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Sources and references

@ Slides from Yassine Quali, PhD student, MICS Laboratory, Label efficient
Deep Learning.

ICCV Tutorial 2019 : Learning with Limited Labels!

CVPR 2021 Tutorial : Data- and Label-Efficient Learning in An Imperfect
World?

Deep Learning Course, CentraleSupélec, Hervé Le Borgne - Frugality in Al.

Lilian Weng Blog : https://lilianweng.github.io/

Ihttps://sites.google.com/view/learning-with-limited-data/schedule
’https://vita-group.github.io/cvpr_2021_data_efficient_tutorial.html
TS T


https://lilianweng.github.io/
https://sites.google.com/view/learning-with-limited-data/schedule
https://vita-group.github.io/cvpr_2021_data_efficient_tutorial.html

Overview

© Motivations
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Data is fueling deep learning !

Training accurate deep models usually requires lots of well-labeled data

ImageNet Challenge

© 1,000 object classes |
(categories).
e Images:
o 1.2Mtrain
o 100k test.

Source : https://paperswithcode.com/sota/
image-classification-on-imagenet

(Yu et al, 2022) CoCa: Contrastive Captioners are Image-Text Foundation Models : an
encoder-decoder architecture trained with both contrastive loss and captioning (generative) loss.

It uses a pre-trained image-transformer (VIT) on ImageNet-21K 3(14,197,122 images, divided
into 21,841 classes).

3https://arxiv.org/pdf/2104.10972.pdf
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Training accurate deep models

Usually requires lot of well-labeled data

@ Data collection and annotation is expensive, tedious, time consuming.

e.g. Average time taken to label a single image in the Cityscapes dataset is 90
minutes.
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Training accurate deep models

Usually requires lots of well-labeled data

@ Data collection and annotation is expensive, tedious, time consuming.
e.g. Average time taken to label a single image in the Cityscapes dataset is 90

minutes.
Often involves crowdsourcing?

Aggregation I— Incremental ———  Performance-
relabelling based pricing

Source : (Drutsa et al) Practice of Efficient Data Collection via Crowdsourcing at Large-Scale®

?(Kovashka et al, 2016) Crowdsourcing in Computer Vision

bhttps://arxiv.org/abs/1912.04444 and
https://research.yandex.com/tutorials/crowd/kdd-2019
.
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Training accurate deep models

Usually requires lots of well-labeled data

@ Crowd-sourcing may be infeasible for proprietary data.
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Training accurate deep models

Usually requires lots of well-labeled data
@ Data collection and annotation is expensive, tedious, time consuming.
@ Crowd-sourcing may be infeasible for proprietary data.

@ For some tasks, data may not be available at all (long tail distribution)
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Training accurate deep models

Usually requires lots of well-labeled data
@ Data collection and annotation is expensive, tedious, time consuming.
@ Crowd-sourcing may be infeasible for proprietary data.

@ For some tasks, data may not be available at all (long tail distribution)
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Training accurate deep models

Usually requires lots of well-labeled data
@ Data collection and annotation is expensive, tedious, time consuming
o Crowd-sourcing may be infeasible for proprietary data.

@ For some tasks, data may not be available at all (long tail distribution)

Assuming the availability of large well-labeled dataset is not a realist
assumption
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Availability of labeled data

Synset: mushroom

Definition: any of various fleshy fungi of the subdivision Basidiomycota consisting of a cap at the end of a stem
arising from an underground mycelium

Popularity percentie:: 84%

Depth in WordNet: 7

Synset: mushroom

Definition: mushrooms and related fieshy fungi (including toadstools, pufiballs, morels, coral fungi, etc.).
Popularity percentie::§2%

Depth in WordNet:8

Synset: mushroom

Definition: fleshy body of any of numerous edible fungi.
Popularity percentie:: 2%

Depth in WordNet:6

Synset: stuffed mushroom

Definition: mushrooms stuffed with any of numerous mixtures of .. meats or nuts or seafood or spinach
Populaity percentie:: 69%

Depth in WordNet:8

Synset: mushroom sauce

Definition: brown sauce and sauteed mushrooms.
Popularity percentie:: 6%

Depth in WordNet:9

ImageNet has 30 mushroom synsets, each with <1000 images.

Slide credit: Christoph Lampert
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Availability of labeled data

Echinoderms

Bacteria

© 2008 Leonard Eisenberg,
All rights reserved.

gceans Rust

Earth Birth

Millions of Years Ago

In nature, there are 14,000 mushroom species !
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Availability of labeled data

Large-Scale Long-Tailed Recognition in an Open World : Existing Computer Vision Setting v.s.
Real-World Scenario

Open Long-tailed Recognition

Imbalanced Classification
A

|

3 Open World
‘Few-shot Learning
; A

Head Classes Tail Classes Open Classes

Source : https://bair.berkeley.edu/blog/2019/05/13/01ltr/
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Availability of labeled data

Large-Scale Long-Tailed Recognition in an Open World : Existing Computer Vision Setting v.s.
Real-World Scenario

Imbalanced Classification
(metric learning, re-sampling, re-weighting)

Few-shot Learning

(meta learning, classifier dynamics)

Open Set Recognition

(distribution rectification, out-of-distribution detection)

Open Long-tailed Recognition

(dynamic meta-embedding)

Training Set Test Set Training Set Test Set

Source : https://bair.berkeley.edu/blog/2019/05/13/0ltr/
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Availability of labeled data

Problem of bias in dataset

Classes with many examples may still suffer from bias !

