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Classification Regression

Objective

� Training dataset : {xi, yi}ni=1 with observations xi ∈ Rd and labels yi ∈ Y.

� Train a function f(·) : Rd → Y on the dataset.

Data distribution

� P is the true joint feature/label distribution of the data.

� Data xi, yi ∼ P is supposed to be drawn I.I.D from P

� P̂ = 1
n

∑
i δxi,yi is the training empirical distribution.

� PX and PY are respectively the feature (x) and labels (y) marginals of P.
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Supervised learning problems (1)

Regression

⇒

{xi, yi}ni=1 ⇒ f : Rd → R

Binary classifiation

⇒

{xi, yi}ni=1 ⇒ f : Rd → {−1, 1}
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Supervised learning problems (2)

Multiclass classification

⇒

{xi, yi}ni=1 ⇒ f : Rd → {1, . . . ,K}, with f(x) = argmax
k

fk(x)

Structured prediction

{xi,yi}ni=1 ⇒ f : X → Y, with f(x) = argmax
y∈Y

f̃(x,y)
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Risk and Empirical Risk
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� We define the true risk or expected loss R for a predictor f wrt distribution P as

R(f) = RP(f) = Ex,y∼P [L(y, f(x))], (1)

where the loss L(y, ŷ) measures a discrepancy between the actual and the

predicted label.

� The Empirical risk for predictor f is the risk using the empirical distribution P̂:

R̂(f) = RP̂(f) = Ex,y∼P̂ [L(y, f(x))] =
1

n

n∑
i=1

L(yi, f(xi)), (2)
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Empirical risk minimization and generalization
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� Empirical risk minimization :

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)), (3)

� Classical generalization bounds can be expressed for a given predictor f ∈ H as

R(f) ≤ R̂(f) +O
(
C(H)√

n

)
(4)

where C(H) is a measure of complexity of the hypothesis space H.

� Bound above have motivated the use of regularization or limited complexity

(layer/parameters) on small datasets.
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Divergences between probability distributions

Divergences
Let Ps and Pt be probability distributions on X of density P s(x) and P t(x)

respectively. A divergence D has the following properties:

� D(Ps,Pt) ≥ 0, ∀Ps,Pt

� D(Ps,Pt) = 0 if and only if Ps = Pt

Classical divergences

� Kullback-Leibler

KL(Ps|Pt) =

∫
X
P s(x) log

(
P s(x)

P t(x)

)
dx (5)

� Total Variation

TV (Ps,Pt) =

∫
X
|P s(x)− P t(x)|dx (6)

Both divergences do not work well on discrete distributions with non overlapping

support.
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Maximum Mean Discrepancy (MMD)

Principle

� Project x in a Reproducing Kernel Hilbert Space H (RKHS) with ϕ.

� The MMD can be expressed as the distance between the means in the RKHS

Hilbert space as

MMD2(Ps,Pt) = ∥Ex∼Ps [ϕ(x)]− Ex∼Pt [ϕ(x)]∥2H (7)

� In the RKHS the kernel can be expressed as k(x,x′) =< ϕ(x), ϕ(x′) > and the

MMD can be reformulated as:

MMD2(Ps,Pt) = Ex,x′∼Ps [k(x,x′)]+Ex,x′∼Pt [k(x,x′)]−2Ex∼Ps,x′∼Pt [k(x,x′)]

(8)

� The unbiased estimator of MMD between two empirical distributions is

MMD2(P̂s, P̂t) =
1

ns(ns − 1)

ns,ns∑
i=1,j=1

k(xs
i ,x

s
j) +

1

nt(nt − 1)

nt∑
j=1

k(xt
j ,x

t
j)

− 2

nsnt

ns,nt∑
i=1,j=1

k(xs
i ,x

t
j) (9)
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Optimal transport

� Problem introduced by Gaspard Monge in his memoire [Monge, 1781].

� How to move mass while minimizing a cost (mass + cost)

� Monge formulation seeks for a mapping between two mass distribution.

� Reformulated by Leonid Kantorovich (1912–1986), Economy nobelist in 1975

� Focus on where the mass goes, allow splitting [Kantorovich, 1942].

� Applications originally for resource allocation problems
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Optimal transport between discrete distributions

Distributions

Source μs
Target μt

Matrix C OT matrix γ

Kantorovitch formulation : OT Linear Program
When Ps =

∑ns
i=1 aiδxs

i
and Pt =

∑nt
i=1 biδxt

i

min
T∈Π(Ps,Pt)

{
⟨T,C⟩F =

∑
i,j

Ti,jci,j

}
where C is a cost matrix with ci,j = c(xs

i ,x
t
j) e.g. ∥xs

i − xt
j∥p and the constraints are

Π(Ps,Pt) =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
� Linear program with nsnt variables and ns + nt constraints. Solving the OT

problem with network simplex is O(n3 log(n)) for n = ns = nt.

� Entropic regularization solved efficiently with Sinkhorn [Cuturi, 2013].
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Optimal transport between discrete distributions

Distributions

Source s

Target t

Matrix C OT matrix with samples

Kantorovitch formulation : OT Linear Program
When Ps =

∑ns
i=1 aiδxs

i
and Pt =

∑nt
i=1 biδxt

i

min
T∈Π(Ps,Pt)

{
⟨T,C⟩F =

∑
i,j

Ti,jci,j

}
where C is a cost matrix with ci,j = c(xs

i ,x
t
j) e.g. ∥xs

i − xt
j∥p and the constraints are

Π(Ps,Pt) =
{
T ∈ (R+)ns×nt |T1nt = a,TT1ns = b

}
� Linear program with nsnt variables and ns + nt constraints. Solving the OT

problem with network simplex is O(n3 log(n)) for n = ns = nt.
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Wasserstein distance

Source distribution

Target distributions

Divergences (scaled)
W1

1
W2

2
TV
MMD

Wasserstein distance

W p
p (Ps,Pt) = min

T∈P

∫
Ωs×Ωt

∥x− y∥pT(x,y)dxdy = E
(x,y)∼T

[∥x− y∥p] (10)

In this case we have c(x,y) = ∥x− y∥p

� A.K.A. Earth Mover’s Distance when p = 1 (W 1
1 ) [Rubner et al., 2000].

� Do not need the distribution to have overlapping support.

� Works for continuous and discrete distributions (histograms, empirical).
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Data shift
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Shift happens...

� Data shift : Ps ̸= Pt

� Ps is the training distribution (Source domain)

� Pt is the test distribution (Target domain)

� A classifier learned on Ps might fail on Pt .

... but Domain Adaptation (DA) is here for you

� Aim at learning a function f that works on Pt using data samples from Ps.

� Unsupervised DA suppose that we have samples xt from Pt but no labels.
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Data shift

Amazon DLSR

Feature extraction Feature extraction

Probability Distribution Functions over the domains
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Domain Adaptation Problem
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Source data
Target data

Data and distributions

� Source dataset : {xs
i , y

s
i }ns

i=1 with xs
i , y

s
i ∼ Ps, and P̂s = 1

ns

∑ns
i=1 δxs

i ,y
s
i
.

� Target dataset : {xt
j}nt

j=1 with xt
j ∼ Pt

X , and P̂t
X = 1

nt

∑nt
j=1 δxt

j

Objective

� Train a function f(·) : Rd → Y on the datasets that performs well on Pt.

