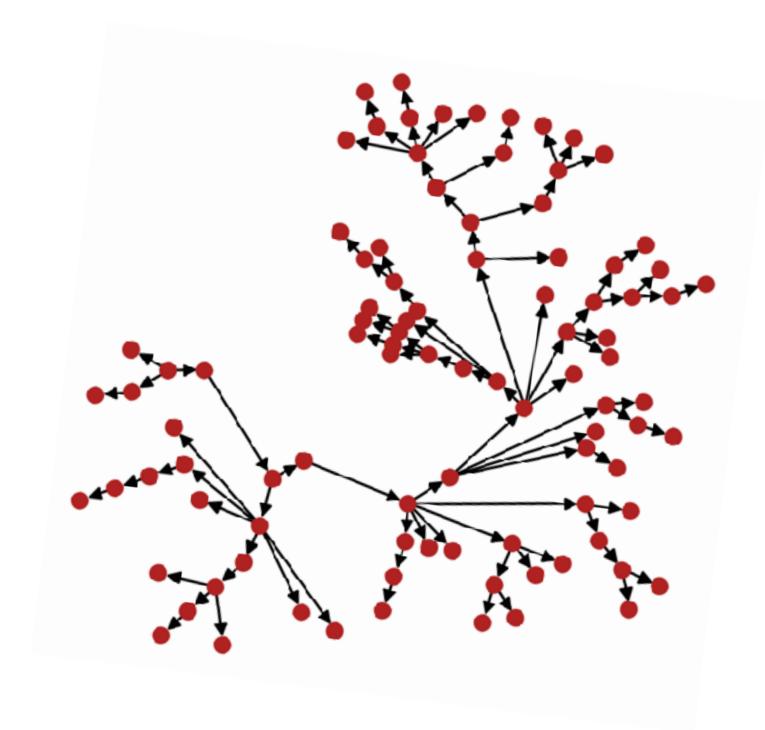
Additional elements

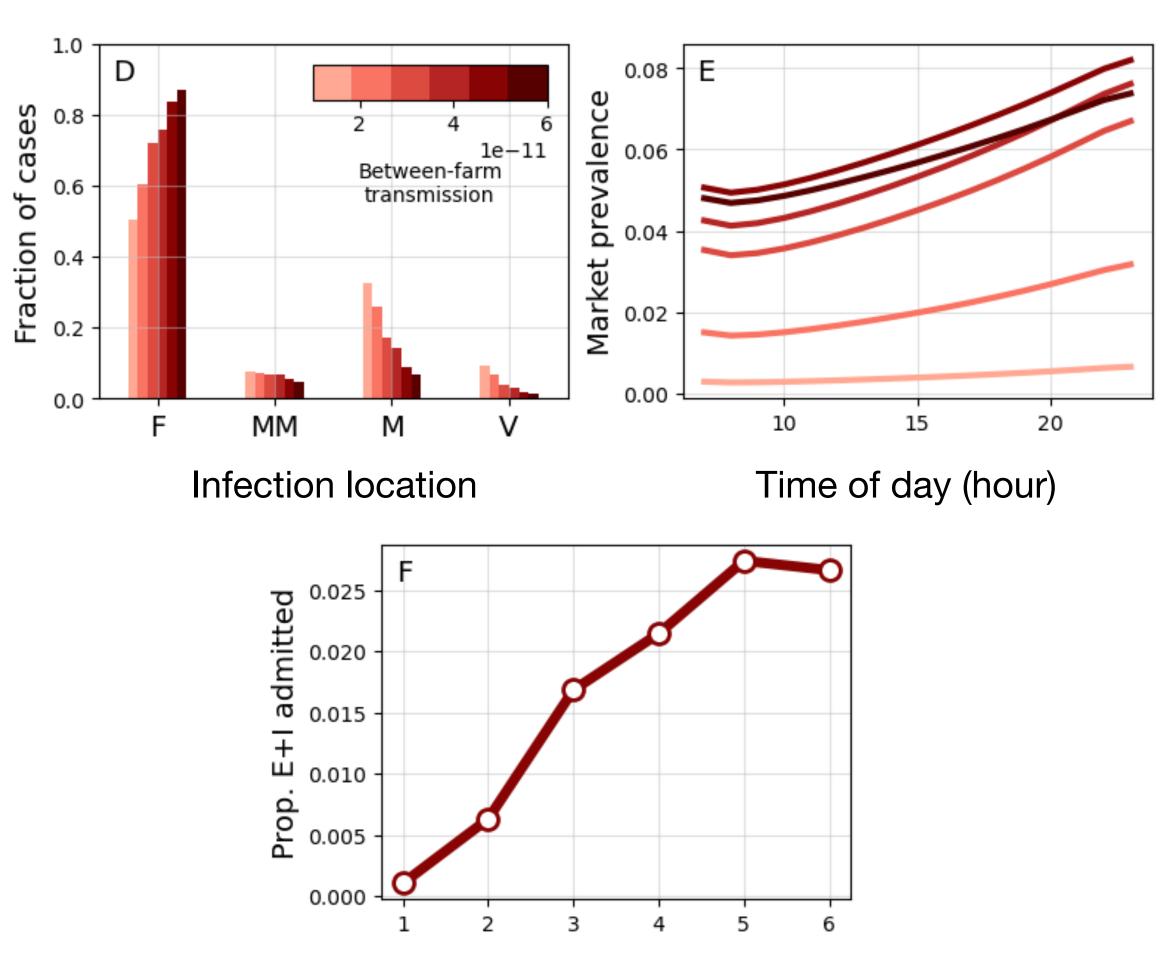
- Latent stage
- Age- and type-specific susceptibility
- Disease-induced mortality
- Multiple strains with interactions