ImageNet chairs
= Few rotations/viewpoints
= Typical backgrounds

Images from the ObjectNet
dataset [Barbu et al., NeurlPS 2019]

ImageNet classifier fails to detect
these chairs

See (Torralba et al, 2011) Unbiased Look at Dataset Bias*

“https://people.csail.mit.edu/torralba/publications/datasets_cvpril=pdf
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Several strategies

How to learn with limited labeled data 7

@ Data augmentation.
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels

Céline Hudelot Challenging deep learning models in real-world applicat June 30, 2022 14 /149



How to learn with limited labeled data 7

Several strategies

@ Data augmentation.

Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.

Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models

@ By learning a pre-trained representation and transfer learning.
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models

@ By learning a pre-trained representation and transfer learning.
Supervised : but we need annotated data for the source domain.
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models

@ By learning a pre-trained representation and transfer learning.

Supervised : but we need annotated data for the source domain.
Unsupervised or self-supervised : need to define a good pre-text task.
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How to learn with limited labeled data 7
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Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
@ By learning a pre-trained representation and transfer learning.
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Unsupervised or self-supervised : need to define a good pre-text task.

@ Weak (or noisy) supervision.
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
@ By learning a pre-trained representation and transfer learning.
Supervised : but we need annotated data for the source domain.
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Leveraging web-based images or image captioning.
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
@ By learning a pre-trained representation and transfer learning.
Supervised : but we need annotated data for the source domain.
Unsupervised or self-supervised : need to define a good pre-text task.
@ Weak (or noisy) supervision.
Leveraging web-based images or image captioning.
Annotation for other tasks : classification labels used for segmentation.

@ Alternatives to supervised learning or specific learning setting.
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
@ By learning a pre-trained representation and transfer learning.
Supervised : but we need annotated data for the source domain.
Unsupervised or self-supervised : need to define a good pre-text task.
@ Weak (or noisy) supervision.
Leveraging web-based images or image captioning.
Annotation for other tasks : classification labels used for segmentation.
@ Alternatives to supervised learning or specific learning setting.
Semi-supervised learning, active learning, unsupervised learning
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
@ By learning a pre-trained representation and transfer learning.
Supervised : but we need annotated data for the source domain.
Unsupervised or self-supervised : need to define a good pre-text task.
@ Weak (or noisy) supervision.
Leveraging web-based images or image captioning.
Annotation for other tasks : classification labels used for segmentation.
@ Alternatives to supervised learning or specific learning setting.

Semi-supervised learning, active learning, unsupervised learning
Few shot learning
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
@ By learning a pre-trained representation and transfer learning.
Supervised : but we need annotated data for the source domain.
Unsupervised or self-supervised : need to define a good pre-text task.
@ Weak (or noisy) supervision.
Leveraging web-based images or image captioning.
Annotation for other tasks : classification labels used for segmentation.
@ Alternatives to supervised learning or specific learning setting.
Semi-supervised learning, active learning, unsupervised learning
Few shot learning

@ Using ad-hoc external data
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How to learn with limited labeled data 7

Several strategies

@ Data augmentation.
Leveraging ad-hoc input transformations that preserve corresponding output labels
By using generative models
@ By learning a pre-trained representation and transfer learning.
Supervised : but we need annotated data for the source domain.
Unsupervised or self-supervised : need to define a good pre-text task.
@ Weak (or noisy) supervision.
Leveraging web-based images or image captioning.
Annotation for other tasks : classification labels used for segmentation.
@ Alternatives to supervised learning or specific learning setting.
Semi-supervised learning, active learning, unsupervised learning
Few shot learning
@ Using ad-hoc external data

Data from others modalities
Data from a different domain.
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Overview

© Data Augmentation
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Data Augmentation

Main assumption : more information can be extracted from the original dataset
through augmentations.
Definition

Data augmentation is a process of artificially increasing the amount of data by
generating new data points from existing data.

@ Best method to improve generalization = learn from more data

> Allow a better sampling of the unknown data distribution.
@ Answer (partially) to the practical limitation of data availability.
@ A very common strategy for image classification:

> The label must be robust to transformations of the input data x.
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Data Augmentation

Data augmentation plays a critical role in deep learning:

Instance discrimination, can be used for contrastive pre-training.

Self-supervision, can be used to create pre-text tasks.

Consistency, can be used to extract training signal from unlabeled data.

Increases the diversity of data, inducing a regularization effect and a better generalization.

Dataset

T

Train set Test set

|

Data Augmentations

|

Augmented
Train set

Dataset

PN

Labeled set Unlabeled set

Data
Augmentations

N

Consistency

Dataset

!

Unlabeled set

N
Augmentations

SN

Aug set 1 Aug set 2

~__—

Instance discrimination
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Dataset

|

Unlabeled set

/ \
Data
Augmentations

A

Aug set Pretext task

~_

CE
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Data Augmentation

A common practice for all types of data

L B oot
L

- |
Vo Ertrire

AUGMENTATION

e
compression

TME
SERIES.

Source : https://github.com/AgaMiko/data-augmentation-review
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Data Augmentation

A large catalog of approaches

clean image autocontrast hnghme color contrast

solarize equalize posterize sharpness
/ { -
)
translate_y shear x shear_y

Random Erasng
Goometic
Transiarmatons

e v gy
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Data Augmentation : Image Mixing

Principle
Blending two input images and their corresponding labels according to the following equations :

x=Boxi+(I—B)Ox

=i+ 1 =Ny;
with x;, x; original input images, y;, y; respective one-hot label encodings, A a mixing ratio, B a
mixing mask matrix (for both pixel-wise and patch-wise mixing) and / the identity matrix of the
same dimensionality of B.

Approaches are built around these equations and mainly differ by :
@ the ) selection method

@ Construction of matrix B.
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Data Augmentation : Image Mixing

Core approach : mixup
(Zhang et al, ICLR 18) mixup: BEYOND EMPIRICAL RISK MINIMIZATION?

@ Generates a weighted combinations of random image pairs from the training data.