� The performance when training on source depends on how similar Ps and Pt are.

� The data shift can be compensated for some special cases of shifts.

14 / 92



Families of data shift

How to compensate for shift ?

� Numerous DA approaches propose to model the shift and compensate for it.

� There exist several types of shifts that are more or less complex to handle.

Notations

� We will us P (x, y) as the probability density of distribution P (P s for Ps, . . . ).

� The Bayes theorem gives us

P (x, y) = P (x|y)PY(y) = P (y|x)PX (x) (11)

Types of data shift and their intuition [Moreno-Torres et al., 2012]

� Covariate shift, P s
X (x) ̸= P t

X (x), P s(y|x) = P t(y|x)

� Target shift, P s
Y(y) ̸= P t

Y(y), P
s(x|y) = P t(x|y)

� Concept drift, P s(y|x) ̸= P t(y|x) or P s(x|y) ̸= P t(x|y)

� Sample-selection bias, P s(x, y) ̸= P t(x, y)P (s|x, y)
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Covariate Shift (CS)
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Principle

� Conditionals probabilities : P s(y|x) = P t(y|x)

� Feature marginals are different : P s
X (x) ̸= P t

X (x)

Compensating for the shift

� Covariate shift can be compensated using sample weighting [Shimodaira, 2000].

� The target risk can be expressed as an expectation on the source distribution

RPt(f) = Ex,y∼Ps

[
P t
X (x)

P s
X (x)

L(y, f(x))

]
(12)

So if the ratio w(x) =
P t
X (x)

Ps
X (x)

is estimated one can learn from an empirical source

distribution (careful that supp(Ps
X ) ⊆ supp(Pt

X ) or else division by 0).
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Target Shift (TS)
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Principle (a.k.a prior shift or label shift)

� Conditionals probabilities : P s(x|y) = P t(x|y)

� Label marginals are different : P s
Y(y) ̸= P t

Y(y)

Compensating for the shift

� Target shift can be compensated using sample weighting [Shimodaira, 2000].

� The target risk can be expressed as ane expectation on the source distribution

RPt(f) = Ex,y∼Ps

[
P t
Y(y)

P s
Y(y)

L(y, f(x))

]
(13)

So if the ratio w(y) =
P t
Y (y)

Ps
Y (y)

is known it can be used to reweight samples (P t
Y(y)

cannot be estimated from target data).
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Concept Drift (CD)
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Principle (a.k.a Conditional shift)

� Conditionals probabilities are different : P s(x|y) ̸= P t(x|y) or P s(y|x) ̸= P t(y|x)

Compensating for the shift

� Hardest shift because requires a model for the transformation between the

conditional probabilities (can model sensor drift).

� In the special case where there exists a mapping m in the feature space

(P s(y|m(x)) = P t(y|x)) then

RPt(f) = Ex,y∼Ps [L(y, f(m(x)))] (14)

� The marginals PY or PX are usually the same but when they are not the problem

is known as generalized target shift.
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Sample-Selection Bias (SSB)
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Principle

� The exists a multiplicative sampling bias : P s(x, y) = S(x, y)P t(x, y)

Compensating for the shift

� Requires a good estimation of S(x, y) to be able to compensate.

� When S(x, y) is known

RPt(f) = Ex,y∼Ps

[
1

S(x, y)
L(y, f(x))

]
(15)

� Same technique use for polls when estimation the votes in political elections.

19 / 92



Domain adaptation problem and generalization

Domain adaptation problem and generalization

Supervised learning, divergences and Optimal Transport

50 shades of Data Shift

Generalization under data shift

The family of DA problems

Classical Domain Adaptation methods

Deep Domain Adaptation

Domain Adaptation variants

Domain Adaptation in Practice

20 / 92



Theory of generalization in DA

S. Ben-David

Y. Mansour

C. Cortes

A short and partial history of DA generalization

� Seminal results by [Ben-david et al., 2006] provided first

bounds on 0− 1 classification losses using VC-dim.

� Generalization bounds for regression and classification by

[Mansour et al., 2009].

� Bounds for regression using generalized discrepancy by

[Cortes and Mohri, 2011, Cortes et al., 2015].

� Impossibility theorems

[Ben-David et al., 2010, Ben-David and Urner, 2012].

� Bounds with MMD [Redko, 2015] and Wasserstein

[Redko et al., 2017] discrepancies.

� PAC Bayes bounds for DA

[Germain et al., 2013, Germain et al., 2016].

� Recent survey in [Redko et al., 2020a] and the book

[Redko et al., 2019b], thesis of Sophiane Dhouib.
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Domain disagreement
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Definition [Ben-David et al., 2010, Def. 5]

Let Ps and Ps be the distributions in the source and target domain respectively, the

domain disagreement can be expressed for a given hypothesis space H as

ΛH(Ps,Pt) = inf
f∈H

RPs(f) +RPt(f) (16)

� Measures if one can learn a unique predictor f̄ ∈ H that works on both domains.

� Originally proposed with loss L equal to the 0-1 loss in [Ben-david et al., 2006]1.

1Ben-david, S., Blitzer, J., Crammer, K., and Pereira, O. (2006). Analysis of representations for domain

adaptation. In Neural Information Processing Systems (NIPS). MIT Press 21 / 92



Discrepancy distance between marginals
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Definition [Mansour et al., 2009, Def. 4]2

The discrepancy distance between two feature marginals Ps
X and Pt

X is defined as

DH
L (Ps

X ,Pt
X ) = sup

f,f ′∈H2

∣∣∣Ex∼Ps
X
[L(f(x), f ′(x))− Ex∼Pt

X
[L(f(x), f ′(x))]

∣∣∣ (17)

� Measures the ability of two predictors to have different losses across domains (no

labels needed). For classification to discriminate between source/target samples.

� Proposed in [Ben-David et al., 2010] for classification with L being the 0-1 loss

illustrated above (and called dH∆H).

2Mansour, Y., Mohri, M., and Rostamizadeh, A. (2009). Domain adaptation: Learning bounds and

algorithms. In Conference on Learning Theory (COLT), pages 19–30 22 / 92



Generalization bound for Domain Adaptation

DA generalization bound [Ben-david et al., 2006, Thm 1]3

The generalization of a predictor f on target can be bounded with probability 1− δ as

RPt(f) ≤ RP̂s(f)+DH
0−1(P̂s

X , P̂t
X )+ΛH(Ps,Pt)+

√
4

n

(
C(H) log

2en

C(H)
+ log

4

δ

)
(18)

� C(H) is the VC (Vapnik-Chervonenkis) dimension that measures the complexity

of the hypothesis space [Vapnik, 2006] and n = ns = nt.

� Bound on the classification error wih loss L equal to the 0− 1 loss.

� Similar result with general loss L in [Mansour et al., 2009] using Rademacher

complexity instead of VC dimension.

� Generalization bounds for regression in [Cortes and Mohri, 2011].

� Similar bounds can replace the term DH
L with MMD [Redko, 2015] and

Wasserstein [Redko et al., 2017] discrepancies.

3Ben-david, S., Blitzer, J., Crammer, K., and Pereira, O. (2006). Analysis of representations for domain

adaptation. In Neural Information Processing Systems (NIPS). MIT Press
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DA Generalization bounds and what to do with them?