Simulating Avian Influenza transmission

Transmission chain

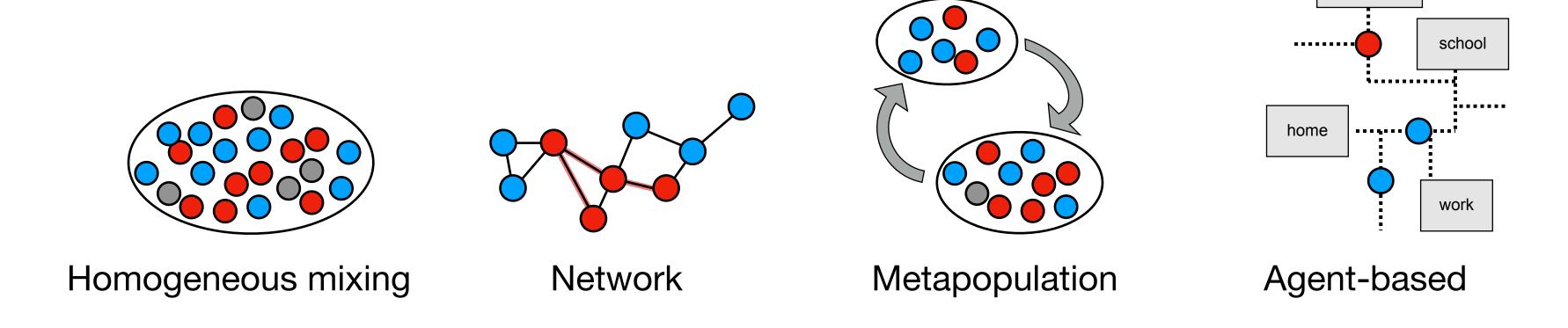
Which chicken infected which chicken?





Between-farm transmission rate

Model complexity

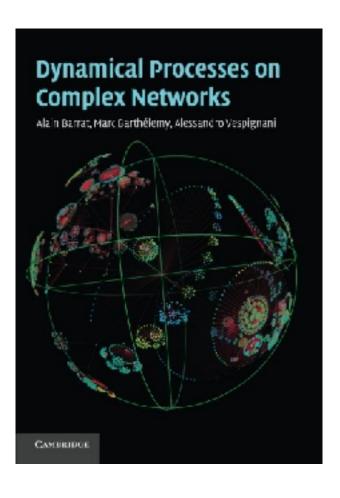


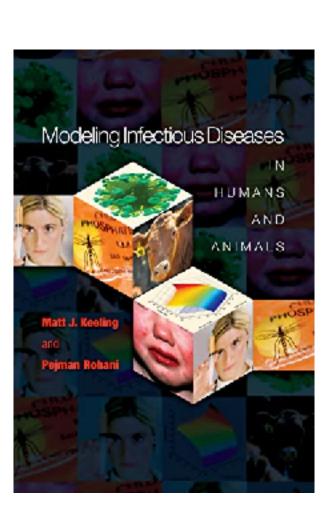
COMPLEXITY

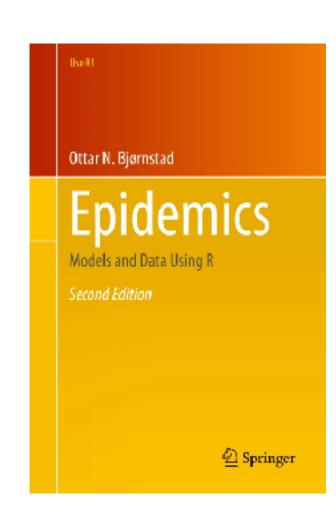
hospital

Resources

- (Paper) R. Pastor Satorras et Al., Epidemic processes in complex networks, Rev. Mod. Phys., 2015
- (Book) A. Barrat et Al., Dynamical Processes on Complex Networks, Cambridge University Press, 2012
- (Book) M. J. Keeling & P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2007
- (Book) O. N. Bjørnstad, Epidemics: Models and Data Using R, Springer 2023







Thank you!

francesco-pinotti.netlify.app

@fpinotti92

francesco.pinotti@biology.ox.ac.uk

francescopinotti92

Credits: Chiara Poletto