@ Given two images x;, x; and their ground truth labels y;, y;, a synthetic training example

(%,9) is generated as:
X=X+ (1-XN)x

y=Xi+ 1=y

Image

Label 110, 0.0] [0.0, 1.0] [0.7, 0.3]
cat dog cat dog cat dog

°https://arxiv.org/pdf/1710.09412v2.pdf
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Data Augmentation : Image Mixing

Core approach : mixup - From Empiral risk minimization to mixup

Given a training set D = {(x;, y;) }/_; where (x;,y;) ~ P for all i =1, ..., n. We may approximate P by :
@ Empirical distribution (Empirical Risk Minimization)

n
1
Ps(x,y) = - E 3(x =xi,y =yi)
=il

with §(x = x;, y = y;) a dirac centered at (x;, y;)
@ Vicinal distribution (Vicinal Risk Minimization) (Chapelle, 2020)

ooy L -
PuR9) =2 Y (% Tl
i=1

with v a vicinity distribution, i.e. probability of finding the target pair (X, ¥) in the vicinity of (x;, y;)

@ In practice, augmentation with a Gaussian Noise v(X, 7) = N(% — x, 02)8(y = y) and empirical vicinal
risk.

@ mixup proposes a generic vicinal distribution

n
1
K%,y yi) = — E BA[G(X = Axi + (1 = A)-x;, 7 = Ayi + (1 = A).y5)]
=J

4
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Data Augmentation : Image Mixing

Core approach : mixup - From Empiral risk minimization to mixup

@ It introduces globally linear behavior in between training examples
(generalization).

@ Mixup trained models are relatively robust to input perturbations/corruptions
and at same time are calibrated better than their non-mixup counterparts.

@ Use in many works.
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Data Augmentation : Image Mixing

A lot of other approaches

2017

’H

\
[
a\
H
4
l, l I

Feature Space
-

-
Sample
Pairing

~ =
Manifold N ~ ~ Style
Mixup N ~ Augmentation

2018

2019

’ H
yi H
/7
2020 ’ AugMix
/ = \
Vi N
N
A = N
/ 4~ S~a o
2021 r _- - S~ao 1
-~
(] ]
Other than 2
Patch-wise Pixel-wise images

Source : (Lewy et al, 22) An overview of mixing augmentation methods and augmentation
strategies®

Shttps://arxiv.org/pdf/2107.09887 .pdf
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Data Augmentation : General image augmentation for DL

Recently, great advances in general purpose image augmentation for increasing quantity and
diversity of training data.

AutoAugment (Cubuk et al, 2019)? , Fast AutoAugment (Lim et al, 2019)°

“https://arxiv.org/abs/1805.09501
bhttps://arxiv.org/abs/1905.00397

Formulate the problem of finding the best augmentation policy as a discrete search problem.

=% 1-p;
O

Original

@ O : set of augmentation operations O : X — X on the input space X’

@ Each operation O has two parameters : calling probability p and magnitude A (variability of the
operation).

@ S set of sub-policies 7, with T that consists of N, consecutive operations applied sequentially to the
image with probability p.
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Data Augmentation : General image augmentation for DL
Fast AutoAugment (Lim et al, 2019)8 : Search by density matching and bayesian optimisation

Search strategy

@ Select top— N policies for each fold and merge them

@ At the end, we augment the whole dataset Dirain and retrain the model parameter.

Let D a probability distribution on X x ). We assume dataset D is sampled from this
distribution.

For a classification model M(.|0) : X — ), expected accuracy : R(0|D) and expected loss
L(6]D)

Goal: for a given pair (Dtrain,'Dvalid), improve the generalization ability by searching
augmentation policies that match the density of Dirain with density of augmented Dya1iq :
search by density matching

It is evaluated by measuring how much one dataset follows the pattern of the other by
using the model predictions on both datasets.

Objective used :
T« = argmaxR(0"|T(Da))
where 6* is trained on Dy, with a splittting of Dirain on Dy and Dy
Efficient strategy with a k—fold stratified shuffling : we train parameters on Dy, evaluate
them on Dy and we explore B candidate policies via Bayesian optimization (sample a

sequence of sub-policies and tune their parameters to minimize the expected loss £(4)|.)
(exploration - exploitation).

o
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Data Augmentation :

split

Dtrain

sample B g

train evaluate

) M)

train

train evaluate

(1)
Duam M(0)

K

select V'
xT

T B[ 1]
select N
‘ Augment
Policy T*

xT apply
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Algorithm 1: Fast AutoAugment

Tnput (0, Dy, K. T, B, N)
1 Split Dy into K fold data D), = (DS, D)}
2forke {L,..
s T (DWDA) « (0,0
4 | Trainfon Dy
s | forte{0,...,T—1}do
. B + BayesOptim(T, L(6|T(D.4)), B)
? T; + Select top-N policies in B
s T® T uT

s return 7; = U, 7%

// stratified shuffling

// initialize

// explore-and-exploit

// merge augmentation policies

June 30, 2022

General image augmentation for DL
Fast AutoAugment (Lim et al, 2019) : Search by density matching and bayesian optimisation
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Data Augmentation : GANs for data augmentation

(Shrivastava el al, 2017)7 Learning from Simulated and Unsupervised Images through Adversarial
Training (Best Paper CVPR 2017)

Simulated+Unsupervised (S+U) learning

Goal : improve the realism of synthetic images from a simulator using unlabeled real data while
preserving the annotation.

Unlabeled Real Images

-2

Synthetic Refined

Figure 1. Simulated+Unsupervised (S+U) learning. The task is
to learn a model that improves the realism of synthetic images
from a simulator using unlabeled real data, while preserving
the annotation information.