RPt(f) ≤ RP̂s(f)︸ ︷︷ ︸
1. ERM

+DH
0−1(P̂s

X , P̂t
X )︸ ︷︷ ︸

2. Emp. Marg. disc.

+ΛH(Ps,Pt)︸ ︷︷ ︸
3. Dom. disag.

+

√
4

n

(
C(H) log

2en

C(H)
+ log

4

δ

)
︸ ︷︷ ︸

4. Sampling term

1. Empirical risk on the samples of the source domain.

2. Empirical feature marginal discrepancy (how much P̂s
X and P̂t

X are different?).

3. Domain disagreement (can we train a predictor that work for both?)

4. Sampling term decreases with n but increases with complexity of H (overfiting).

Strategies (minimizing the bound)

� Train the predictor f on source while limiting the complexity (min 1+4).

� Change the empirical feature distributions to minimize the discrepancy (min 2, by

re-weighting of feature learning).

� Hope that there exists and f̄ that works on both domains or else you need to

compensate for the shift (min 3).
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The family of DA problems

Supervised ML VS the real world

� DA comes from a practical problem : the test data does not follow the same

distribution of the training data.

� Other practical constraints (or other sources of information) can lead to different
problems :

� Some labeled samples in target domains.

� Multiple sources of information.

� Data lying in different spaces (X s ̸= X t), e.g. change of sensor.

Variants of DA problems

� Unsupervised DA and Semi-supervised DA.

� Multi-Source DA (MSDA) and Multi-target DA (MTDA).

� Heterogeneous DA (HDA)
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Unsupervised and semi-supervised DA
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Class 1
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Source classifier

� Source : {xs
i , y

s
i }ns

i=1

� Target : {xt
j}nt

j=1

� Requires assumptions on the

shift (CS, TS, CD, SSB).

Semi-Supervised DA
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Source classifier

� Source : {xs
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� Target : {xt
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nl
j=1

� The few nl ≪ nt labeled

target samples can help guide

the learning on target.
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Multi-source DA and Multi-DA

Multi-source DA
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� Target : {xt
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j=1

� D source domains available.

� Can use similarity between

source and target domains.

Multi-DA (Multi-Source + Multi-Target)
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classifiers

Target 1

Target 2

Target 3

� Source : {Xs
k,y

s
k}Ds

k=1

� Target : {Xt
k}Dt

k=1

� Ds = 1 is Multi-Target DA

and Dt = 1 is MSDA.

� Strong relation to Multi-Task

Learning (MTL is Dt = 0)
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Heterogeneous DA (HDA)
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Principle

� Feature samples lie in different spaces X s ̸= X t.

� In the general case no relation is known a priori between the two spaces.

� Very hard problem so post approach perform semi-supervised HDA.

� Example: change in sensors or resolution and no knowledge about their

correspondances.

28 / 92



DA VS Other ML techniques

DA VS Transfer Learning [Thrun and Pratt, 2012]

� Main difference : in TL the labels in the target domain can be different from the

source domain (Ys ̸= Yt) and usually labels are available in target.

� DA is a special case of transfer learning where the prediction task is the same.

� TL also often uses a pre-trained predictor (on source) instead of the raw datas.

DA VS Domain Generalization [Zhou et al., 2021]

� Main difference : DG searches for a unique predictor f that works on all possible

domains and no samples are available from any of the target domains.

� One predictor to rule them all (a lot of research in computer vision).

DA VS semi-supervised learning [Chapelle et al., 2006]

� Main difference : data assumptions are very different (often same distribution).

� Semi-supervised learning methods can be used on DA data (same datasets).

� Tools of semi-supervised (manifold, los density separation) also used in DA.

Always check what is solved in individual papers Tl, DA DG are not always used consistently.
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Classical Domain Adaptation methods



Main DA approaches

Reweighting schemes [Sugiyama et al., 2008]

� Distribution change between domains.

� Reweight samples to compensate this change.

Subspace methods

� Data is invariant in a common latent subspace.

� Minimization of a divergence between the

projected domains [Si et al., 2010].

� Use additional label information

[Long et al., 2014].

Alignment/mapping methods

� Alignment along the geodesic between source

and target subspace [Gopalan et al., 2014].

� Geodesic flow kernel [Gong et al., 2012].

� Mapping alignment based on Optimal

Transport [Courty et al., 2016].
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Sample reweighting DA methods

Principle of sample reweighting

� The risk on target can be computed with

RPt(f) = Ex,y∼Ps

[
P t(x, y)

P s(x, y)
L(y, f(x))

]
(19)

� If one can estimate a weighting function w(x, y) = P t(x,y)
Ps(x,y)

then a good strategy

is to minimize the reweighted source ERM

min
f∈H

{
R̂w(f) =

1

ns

ns∑
i=1

w(xi, yi)L(yi, f(xi))

}
(20)

� Depending on the quality of the estimation of w the re-weighting can perfectly
compensate the following data shifts

� Covariate Shift (if supp(Ps
X ) ⊆ supp(Pt

X )) [Shimodaira, 2000].

� Target Shift (if supp(Ps
Y ) ⊆ supp(Pt

Y )) .

� Sample Selection Bias (if S ̸= 0 on supp(Ps))

� Most methods propose ways to estimate w depending on the assumption and the

data availability.
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Feature sample reweighting (1)
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Principle

� Under Covariate Shift assumption, the optimal weight is w(x) =
P t
X (x)

Ps
X (x)

.

� The target risk can be bounded empirically [Cortes et al., 2010] for δ > 0 with

probability 1− δ

RPt(f) ≤ R̂w(f) + 25/4
√

DR(Ps
X ,Pt

X ) 3/8

√
4

n

(
d log

2en

d
+ log

4

δ

)
(21)

where DR is the 2-order Rényi divergence.

� Main difficulty is the estimation of the weights wi = w(xi) from empirical

distributions.
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Feature sample reweighting (2)

Estimation of the weights

� Gaussian Approximation [Shimodaira, 2000] : ŵ(x) = N (x|µ̂t,Σ̂t)

N (x|µ̂s,Σ̂s)

� Ratio of kernel density estimation [Sugiyama and Müller, 2005]

ŵ(x) =

1
nt

∑
i kσt(x,xt

i)
1
ns

∑
j kσt(x,xs

j)
(22)

� Nearest neighbor density estimation [Loog, 2012, Kremer et al., 2015]

� Divergence minimization methods

min
w

D

(
1

ns

∑
i

w(xs
i )δxs

i
, P̂t

X

)
(23)

where D is a divergence such as

� MMD for Kernel Mean Matching (KMM) [Huang et al., 2006, Gretton et al., 2009].

� Kullback-Leilbler divergence for KL Importance Estimation Procedure (KLIEP)

[Sugiyama et al., 2007].

� L2 norm between the weights and the ratio (with kernels)[Kanamori et al., 2009].

� Logistic regression classifying source VS target and use the conditional probability

ŵ(x) ∝ P (domain = target|x) as scaling [Sugiyama et al., 2012].
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Class-based reweighting
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Principle and methods

� Under target Shift assumption, the optimal weight is w(y) =
P t
Y (y)

Ps
Y (y)

.

� The target risk can be bounded empirically similarly to covariate shift

[Cortes et al., 2010].

� Black Box Shift Estimation (BBSE) [Lipton et al., 2018] uses a pre-trained trained

classifier h with confusion matrix Ĉh(x),y on source and estimates the ratios as

ŵ = Ĉ−1
h(x),yp̂ where p̂i = P̂ t(h(x) = i)

� P̂t
Y(y) can be estimated by divergence minimization such as Kernel Mean

Matching [Zhang et al., 2013] or Wasserstein distance [Redko et al., 2019a].
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Domain Invariant subspaces
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General principle

� Assumption: there exists a subspace of the data where the domains are similar

(W#Ps
X ≈ W#Pt

X ) and where the label information is preserved.

� Estimate a projection W ∈ Rd′×d where d′ ≤ d (in direct or kernel space).

� Project the source samples with W as x̃s
i = Wxs

i (W#P̂s
X = 1

ns
δWxs

i
.)

� Train a predictor f̂ on the projected source samples {x̃s
i , y

s
i }i.

� Predictor on target is f̂s(x) = f̂(Wx).

� Works better on data in high dimension where such a subspace can exist.

� Nonlinear invariant transformation with kernels or deep learning (next section).35 / 92



Transfer Component Analysis (TCA)

Principle [Pan et al., 2010]

� Search for a kernel subspace mapping m that minimizes the MMD divergence

between the domains while preserving the variance.

� TCA consists in finding a (kernel) projection matrix W solving

min
W

Tr(W⊤KLKW) + λTr(W⊤W) (24)

s.t. W⊤KHKW = I (25)

with K =

[
Ks Ks,t

Kt,s Kt

]
, L =

[
1
n2
s
1 − 1

nsnt
1

− 1
nsnt

1 1
n2
t
1

]
, H = I− 1

ns + nt
1

K is the kernel matrix between all source and target samples, L is a scaling

matrix used to compute the MMD between domains and H is a centering matrix

used for computing the variance.

� The projection matrix W is obtained with an eigen-decomposition of

(KLK+ λI)−1KHK.

� Can be seen as a kernel PCA between domains [Schölkopf et al., 1997].
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Transfer Subspace Learning

Principle [Si et al., 2010]

� Minimize the Bregman divergence between the projected domains and a learning

loss as a function of the projection matrix W ∈ Rd′×d

min
W,W⊤W=I

D
(
W#P̂s

X ,W#P̂t
X

)
+ F (W) (26)

where # is the pushforward operator and the learning F (W) loss can be :

� Reconstruction loss (PCA)

� Fisher Linear Discriminant loss (FDA)

� Locality Preserving Projection loss (LPP) [He and Niyogi, 2003]

� Use MMD as divergence in [Baktashmotlagh et al., 2013].

� TSL with sample reweighting [Long et al., 2014]

� Use pseudo labels to promote discrimination (see self labeling) [Long et al., 2013].37 / 92



Alignment methods
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General principle

� Assumption: there exists a mapping of the source data such that

P s(m(x), y) = P t(x, y) (concept drift).

� Estimate a projection the mapping m̂ from the data (usually with some

assumptions) and map the source samples x̃s
i = m̂(xs

i )

� Several strategies:

� Train a predictor on the projected source samples {x̃s
i , y

s
i }i.

� Train a predictor f̂s on source and predict with f t(x) = fs(m̂−1(x)) .

� Train a prediction f̂ invariant to the mapping m̂ that is f̂(x) = f̂(m̂(x)) (similar to

subspace method but stronger assumption that such invariant classifier exists).
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Subspace Alignment (SA)

Principle [Fernando et al., 2013]4

� The exists a mapping m between the source and target that aligns the

covariances of source and target.

� The optimal mapping under their assumption is a correspondances between the

sorted eigenvectors of the covariances.

� SA consists in the following steps :

1. Estimate the d′ ≤ d eigenvectors matrices with largest eigenvalues Vs and Vt on

source and target.

2. Apply the mapping m(x) = VtVs⊤x on the source samples to get x̃s
i .

3. Train a target predictor f̂ on adapted dataset {x̃s
i , y

s
i }i

4Fernando, B., Habrard, A., Sebban, M., and Tuytelaars, T. (2013). Unsupervised visual domain

adaptation using subspace alignment. In Proceedings of the IEEE international conference on computer

vision, pages 2960–2967
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Extensions of Subspace Alignment

Extensions of Subspace Alignement

� Landmarks (selected in both domains) + kernel as pre-processing for subspace

alignment [Aljundi et al., 2015].

� Joint estimation of subspace and classifier [Fernando et al., 2015].

� Subspace Distribution Alignment (SDA) perform SSA mapping plus a distribution

alignment optimizing first and second order moments [Sun and Saenko, 2015].
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Model data shift as a geodesic on a manifold

Geodesic on the Grassmann Manifold [Gopalan et al., 2011, Gopalan et al., 2013]

� Model evolution of the subspaces from Vs to Vt along the Grassmann Manifold.

� Update the data incrementally toward target and train classifier.

� Samples can be represented with domain invariant features (along the discretized

geodesic).

Geodesic Flow Kernel (GFK) [Gong et al., 2012]

� Same modeling as above but complete integration instead of a discretization.

� Avoid the selection of the number of intermediate steps.

� Allow to compute features (and a kernel) invariant to the domain (integrated

along the manifold) . 41 / 92
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Self-labeling approaches

General principle

� Estimate labels for the target domain to learn a better classifier.

� Update the labels iteratively when updating the DA model.

Self-labeling DA methods

� SVM margin used to select target samples labeled that are used for updating

predictor (DASVM) [Bruzzone and Marconcini, 2010].

� Iterative self labeling [Habrard et al., 2013] uses [Balcan et al., 2008].

� Label iteratively target samples with co-training [Chen et al., 2011] (inspired from

semi-supervised co-training).

� Transfer Feature Learning aim at estimating a discriminant subspace and updates

iteratively the target labels [Long et al., 2013].
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Minimax and robust optimization

Principle

� Minimax estimators are robust to changes in the target labels or training data.

� Robust Bias-Aware classifier [Liu and Ziebart, 2014] :

minf∈H maxg∈H,∥g−f̂s∥≤ε
1
nt

∑nt

j=1 L(g(x
t
j), f(x

t
j))

� Robust Covariate Shift Adjustment (RCSA) [Wen et al., 2014]:

minf∈H maxw∈∆n
1
nt

∑ns

i=1 L(y
s
i , f(x

s
i ))wi

Distributionaly Robust Optimization [Hu et al., 2018, Kuhn et al., 2019]

min
f

max
P∈Bε(P̂s)

Ex,y∼P [L(y, f(x))] (27)

� Bε(P̂s) is the ball around P̂s for a given divergence.

� This ensures a given performance when Pt is in the ball (close to P̂ s).

� The ball can be the KL divergence [Hu et al., 2018] or Wasserstein distance

[Kuhn et al., 2019].
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Optimal transport for domain adaptationDataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Assumptions
1. There exist an OT mapping T in the feature space between the two domains.

2. The transport preserves the joint distributions:

P s(x, y) = P t(T (x), y).

3-step strategy [Courty et al., 2016]

1. Estimate optimal transport between distributions (use regularization).

2. Transport the training samples on target domain.

3. Learn a classifier on the transported training samples.

Can be done the other way but needs a mapping for new samples.
44 / 92



Generalization bound for OTDA with mapping estimation

Generalization bound [Flamary et al., 2021]

Let fs be a prediction rule in the source domain with a Lispschitz constant Mf and

Rp the expected risk on domain p with a Lispschitz continuous loss L of constant ML.