"https://arxiv.org/pdf/1612.07828.pdf
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Data Augmentation : GANs for data augmentation

(Shrivastava el al, 2017) Learning from Simulated and Unsupervised Images through Adversarial
Training (Best Paper CVPR 2017)

Simulated+Unsupervised (S+U) learning

Synthetic C?\ Refined

- efiner
simulator & e

e |
Real vs Refined D‘s“"';'""“’
=

Unlabeled real

@ Refiner network to add realism to synthetic images
@ Discriminator classifies an image as real or refined

@ Self-regularization term minimizes the image difference between the synthetic and the
refined images

@ The refiner is trained using a combination of an adversarial loss and a self-regularization loss
v
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Data Augmentation : GANs for data augmentation

(Shrivastava el al, 2017) Learning from Simulated and Unsupervised Images through Adversarial
Training (Best Paper CVPR 2017)

&b EEc>"SEY
iz SR S

mmmmmmmmmmmmmmmmmmmmmmmmmm

Simulated images
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Data Augmentation : GANs for data augmentation
(Choi et al, 2020) StarGAN v2: Diverse Image Synthesis for Multiple Domains®

Generated outputs (Male)

Generated outputs (Female)

Input

CelebA-HQ

/W

. | Sl =
Input Generated outputs (Cat) Generated outputs (Dog) Generated outputs (Wildlife)

Figure 1. Diverse image synthesis results on the CelebA-HQ dataset and the newly collected animal faces (AFHQ) dataset. The first column
shows input images while the remaining columns are images synthesized by StarGAN v2.

8https ://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_
Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper:pdf
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Data Augmentation : GANs for data augmentation

(Choi et al, 2020) StarGAN v2: Diverse Image Synthesis for Multiple Domains®

Input image Latent code Input image Input image

. [ . ' . '
S g s
5 E) El
B 3 K]
] s s
= = £
a @ ?
) o o
8
| ‘000 000 00
-] £ ]
- 4 4 g 4 ] ] g 4 4 4
8 Style Style Style 8 Style Style a
Domain 1 Domain2 Domain 3 Domain 1 Domain2 Domain 3 Domain 1 Domain2 Domain 3
(a) Generator (b) Mapping network (c) Style encoder (d) Discriminator

Figure 2. Overview of StarGAN v2, consisting of four modules. (a) The generator translates an input image into an output image reflecting
the domain-specific style code. (b) The mapping network transforms a latent code into style codes for multiple domains, one of which is
randomly selected during training. (c) The style encoder extracts the style code of an image, allowing the generator to perform reference-
guided image synthesis. (d) The discriminator distinguishes between real and fake images from multiple domains. Note that all modules
except the generator contain multiple output branches, one of which is selected when training the corresponding domain.

9https ://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_
Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper:pdf
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Data Augmentation : GANs for data augmentation

Generated data : sufficient ?

(Besnier et al, ICASSP, 2020) THIS DATASET DOES NOT EXIST: TRAINING
MODELS FROM GENERATED IMAGES?

—

Epoch 1 Epoch 2 Eqn. 3

— @=1l
— — —

__________ Epoch 3

: 1 Minimize

| <= Gradient decent J'

HSM

@ Hard Sample Mining (HSM) with latent code optimization : when training from generated images, we

can use the generator to produce more informative images rather than drawing mere samples
The more informative or harder images are specific to the current state of the classifier Cj)
The hard images for C; are the images which are difficult to classify correctly by Cp
Idea : optimize iteratively an original random latent code z to minimize the score of the class
predicted by C,
@ Dataset smoothing : progressively change the dataset by only partially replacing the generated training
data with new samples every epoch, aiming for a diverse but gradually changing dataset

°https://valeoai.github.io/blog/publications/gan-dataset/
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Data Augmentation : GANs for data augmentation

Generated data : sufficient ?

(Besnier et al, ICASSP, 2020) THIS DATASET DOES NOT EXIST: TRAINING
MODELS FROM GENERATED IMAGES?

Fixed dataset Continuous sampling Long training  real images
HSM - v - v - v e v
DS - - - - v v v ' v
BNA - - v v - - v v v
Top-1 Accuracy 70.6 73.6 764 782 78.6 81.8 842 85.6 88.8 88.4

Table 1: Results for ImageNet-10 real test images. Performance of classifiers trained on generated images with all combina-
tions of the proposed methods. Each classifier is trained for 150 epochs (except Long training, where we let DS run for 1500
epochs) over a set of N = 13K images; in case of continuous sampling we replace 50% (i.e., 6, 500) of the images every epoch,
while fixed dataset is the usual setup where no images are replaced during training. In all setups we use N images per epoch.
First column, without applying any of the proposed methods, is the baseline. Each of the proposed methods individually shows
improvement over the baseline. The combination of the methods further improves the results.

Generator : BiGANs Classifier : Resnetl8

“https://valeoai.github.io/blog/publications/gan-dataset/
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Data Augmentation : GANs for data augmentation

(Jahanian et al, ICLR 22): GENERATIVE MODELS AS A DATA SOURCE FOR

MULTIVIEW REPRESENTATION LEARNING®?