Under the OTDA assumption 2 we have the following generalization bound

Rt(f
s ◦ T̂−1) ≤ Rs(f

s) +MfMLE(x,y)∼Ps

[
∥T̂−1(T (x))− T̂−1(T̂ (x))∥

]
(28)

� Train a classifier f on source and estimate a mapping T̂−1 from target to source.

� True for any mapping T (not only OT mapping).

� Need out of sample mapping T̂−1 (to map new target samples).
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Mapping with optimal transport
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Monge mapping estimation

� Mapping does not exist in general between empirical distributions.

� Barycentric mapping [Ferradans et al., 2014].

� Smooth mapping estimation [Perrot et al., 2016, Seguy et al., 2018].

� Closed form exist for transport between Gaussian distributions.

� Question of estimating the Monge Mapping: still an open problem theory

suggests very hard (O(n−1/d) [Hütter and Rigollet, 2019]) .
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Transporting the discrete samples

Distributions

Source s

Target t

Classt OT Reg. Entropic OT

Barycentric mapping [Ferradans et al., 2014]

T̂T0(x
s
i ) = argmin

x

∑
j

Ti,jc(x,x
t
j). (29)

� The mass of each source sample is spread onto the target samples (line of T0).

� The mapping is the barycenter of the target samples weighted by T0

� Closed form solution for the quadratic loss.

� Limited to the samples in the distribution (no out of sample).

� Trick: learn OT on few samples and apply displacement to the nearest point.
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Transporting the discrete samples
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Transporting the discrete samples
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Joint OT and mapping estimation
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Simultaneous OT matrix and mapping [Perrot et al., 2016]

min
T,T∈P

⟨T,C⟩F +
∑
i

∥T (xs
i )− T̂T(x

s
i )∥2 + λ∥T∥2

� Estimate jointly the OT matrix and a smooth mapping approximating the

barycentric mapping.

� The mapping is a regularization for OT.

� Controlled generalization error (statistical bound).

� Linear and kernel mappings T , limited to small scale datasets.
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]

� Use the color gradient from the source image.

� Use color border conditions on the target image.

� Solve Poisson equation to reconstruct the new image.

Seamless copy with gradient adaptation [Perrot et al., 2016]

� Transport the gradient from the source to target color gradient distribution.

� Solve the Poisson equation with the mapped source gradients.

� Better respect of the color dynamic and limits false colors.

Example and webcam demo: https://github.com/ncourty/PoissonGradient

49 / 92

https://github.com/ncourty/PoissonGradient


Seamless copy in images

Poisson image editing [Pérez et al., 2003]
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Seamless copy in images

Poisson image editing [Pérez et al., 2003]

� Use the color gradient from the source image.
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� Solve Poisson equation to reconstruct the new image.
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Visual adaptation datasets

Datasets
� Digit recognition, MNIST VS USPS (10 classes, d=256, 2 dom.).

� Face recognition, PIE Dataset (68 classes, d=1024, 4 dom.).

� Object recognition, Caltech-Office dataset (10 classes, d=800/4096, 4 dom.).

Numerical experiments
� Comparison with state of the art on the 3 datasets.

� OT works very well on digits and object recognition.

� Works well on deep features adaptation and extension to semi-supervised DA.
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Special case: OT mapping between Gaussians
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OT mapping between Gaussian distributions

� Ps
X ∼ N (m1,Σ1) and Pt

X ∼ N (m2,Σ2)

� The optimal map T for c(x,y) = ∥x− y∥22 is given by

T (x) = m2 +A(x−m1)

with A = Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 .

� Can be estimated from empirical distributions.

� Linear mapping for any distributions with a density [Flamary et al., 2021].
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Expected error for Linear Monge mapping estimation

Empirical estimation of linear Monge mapping

� Empirical estimation of Gaussian parameters for µ1 and µ2.

� n1 samples from µ1, n2 samples from µ2.

� Estimate T̂ with closed form solution.

Theorem ([Flamary et al., 2021])

Let µ1 and µ2 be sub-Gaussian distributions with expectations m1,m2 and

positive-definite covariance operators Σ1, Σ2 respectively with eigenvalues in [c, C] for

some fixed absolute constants 0 < c ≤ C < ∞. We also assume that

nj ≥ Cr(Σj), j = 1, 2, for some sufficiently large numerical constant C > 0.

Then, for any t > 0, we have with probability at least 1− e−t − 1
n1

,

E
s∼µ1

∥T (x)− T̂ (x)∥ ≤ C′

(√
r(Σ1)

n1
∨
√

r(Σ2)

n2
∨
√

t

n1 ∧ n2
∨ t

n1 ∧ n2

)√
r(Σ1),

where C′ > 0 is a constant independent of n1, n2, r(Σ1), r(Σ2) and r(B) = tr(B)
λmax(B)

.
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Monge mapping for Image-to-Image translation

Principle

� Encode image as a distribution in a DNN embedding.

� Transform between images using estimated Monge mapping.

� Linear Monge Mapping (Wasserstein Style Transfer [Mroueh, 2019]).

� Nonlinear Monge Mapping using input Convex Neural Networks

[Korotin et al., 2019].

� Allows for transformation between two images but also style interpolation with

Wasserstein barycenters.
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OTDA Generalization bound

Estimator in source domain
Let HK be a reproducing kernel Hilbert space (RKHS) associated with a symmetric

nonnegatively definite kernel K : Rd × Rd → R We consider the following empirical

risk minimization estimator:

f̂s
ns

:= argmin∥f∥HK
≤1

1

ns

ns∑
i=1

L(ys
i , f(x

s
i )). (30)

where we assume that the eigenvalues of the integral operator TK of HK decrease

with λk ≍ k−2β for some β > 1/2 (see [Mendelson, 2002]).

OTDA generalization bound
If Rs(f

s
∗ ) = Rt(f

t
∗) and T̂ is the linear monge mapping estimator, under the

assumptions of OTDA, we get with probability at least 1− e−t − 1
n1

,

Rt(f̂nl ◦ T̂
−1)−Rt(f

t
∗) ≲ n

−2β/(1+2β)
l +

t

nl

+MfML

√
r(Σ2)

n2
∨

√
r(Σ1)

n1
∨
√

t

n1 ∧ n2
∨

t

n1 ∧ n2

√
r(Σ1).
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Linear Monge mapping on images

Numerical experiments

� Split MNIST dataset in two non-overlapping empirical distributions.

� Apply linear motion blur to the target distribution.

� Estimate mapping and transport source samples.

� Convolutional Monge Mapping for important speedup (FFT).
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Optimal transport for domain adaptation

Dataset 

Class 1Class 2Samples Samples Classifier on 

Optimal transport 

Samples Samples 

Classification on transported samples

Samples Samples Classifier on 
Discussion

� Works very well in practice for large class of transformation [Courty et al., 2016].

� Can use estimated mapping [Perrot et al., 2016, Seguy et al., 2018].

� Nice generalization bound for linear Monge mappings [Flamary et al., 2021].

But

� Model transformation only in the feature space (requires Ps
Y = Pt

Y).

� Requires the same class proportion between domains [Tuia et al., 2015].

� Estimate a T : Rd → Rd mapping for training a classifier f : Rd → R.
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Deep Domain Adaptation



Deep Domain Adaptation and generalization

Generalization bound for shallow methods

RPt(f) ≤ RP̂s(f)︸ ︷︷ ︸
1. ERM

+DH
0−1(P̂s

X , P̂t
X )︸ ︷︷ ︸

2. Emp. Marg. disc.

+ΛH(Ps,Pt)︸ ︷︷ ︸
3. Dom. disag.

+

√
4

n

(
C(H) log

2en

C(H)
+ log

4

δ

)
︸ ︷︷ ︸

4. Sampling term

� Classical DA methods minimize part 1 and 2 by learning a classifier on source and

limiting the discrepancy (e.g. with re-weighting).

� But they are limited by their original feature space of fixed kernel representations.

What deep learning can do?

� Learn feature representation g that can both discriminate (part 1) and minimize

the domain discrepancy (part 2).

� For concept drift with a feature mapping deep learning can be used to estimate

this mapping between domain.
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A short history of Deep DA

� Visual DA promoting similarity between pairs in the feature

space (metric learning, partly supervised)

[Saenko et al., 2010].

� A Deep Convolutional Activation Feature (DeCAF) one of the

first open source visual features robust to domains and tasks

[Donahue et al., 2014].

� Deep Domain Confusion [Tzeng et al., 2014] Deep

Adaptation Network (DAN) uses MMD to minimize feature

marginal domain discrepancy [Long et al., 2015].

� Domain Adversarial Neural Network (DANN) measure the

discrepancy between domains using a classifier

[Ganin et al., 2016].

� Joint Adaptation network (JAN) minimize the joint MMD

across layers [Long et al., 2017].

� [Hoffman et al., 2018] Cycle-Consistent Domain Adaptation

uses CycleGAN to lean mappings between domains.

Most illustrations in this section are taken from their respective papers.
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Deep Domain Adaptation

Domain adaptation problem and generalization

Classical Domain Adaptation methods

Deep Domain Adaptation

Domain invariant feature learning : one classifier to rule them all

Deep mapping approaches

Joint Distribution Optimal Transport (JDOT) and DeepJDOT

Domain Adaptation variants

Domain Adaptation in Practice
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Domain invariant feature learning

Principle

min
f,g

1

ns

ns∑
i=1

L(ys
i , f(g(x

s
i )))︸ ︷︷ ︸

Loss on source

+λD(g#P̂s
X , g#P̂t

X )︸ ︷︷ ︸
Disc. on feature marginals

(31)

� f is the predictor model in the embedding and g the embedding model, final

predictor is f ◦ g.

� D is a discrepancy measure between the empirical feature marginal distribution

extracted with g.

� The main assumption is that one can learn an embedding that is both

discriminant (for both domains) and invariant to the domains (the feature

distributions are the same).

� Reasonable assumption in visual domain adaptation where a given class can be

”disentangled” from the style or acquisition procedures of the domains.

� Several existing methods that differ mainly from their choice of D.
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Deep Domain Confusion (DDC)

Principle [Tzeng et al., 2014]5

� Choose the discrepancy D as MMD : MMD(g#Ps
X , g#Pt

X )2.

� The objective can be optimized efficiently with stochastic optimization.

� Extended to a joint MMD across layers called Deep Adaptation Networks (DAN)

in [Long et al., 2015] : MMD({gl}l#Ps
X , {gl}l#Pt

X )2 with gl embedding

function for layer l.

5Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., and Darrell, T. (2014). Deep domain confusion:

Maximizing for domain invariance. arXiv preprint arXiv:1412.3474
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Domain Adversarial Neural Network (DANN)

Principle [Ganin et al., 2016]

min
f,g

max
fc

1

ns

ns∑
i=1

L(ys
i , f(g(x

s
i )))−λ

(
1

ns

ns∑
i=1

Lc(0, fc(g(xs
i ))) +

1

nt

nt∑
j=1

Lc(1, fc(g(xt
j)))

)
(32)

� Choose the discrepancy D as minus the classification loss for an adversarial

domain classifier (classical GAN objective).

� The backprop of g wrt the adversarial loss is negative : gradient reversal.

� Adversarial discriminant DA (ADDA) proposed to learn two independent

embeddings gs and gt (no shared weights) [Tzeng et al., 2017].
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Wasserstein Distance Guided Representation Learning (WDGRL)

Principle [Shen et al., 2018]

� Choose the discrepancy D as the Wasserstein distance (no vanishing gradients).

� Use the WGAN loss [Arjovsky et al., 2017] that relies on the dual formulation of

the W1 distance :

W1(Ps
X ,Pt

x) = max
ϕ∈Lip1

Ex∼Ps
X
[ϕ(X)]− Ex∼Pt

X
[ϕ(X)] (33)

� Approximating the Lipschitzness of ϕ with constraints or penalization

[Gulrajani et al., 2017].
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Match and reweight Domain Adaptation (MARS)

Principle [Rakotomamonjy et al., 2022]

� Proposed to handle both concept drift and target shift.

� Step 1 : estimation of target proportions p̂t:

� Pt
j , p̃← Estimate a mixture of K distribution on target (K-means/GMM)

� C← Compute the ground cost between PX (x|y = i) and the mixture above.

� T∗ ← Solve OT between uniform weights on C.

� p̂t ← KT∗p̃ compute target class proportion withy OT permutation.

� Step 2 : Perform domain invariant feature learning with Wasserstein distance

[Shen et al., 2018] using the estimated class based reweighting on source (both

on empirical risk and W1).
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Other divergence based methods

Domain Separation Networks [Bousmalis et al., 2016]

� Learn both an invariant embedding and domain specific (private) embeddings.

� Optimize classifier on labeled source using shared encoding and reconstruction

losses from the private/shared encodings on both domains (disentanglement).

Deep Correlation Alignment (DeepCORAL) [Sun and Saenko, 2016]

D(g#Ps
X , g#Pt

X ) = ∥Σ̂s − Σ̂
s∥2F (34)

where Σ̂ = Ex∼g#P̂X
[(x−m)(x−m)⊤], is with m = Ex∼g#P̂X

[x] is the empirical

covariance in the feature space.
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Virtual Adversarial Domain Adaptation (VADA)

Principle [Shu et al., 2018]

� Adversarial loss between the embedding similar to DANN [Ganin et al., 2016].

� Conditional entropy minimization on target [Grandvalet and Bengio, 2004].

−Ex∼P̂t
X
[f(g(x))⊤ log(f(g(x))))]

� Virtual Adversarial training (VAT) on target and source [Miyato et al., 2018]:

Ex∼P̂t
X
[ max
∥v∥≤ε

KL(f(g(x))|f(g(x+ v)))]

� Decision-boundary iterative refinement training promotes cluster assumptions on

target (DIRT-T).
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Deep Domain Adaptation

Domain adaptation problem and generalization

Classical Domain Adaptation methods

Deep Domain Adaptation

Domain invariant feature learning : one classifier to rule them all

Deep mapping approaches

Joint Distribution Optimal Transport (JDOT) and DeepJDOT

Domain Adaptation variants

Domain Adaptation in Practice
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One-Sided Unsupervised Domain Mapping

Principle [Benaim and Wolf, 2017]

� Conditional GAN can learn mappings between distributions.

� But there exists an infinity of mapping most of them do not preserve labels.