Data

(A

X ~ {Xz‘}zN=1

Learner

- [:x—e

Embedding
function

Generative Model 1"
i

Ohttps://ali-design.github.io/GenRep/
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Data Augmentation
Many ressources

@ https://brunokrinski.github.io/awesome-data-augmentation/
@ Albumentations (https://github.com/albumentations-team/albumentations)
@ Imgaug (https://github.com/aleju/imgaug)

@ Augly : data augmentations library that currently supports four modalities
(https://github.com/facebookresearch/AugLy)
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Overview

@ Alternatives to supervised learning
@ Semi-supervised Learning

@ Deep Unsupervised Learning
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Alternatives to supervised learning

Supervised
Learning

Semi-Supervised
Learning

Richness of unlabeled data

Unsupervised
@ Data privacy friendly
@ Cheaper

Learning
@ Scales better

o = - = T wae
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Learning with limited labeled data

Semi-supervised deep learning
Few-shot learning

Unsupervised and self-supervised learning

Transfer learning and domain adaptation (robust ML)
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Overview

@ Alternatives to supervised learning
@ Semi-supervised Learning

@ Deep Unsupervised Learning
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Sources and references

@ (Ouali et al, 2020) An Overview of Deep Semi-Supervised Learning
(https://arxiv.org/abs/2006.05278)
(

o (Yang et al, 2021) A Survey on Deep Semi-supervised Learning
(https://arxiv.org/pdf/2103.00550.pdf)

o Lil'Log : Learning with not Enough Data Part 1: Semi-Supervised Learning
(https:
//lilianweng.github.io/posts/2021-12-05-semi-supervised/)
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Semi-supervised Learning

Semi-supervised learning (SSL) is halfway between supervised and unsupervised
learning. In addition to unlabeled data, the algorithm is provided with some
supervision information - but not necessarily for all examples. Often, this
information will be the targets associated with some of the examples. In this case,
the data set X = (z;) ;i € [n] can be divided into two parts: the points
X := (21,...,21), for which labels ¥; := (y1, ..., y) are provided, and the points
Xy = (@4=1, - - ., Ty+u), the labels of which are not known.

— Chapelle et al. — SSL book

Supervised
g g ySemi-Supervised
1 [ Supervised
Semi-Supervised !
. . Magic!
g g
g g
€ £
5 5
a a
Labeled Data Labeled Data

Reference : SSL book :

https://mitpress.mit.edu/books/semi-supervised-learning
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Semi-supervised Learning

Main assumptions about the structure of data

@ H1 : The Smoothness Assumption: if two input points that reside in a high-density region
are close then so should be their corresponding outputs.

@ H2 : The Cluster Assumption : If points are in a same cluster, they are likely to be of the
same class (particular case of the Smoothness Assumption in which we suppose that input
data points form cluters)

@ H3 : Low-density Separation Assumption : The decision boundary between classes tends
to be located in the sparse, low density regions, because otherwise the decision boundary
would cut a high-density cluster into two classes, corresponding to two clusters, which
invalidates H1 and H2

@ H4 : The Manifold Assumption : The (high dimensional) data (roughly) lie on a
low-dimensional manifold, i.e. discover the low dimensional representation from unlabeled
data and use the labeled data to solve the simplified task in the lower dimensional space.

.
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Semi-supervised Learning

Main methods

@ Consistency training : a realistic perturbation applied to the unlabeled point should not
change significantly the prediction, i.e. the model can be trained to have a consistent
prediction on a given unlabeled example and its perturbed version.

@ Pseudo-labeling methods : leveraging of a model trained on a labeled set to produce
additional training examples by labeling instances of the unlabeled set based on some
heuristics.

@ Generative models : If a generative model is able to generate realistic images from the
data distribution p(x), then it must learn transferable features to a supervised task p(y|x)

@ Graph-based methods : Labeled and unlabeled data are considered as nodes of a graph
and the objective is to propagate the labeled nodes to the unlabeled ones using the
similarity between nodes and edge information.
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Deep Semi-supervised Learning : an overview

Decp Semi-supervised Learning

I
Consistency regularization
methods

E;a»hbe\ing mech;%

F.m-ma s
1 [ 1
. ! L e )
tper i-super Rl Leddar Netwwk AutoEncoder-based models  GNN -based models. Self~training models
; = i
CuGAN BGAN SSVAEe Tomporal Euseming sone Basic AN Dosp Co-trining ]
cceaN A ApaM Mean Teacher DNGR Gon Tri-Net Noisy Student
Angometnd BGAN Infinite VAE VAT GAT L
Iproved GAN x
Lnprived GAN Triplo GAN. Disentangled VAE Dual Student GraphSAGE MPL
GoodBIGAN — Smesie e
SDVAE swa o oy
calined GAN
[Losaliz=iG AN ReVAE VA
e _ SimCLRv2
cr-ean o
oA

(Yang et al, 2021) A Survey on Deep Semi-supervised Learning!?

Uhttps://arxiv.org/abs/2103.00550
~ CélineHudelot ~ Challenging deep learning models in real-world applicat
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Consistency training

Consistency training

Consistency Regularization

‘”pmodel(y | AUgment(x)§ 0) 0 pmodel(y | Augment(x); 0)”%‘

‘@ @ Penalty for different predictionm@

Main assumption : randomness within a neural network (e.g. with Dropout or data J

augmentation transformations) should not modify model predictions given the same input : use
of a consistency regularization loss as L,
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Consistency training

A realistic perturbation applied to the unlabeled point should not change significantly the

prediction, i.e. the model can be trained to have a consistent prediction on a given unlabeled
example and its perturbed version.

The Cluster Assumption

Unlabeled Set
Low Density
Region
Labeled Set .
Class A Class B ()

Data Manifold
. - . Decision
Consistency Training

Boundary

o 0% o N
o o o /e

Supervised and semi-supervised decision boundaries
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Consistency training

In consistency training, we are favoring models that give consistent predictions for similar
unlabeled data points.

Given a set of unlabeled data D, and a set of labeled data D,

@ Consistency training methods generally consists into adding an unsupervised loss term L,
in addition to the supervised one Ls (here cross-entropy)

1
L=Ly+Ls=Ly+ — H(y,t
+Ls +\D/| E (¥, 1)
x,teDy

@ The unsupervised loss is generally a distance between two predictions (yi, y2) over the
unlabeled data.