� Use regularization of the mapping so that it can preserve pairwise distance:

Ex,x′∼(P̂s)2 [|(∥x− x′∥ −ms)/σs − (∥m(x)−m(x′)∥ −mt)/σt|] (35)

� Also promote consistant self distance between half of each images.
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Optimal Transport for Domain Adapation
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Large scale OT mapping estimation [Seguy et al., 2018]

� OTDA [Courty et al., 2016] has been shown to work on

deep embedding but did not scale to large scale datasets.

� For a fixed feature representation one can estimate an OT
mapping using entropic OT. 2-step procedure:

1 Stochastic estimation of regularized T̂ in the dual with

neural networks.

2 Stochastic estimation of T with a neural network.

� Convergence to the true mapping for small regularization

[Seguy et al., 2018] and to the entropic mapping for large n

[Pooladian and Niles-Weed, 2021].
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CyCADA : Cycle-Consistent Domain Adaptation

Principle [Hoffman et al., 2018]6

� Learn a mapping m from source to target and u from target to source such that

u(m(x)) ≈ x (both from reconstruction and semantic (class preservation)).

� Followed by an invariant DA between the mapped source and target data.

� Uses GAN losses to promote similarity between mapped source and target in the

embedding.
6Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P., Saenko, K., Efros, A., and Darrell, T. (2018).

Cycada: Cycle-consistent adversarial domain adaptation. In International conference on machine learning,

pages 1989–1998. PMLR
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Deep Domain Adaptation
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Deep Domain Adaptation
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Deep mapping approaches
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Domain Adaptation in Practice
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Joint distribution and classifier estimation

Main idea

� Objectives : allow changes in the label space, learn directly a target predictor f .

� Joint feature/labels distribution P̂s in source, feature distribution P̂t in target.

� Wasserstein needs the two distributions

� Use a proxy distribution : P̂t
f = 1

nt

∑Nt
i=1 δxt

i,f(x
t
i)
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Joint Distribution Optimal Transport for DA (JDOT)
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Learning with JDOT [Courty et al., 2017]

min
f

{
W1(P̂s, P̂t

f ) = inf
T∈Π

∑
ij

D(xs
i ,y

s
i ;x

t
j , f(x

t
j))Tij

}
(36)

� P̂t
f = 1

nt

∑Nt
i=1 δxt

i,f(x
t
i)

is the proxy joint feature/label distribution.

� D(xs
i ,y

s
i ;x

t
j , f(x

t
j)) = α∥xs

i − xt
j∥2 + L(ys

i , f(x
t
j)) with α > 0.

� We search for the predictor f that better align the joint distributions.

� OT matrix does the label propagation (no mapping).

� JDOT corresponds to minimizing a generalization bound.
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Optimization problem

min
f∈H,T∈Π

∑
i,j

Ti,j

(
αd(xs

i ,x
t
j) + L(ys

i , f(x
t
j))
)
+ λΩ(f) (37)

Optimization procedure

� Ω(f) is a regularization for the predictor f

� We propose to use block coordinate descent (BCD)/Gauss Seidel.

� Provably converges to a stationary point of the problem.

T update for a fixed f

� Classical OT problem.

� Solved by network simplex.

� Regularized OT can be used

(add a term to problem (37))

f update for a fixed T

min
f∈H

∑
i,j

Ti,jL(ys
i , f(x

t
j)) + λΩ(f) (38)

� Weighted loss from all source labels.

� T performs label propagation.
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Regression with JDOT
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Least square regression with quadratic regularization
For a fixed T the optimization problem is equivalent to

min
f∈H

∑
j

1

nt
∥ŷj − f(xt

j)∥2 + λ∥f∥2 (39)

� ŷj = nt

∑
j Ti,jy

s
i is a weighted average of the source target values.

� Note that this problem is linear instead of quadratic.

� Can use any solver (linear, kernel ridge, neural network).
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Classification with JDOT
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Multiclass classification with Hinge loss
For a fixed T the optimization problem is equivalent to

min
fk∈H

∑
j,k

P̂j,kL(1, fk(xt
j)) + (1− P̂j,k)L(−1, fk(x

t
j)) + λ

∑
k

∥fk∥2 (40)

� P̂ is the class proportion matrix P̂ = 1
Nt

T⊤Ps.

� Ps and Ys are defined from the source data with One-vs-All strategy as

Y s
i,k =

{
1 if ysi = k

−1 else
, P s

i,k =

{
1 if ysi = k

0 else

with k ∈ 1, · · · ,K and K being the number of classes.
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DeepJDOT

g

g

+

+

min
T∈Π,f,g

1

ns

∑
i

Ls (y
s
i , f(g(x

s
i )))+

∑
i,j

Tij

(
α∥g(xs

i )− g(xt
j)∥2 + λtL

(
ys
i , f(g(x

t
j))
))

.

(41)

DeepJDOT [Damodaran et al., 2018]

� Learn simultaneously the embedding g and the classifier f .

� JDOT performed in the joint embedding/label space.

� Use minibatch to estimate OT and update g, f at each iterations

[Fatras et al., 2020] .

� Scales to large datasets and estimates a representation for both domains.
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DeepJDOT

g

g

+

+

min
f,g

E

 1

m

m∑
i=1

L (ysi , f(g(x
s
i )) + min

T∈Π

m∑
i,j

Tij

(
α∥g(xs

i )− g(xt
j)∥2 + λtL

(
ysi , f(g(x

t
j))

))
(41)
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� JDOT performed in the joint embedding/label space.

� Use minibatch to estimate OT and update g, f at each iterations

[Fatras et al., 2020] .

� Scales to large datasets and estimates a representation for both domains.
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DeepJDOT in action

DeepJDOT [Damodaran et al., 2018]

� Evaluation of DeepJDOT on visual classification tasks.

� Digit adaptation between MNIST, USPS, SVHN, MNIST-M.

� Home-office [Venkateswara et al., 2017] and VisDA 2017 [Peng et al., 2017]

dataset.

� Ablation study : all terms are important.

� TSNE projections of embeddings (MNIST→MNIST-M).
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Minibatch Optimal Transport

Principle [Fatras et al., 2020]

MBOTm(Ps
X ,Pt

X ) = EP̂s
X∼Ps⊗m

X ,P̂t
X∼Pt⊗m

X
[W (P̂s

X , P̂t
X )] (42)

� Optimizing Wasserstein is numerically complex on large distributions.

� Numerous papers have been optimizing over minibatches [Genevay et al., 2017].

� MBOT is biased (MBOTm(Ps
X ,Ps

X ) > 0) but is actually a U-statistic and has

nice convergence property (convergence in O(n1/2)).

� But the equivalent expected OT plan is dense and can be far from exct OT plan.
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Unbalanced Optimal Transport

L2 UOT with λu = 30 L2 UOT with λu = 50 KL UOT with λu = 1

Unbalanced Optimal transport (UOT) [Benamou, 2003]

min
T≥0

⟨T,C⟩F + λuDφ(T1m,a) + λuDφ(T
⊤1n,b) (43)

� Dφ is a a Bregman divergence penalizing the violation of the marginal constraints.

� Only a portion of the total mass is transported, total mass can be unbalanced

between source and target due to constraint relaxation.

� Closed form exists between Gaussians [Janati et al., 2020, Janati, 2021].

� Sinkhorn for regularized UOT [Chizat et al., 2018, Séjourné et al., 2019].