L= |D | Z dMSE()’lyYZ)"" o Z H(y, f(x))

x€EDy x,y€D,

Cross

L
z Network fg Entiopy |
Noise / -
Perturabtions

L
Network fo dyise

Céline Hudelot
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Ladder networks

Ladder networks
@ Combine supervised learning with unsupervised learning in deep neural
networks.
@ Ladder networks are trained to simultaneously minimize the sum of
supervised and unsupervised cost functions by backpropagation, avoiding
the need for layer-wise pre-training

(Rasmus et al , 2015) Semi-supervised Learning with Ladder Networks
(https://arxiv.org/abs/1507.02672). See also
https://rinuboney.github.io/2016/01/19/1ladder-network.html
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Ladder networks

Principle

@ At each training iteration, the input is passed through two encoders, a clean one and a corrupted one
which adds Gaussian noise to the layers = two predictions.

@ A decoder can invert the mappings on each layer of the encoder. It uses a denoising function to
reconstruct the activations of each layer given the corrupted version. The target at each layer is the
clean version of the activation and the difference between the reconstruction and the clean version
serves as the denoising cost of that layer.

@ The unsupervised training loss is then computed as the MSE between the activations of the clean
encoder and the reconstructed activations.

L
1
ﬁu:ﬁ E E Niduse (21", 20)

x€D =0
Noisy Encoder Denoising Decoder
21 iz £h | 21 22 2L
€T— - —
4 4 4
i | | daise
Gaussian Noise - s b4
- - zL
xr— —Y

Encoder

V.
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Pi-Model

Idea

Ensemble method : a set of labels is more reliable than a simple one and thus consistency

regularization : two augmentations should result in the same prediction.

The M—Model is a simplification of Ladder networks where the corrupted encoder is removed

and the same network is used to get prediction for both corrupted and uncorrupted inputs.

£ =" " MSE(fy(x), f; (x))

xeD

’
with f the same neural network with different stochastic augmentation or dropout masks.

X stochastic
augmentation

> network

[ | with dropout

(Laine and Aila, 2017) Temporal Ensembling for Semi-Supervised Learning

(https://arxiv.org/abs/1610.02242)

Céline Hudelot

u(t)

; cross-
Z; entropy
= squared
Z; difference

weighted
sum

— loss
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Pi-Model

Algorithm 1 IT-model pseudocode.
Require: z; = training stimuli
Require: L = set of training input indices with known labels
Require: y; = labels for labeled inputs i € L
Require: w(t) = unsupervised weight ramp-up function
Require: fy(z) = stochastic neural network with trainable parameters
Require: ¢(z) = stochastic input augmentation function

for t in [1, num_epochs] do

for each minibatch B do

ziep + fo(9(xien)) > evaluate network outputs for augmented inputs
Zien + fo(9(xien)) > again, with different dropout and augmentation
loss < — 157 Xie(Bnr) log zilui] > supervised loss component
+ w(t)ﬁ Yiepllzi— Zl*> > unsupervised loss component
update 6 using, e.g., ADAM > update network parameters
end for
end for
return 6
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Temporal ensembling

The M—Model requests the network to run two passes per sample, doubling the computation
cost. Temporal Ensembling maintains an exponential moving average (EMA) of the model
prediction in time per training sample as the learning target, which is only evaluated and

updated once per epoch.

~(t—1)

Moving average and bias correction a la Adam

stochastic
augmentation

(Laine and Aila, 2017) Temporal Ensembling for Semi-Supervised Learning

(6 o +(1— )z
Zi ' = 1—at
1(t)
""""""""""""""""""""""""""""" *|  cross- v
network Z; entropy weighted loss
with dropout squared sum
»| difference
> Z;

(https://arxiv.org/abs/1610.02242)

Céline Hudelot
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Temporal ensembling

Algorithm 2 1 i docode. Note that the updates of Z and Z could equally
well be done inside the mini loop; in this pseudocode they occur between epochs for clarity.
Require: z; = training stimuli
Require: L = set of training input indices with known labels
Require: y; = labels for labeled inputs i € L
Require: o =ensembling momentum, 0 < o < 1
Require: w(t) = unsupervised weight ramp-up function
Require: fy(x) = stochastic neural network with trainable parameters 6
Require: g(z) = stochastic input augmentation function

Z + Ovxq) > initialize ensemble predictions

Z + Ovxq) > initialize target vectors

for ¢ in [1, num _epochs] do

for each minibatch B do

ziep < fo(9(zicn,t)) > evaluate network outputs for augmented inputs
loss + — 57 Yiesnr) log zilyil > supervised loss component
+ w(t) ﬁ Yienllzi — &l > unsupervised loss component
update 6 using, e.g., ADAM > update network parameters
end for
Z+—aZ+(1-a)z > accumulate ensemble predictions
Z+ Z/(1-ab) ©> construct target vectors by bias correction
end for
return 6
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Mean Teachers

In temporal ensembling, we kept an exponential moving average over the target of each input.
But why not keep an exponential moving average over the model itself, which can then be used
to generate stable targets over the unlabeled examples ? We call this model the teacher model.

Noise

—>| Student fp

_.:/
Teacher fp/

Noise

Céline Hudelot
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Mean Teachers

The loss is the sum of the supervised and unsupervised loss, where the teacher model is used to

obtain the targets for the unsupervised loss for a given input.

L= wips 3 duse(fx).fy () + e > H( ()

D]
xEDy x,y€D
with 6; = a8, | + (1 — )6
Noise
Yy
Student fp
X— EMA
Teacher fy
Noise

(Tarveinen and Valpola,2017) Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results
(https://arxiv.org/abs/1703.01780)
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Noisy samples as learning targets

Recent consistency training methods learn to minimize prediction difference
between the original unlabeled sample and its corresponding augmented version.

It is quite similar to previous models but the consistency regularization loss is only
applied to the unlabeled data.

(x,y)—] Jo |

u fo

cross entropy |—>

Augmentation: e.g.

u
fo
Image: mixup, RandAugment

Language: back-translation, TF-IDF repl

= MSE

>

Céline Hudelot
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VAT : Virtual Adversarial Training

@ Until now : random perturbations to each input to generate artificial input points,
encouraging the model to assign similar outputs to the unlabeled data points and their

perturbed versions

@ Random noise and random data augmentation leave the predictor particularly vulnerable to
small perturbations in a specific direction, the adversarial direction : direction in the input
space in which the label probability p(y|x) of the model is most sensitive.

@ Why not find the perturbation that the model is most sensitive towards, and use it to
perturb the inputs?

1. r ~N(0, =5—1)

dim(zx)
. 2. grad, = V,dis(fo(@). fo(x +7))
5 rad,
3 Tadv = €fgrad,

Céline Hudelot Challenging deep learning models in real-world applicat June 30, 2022 58 /149



VAT : Virtual Adversarial Training

The loss computation consists of two steps, first find the adversarial perturbation,

then use this perturbation to perturb the input and get the perturbed prediction
to compute the unsupervised loss.

LT = Wini Z dise(fa(x), fo(x + Faa))
x€D,

(Miyato et al, 2018) Virtual Adversarial Training: A Regularization Method for Supervised and
Semi-Supervised Learning (https://arxiv.org/abs/1704.03976)
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ICT : Interpolation Consistency Training

Principle

@ Enhancement of the dataset by adding more interpolations of data points and
expects the model prediction to be consistent with interpolations of the
corresponding labels.

@ Use of the mixup operation that mixes two images via a simple weighted sum
and combines it with label smoothing.

@ ICT expects the prediction model to produce a label on a mixup sample to
match the interpolation of predictions of corresponding inputs.

mixup, (X;, X;) = Ax; + (1 — A)x;
p(mixupy(y | xi, %)) = Ap(y | xi) + (1 = N)p(y | x;)
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ICT : Interpolation Consistency Training

o
B
[ (@i, yi) ~ D, i g
% | i) L v ( fol@s) } Y Superv1sed loss |
% \‘ Yi Lil o WY (9> yi)
% \ /’\/
~ Vs ~
(| u;~Duyr uj Superv1sed Loss +|
5 fa/ uj) } wy- Consistency
L u; L Loss

MIXA R * Consistency loss
- - f"(u’") ]_"( Mixa (45 ), m) |
Uk L
P /
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L for (ux) )

Unlabeled Samples

ur ~ Dyr,

|

A\

(Verma et al, 2019) Interpolation Consistency Training for Semi-Supervised Learning
(https://arxiv.org/abs/1903.03825)
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Entropy Minimization

Entropy Minimization
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Entropy Minimization

H3 : Low-density Separation Assumption : The decision boundary between
classes tends to be located in the sparse, low density regions, i.e. decision
boundary should not pass through high-density regions of the marginal data
distribution.

Entropy Minimization

Entropy minimization encourages more confident predictions on unlabeled data i.e
the classifier outputs low-entropy predictions on unlabeled data.
Entropy computation

K
> fa(x)k log fa(x)«
k=1

with K the number of classes and fy(x)x is the confidence with which the model
predicts that input x belongs to class k.

Adding of a loss term that encourages the network to make “confident”
(low-entropy) predictions for all unlabeled examples, regardless of their class.
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Entropy Minimization

If we consider an input x and classes [y1, y», y3].
o Classifier A : probabilities [0.1,0.8,0.1]
o Classifier B : probabilities [0.1, 0.6, 0.3]

Classifier A is more confident and has lower entropy.
By minimizing the entropy loss, we learn a model closer to classifier A then
classifier B.
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Entropy Minimization

(Grandvalet et al, 2004) Semi-supervised Learning by Entropy Minimization'?
Entropy minimization will discourage the decision boundary from passing near data
points where it would otherwise be forced to produce a low-confidence prediction.

- -~ Supervised
—— TII-model
—— Entropy Minimization
—— Pseudo-Label
VAT

o Unlabeled
@ Class1
O Class2

Figure: Decision Boundary found by various SSL approaches on the “two moons dataset”.
From Paper: Realistic Evaluation of Deep Semi-Supervised Learning Algorithms.

(Oliver et al, 2019 ) Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
(https://arxiv.org/pdf/1804.09170.pdf)

Phttps://proceedings.neurips.cc/paper/2004/file/
96£2b50b5d3613adf9c27049b2a888c7-Paper . pdf
T G


https://arxiv.org/pdf/1804.09170.pdf
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf

Pseudo Labeling

Pseudo Labeling
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Pseudo Labeling

In pseudo labeling, a model is trained on labeled data and used to predict
pseudo-labels for the unlabeled data. The model is then trained on both ground
truth labels and pseudo-labels simultaneously.

Labeled data Unlabeled data
o000 [ N J
Train Predict
o000 L
- Model -

o000 o000
o000 L
K/ K“Relrain J_

Predict v
Labeled data Pseudo-labeled data

....Append ooo
o000 + L
[N LA
CC NN oo

One important question is, what unlabeled examples do we select to add to the
labeled data ?
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Pseudo Labeling

In pseudo labeling, a model is trained on labeled data and used to predict
pseudo-labels for the unlabeled data. The model is then trained on both ground
truth labels and pseudo-labels simultaneously.