� UOT can be reformulated as a weighted Lasso regression (with data fitting Dφ)

[Chapel et al., 2021].
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JUMBOT: DeepJDOT for unbalanced and noisy data

JUMBOT [Fatras et al., 2021]

� Main idea : DeepJDOT with minibatches and Unbalanced OT.

� Theoretical proof of robustness to outliers (UOT is upper bounded, not OT).

� Experiemnt on Partial DA (some classes are not in target) show robustness to

different class proportions between domains.

� Better ability to handle samping noise on minibatch because good performance on

small minibtach size.
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Invariant representation for Multi-Source DA (MSDA)

Existing approaches

� Domain-Invariant Component Analysis (DICA) using kernel methods

[Muandet et al., 2013].

� Moment Matching for Multi-source DA (M3SDA) [Peng et al., 2019] estimates

invariant representation and then perform weighting of source classifier.

� Wasserstein Barycenter Transport (WBT) [Montesuma and Mboula, 2021]

computes Wasserstein barycenter of source domains and then performs OTDA.
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Joint Class Proportion and OT estimation (JCPOT)

Principle [Redko et al., 2019a]

� Under target shift, source domains and target have different class proportions.

� JCPOT : Estimate the target class proportion by minimizing the sum of the

Wasserstein distance of the class reweighted sources to the target.

� This estimation can be reformulated as a special case of Wasserstein barycenter.

� When target proportion are estimated perform OTDA using mapping or label

propagation.
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Weighted JDOT for MSDA

Principle [Turrisi et al., 2022]

min
α∈∆D,f

W1

(
D∑

k=1

αkP̂s
k , P̂t

f

)
(44)

� Perform JDOT with a weighted sum of source domains.

� Optimize the weights α on the simplex to minimize the JDOT loss.

� The weights will do automatically a selection of the source domains that are

relevant to the task (as in close wrt the W1).

� Generalization bound taking into account the number of samples per source

domains and estimation of α.
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Heterogeneous DA (HDA)

3D
 s

o
u
rc

e 
D

o
m

a
in

 

2D
 t

a
rg

et
 D

o
m

a
in

Adapted classifier

Existing methods

� Subspace projection then mapping estimation and SVM [Duan et al., 2012].

� Manifold alignment between domains [Wang and Mahadevan, 2011].

� Estimation of linear mapping between domains [Zhou et al., 2014].

� Mappoing using Optimal Transport across spaeces [Yan et al., 2018]

82 / 92



Gromov-Wasserstein divergence

Inspired from Gabriel Peyré

GW for discrete distributions [Mémoli, 2011]

GWp(µs, µt) =

(
min

T∈Π(µs,µt)

∑
i,j,k,l

|Di,k −D′
j,l|pTi,j Tk,l

) 1
p

with µs =
∑

i aiδxs
i
and µt =

∑
j bjδxt

j
and Di,k = ∥xs

i − xs
k∥, D′

j,l = ∥xt
j − xt

l∥

� Distance between metric measured spaces : across different spaces.

� Search for an OT plan that preserve the pairwise relationships between samples.

� Invariant to isometry in either spaces (e.g. rotations and translation).
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Heterogeneous Domain Adaptation with GW

Semi-supervised Heterogeneous Domain Adaptation [Yan et al., 2018]

� Extension of OTDA [Courty et al., 2016] with GW.

� Use the OT matrix to transfer labels or samples between datasets.

� GW find correspondences across spaces but very noisy.

� Semi-supervised strategy allows very good performances.
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CO-Optimal Transport

Principle [Redko et al., 2020b]

COOT(X,X′,w,w′,v,v′) = min
T s ∈ Π(w,w′)

T v ∈ Π(v,v′)

∑
i,j,k,l

L(Xi,k, X
′
j,l)T

s
i,jT

v
k,l (45)

� X = [x1, . . . ,xn]
T ∈ Rn×d and X′ = [x′

1, . . . ,x
′
n′ ]T ∈ Rn′×d′ contains the

source and target data.

� w ∈ ∆n and w′ ∈ ∆n′ contain the weights of the samples in source and target

datasets.

� v ∈ ∆d and v′ ∈ ∆d′ contain the weights of the features in source and target

datasets.

� L(·, ·) : R2 → R+ is the similarity measure.

� Ts is the OT matrix between samples, Tv is the OT matrix between

features/variables.

� COOT entropic regularized version adds some entropic terms to the objective

value.
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Illustration of COOT on real data

MNIST USPS
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COOT between MNIST-USPS datasets

� Sample digits from MNIST 28× 28 and USPS 16× 16 ordered per classes.

� Uniform weights w,w′ on samples, weights v,v′ on feature is average value.

� Comparison between T from Gromov Wasserstein and COOT Ts: better class

correspondence.

� Visualization of Ts with colors across pixels: spatial structure preserved.

� Other application: finding correspondances between neurons in different

architecture (adapt between embeddings: HDA). 86 / 92
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Validation for Domain Adaptation

Main practical problem

� No target labels are available.

� My usual validation procedure is useless here...

� And yet DA methods have parameters to choose.

What (some) people do?

� Maximize performance on target (very bad, more complex=more better)

� Validate on a few target labels (unrealistic).

� Use proxy on DA performance measure and validate (realistic, but rare).

� On datasets with multiple domains, validate params on one pair, and fix the

params on all other pairs (unrealistic, ok for research, guilty). 87 / 92



Circular Validation

Principle [Bruzzone and Marconcini, 2010]

1. Perform DA from source to target and learn f̂ t.

2. Predict labels on target with f t and perform DA from target to source.

3. Measure performance as the accuracy after the two DA steps.

Discussion

� Meaningful proxy for DA performance but be careful of some fails (e.g. OT).

� Better when using independent datasets for each DA so date needs to be split :

validation done on smaller datasets.

� Works better on shallow methods (traditional CV).

� For deep learning, hard to use and does not help with early stopping.

88 / 92



Importance Weighted Cross-Validation (IWCV)

Principle [Sugiyama et al., 2007]

R̂K
Pt =

K∑
k=1

1

|Tk|
∑

x,y∈Tk

ŵ(x)L(y, f̂k(x)) (46)

where Tk defines a K partition of the source data and f̂k is estimated on the

complementary set.

� Can be used for any methods (especially shallow).

� Requires the estimation of the ratio w(x) =
P̂ t
X (x)

P̂s
X (x)

.

� Theoretically grounded for Covariate Shift.

Deep learning extension: Deep Embedded Validation (DEV) [You et al., 2019]

� IWCV where the reweighing is estimated with a source/target classifier in the

embedding using approach from [Bickel et al., 2007].

� Variance reduction by control variate [Lemieux, 2014].
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Unsupervised DA : a reality check

Paper : [Musgrave et al., 2021] 7

� Meta Analysis from papers: Performance gain, Validation procedure.

� Comparison of numerous DA methods with realistic validation (several DA CV

scores compared).

� Comparison between reproduced performance (with proper validation) and from

paper.

7Musgrave, K., Belongie, S., and Lim, S.-N. (2021). Unsupervised domain adaptation: A reality check.

arXiv preprint arXiv:2111.15672
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Domain Adaptation

� Dataset Shift in ML [Quionero-Candela et al., 2009].

� Types of data shift [Moreno-Torres et al., 2012].

� Recent very good review in [Kouw and Loog, 2019] (200 refs!).
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Practical DA
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