(5) Repeat
.0 ° (1) Train o o
o g *y — e o °,
° °
Labeled Samples Labeled Samples
3 (2) Predict .
0,09 ° 3% o ° 09 i
Q;OO &Bg gg s.o &Sé’ gg(p .o &eé) ggw (4) Re-train
0, 0, 0,
0§80 92 L, °9 8% 1 @ select || 080878052 — | ptn
0p 8% 02035, 09 @ % 0% b5, 058,55 0% %30 0
8% 3 9 o 'op.oo. 8% 0o
Q aooo&ooo LY I'O@OO °© AT
o ° o 0o
Unlabeled Samples Pseudo Labeled Samples Selected Samples
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Pseudo Labeling

Principle
@ Train a model simultaneously on a batch of both labeled and unlabeled images.

@ The model is trained on labeled images in usual supervised manner with a cross-entropy
loss.

@ The same model is used to get predictions for a batch of unlabeled images and the
maximum confidence class is used as the pseudo-label.

@ Then, cross-entropy loss is calculated by comparing model predictions and the pseudo-label
for the unlabeled images

Cross-Entropy Loss
=
Predicted _Label
Labeled Model >
Image
DogCat  Dog Cat

.7 Model »ID__:‘J most confident
Unlabeled .< N\ class

Dog Cat
Image

.— Model »I_D__DJ II]

Dog Cat Dog Cat
Predicted Pseudo-label
(I

Cross-Entropy Loss

(Lee, 2013) Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep
Neural Networks (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.664.3543)
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Pseudo Labeling

@ Pseudo-Label are target classes for unlabeled data as if they were true labels. The class,
which has maximum predicted probability predicted using a network for each unlabeled
sample, is picked up.

v =

,_ 1 ifi = argmax; fu(r)
0 otherwise

@ Pseudo-Label is used in a fine-tuning phase with Dropout. The pre-trained network is
trained in a supervised fashion with labeled and unlabeled data simultaneously.

Z Zﬂym F™)ale Z ZU m

ml!l m=1 i=1

@ oft) is a coefficient balancing them at epoch t. If too high, it disturbs training even for
labeled data. If too small, we cannot use benefit from unlabeled data.

Pseudo label is equivalent to Entropy Regularization.
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Label propagation

Main ideas

@ Construct a similarity graph among samples based on feature embedding

@ Pseudo labels are “diffused” from known samples to unlabeled ones where the propagation

weights are proportional to pairwise similarity scores in the graph

Phase 1: Train for 1 epoch with
Train for T epochs with Lu(X,YL,Yy;0)
Lo(Xr,Y1;0) (all examples)

(labeled examples only)

Extract descriptors V.
Compute affinity A (9)
W+ A+ AT
0% , bweprwpe

o,

o

B § .
”
g@ N
& o, @
3
00 00 %J
o
AAA : labels @ : missing labels  © @ @ : pseudo-labels (size proportional to certainty w;)
(Iscen et al, 2019) Label Propagation for Deep Semi-supervised Learning
(https://arxiv.org/abs/1904.04717)
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Hybrid approaches

Hybrid approaches
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Hybrid approaches : Pseudo Labeling with Consistency
Regularization

MixMatch
ReMixMatch
DivideMix
FixMatch
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Hybrid approaches : MixMatch

Principle : Merging of
@ Consistency regularization: Encourage the model to output the same predictions on
perturbed unlabeled samples.

@ Entropy minimization: Encourage the model to output confident predictions on unlabeled
data.

@ MixUp augmentation: Encourage the model to have linear behaviour between samples.

@ Label guessing : pseudo-labelling

(Berthelot et al, 2019) MixMatch: A Holistic Approach to Semi-Supervised Learning
(https://arxiv.org/abs/1905.02249)
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Hybrid approaches : MixMatch

Label-guessing principle in MixMatch

— (Come ) bt~ R
HHHHDH H

Unlabeled\ & — m I-'h / Average Sharpen

. Kaugmentations ... i/

v

@ For each u, K augmentations are generated, i(k) = Augment(u) for k =1,..., K and the
pseudo label is guessed based on the average : y = % Zszl po(y | ak))

@ Then, temperature sharpening function to reduce the entropy of the label distribution
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Hybrid approaches : MixMatch

Temperature sharpening

Sharpening

Sharpen(p, T); := p] /Zp]

Image Model Prediction /

. \ Pseudo label

Argmax
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Hybrid approaches : MixMatch

Algorithm 1 MixMatch takes a batch of labeled data X’ and a batch of unlabeled data Z{f and produces
a collection X" (resp. U") of procesked labeled examples (resp. unlabeled with guessed labels).

1: Input: Batch of labeled examples and their one-hot labels & = ((zb,pb);b e (1,..., B)), batch of
unlabeled examples U = (uy;b € (1, ..., B)), sharpening temperature T, number of augmentations K,
Beta distribution parameter o for MixUp.

2: for b =1to Bdo

3: = Augment(zs) // Apply data augmentation to 3

4: for k=1to K do

5: iy, = Augment(uy) // Apply k" round of data augmentation to

6: end for

7 = 3% Ek Pmodel (¥ | ub x;0) // Compute average predictions across all augmentations of up
8: gv = Sharpen(q,T) // Apply rz’mpf'm.rme sharpening to the average prediction (see eq. (m])
9: end for
10: X = ((15, )b e ( B)) // Augmented labeled examples and their labels

1 U= ((ub K Q)b E (1 sy Bk e 1oy, K)} /| Augmented unlabeled examples, guessed labels
12: W = Shuffle (Coucat(;?, L"()) // Combine and shuffle labeled and unlabeled data

13: X' = (MixUp(AA’%1 Wi)ie(1,..., \X\)) // Apply MixUp ro labeled data and eniries from W

14: U' = (Mlep(L{,, W, JrIXl) e(1,..., |l2\)) // Apply MixUp to unlabeled data and the rest of W
15: return X', U’
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Hybrid approaches : MixMatch

Given a batch of labeled data X and unlabeled data U/ , we create augmented
versions of them via MixMatch(.), X and U/, containing augmented samples and
guessed labels for unlabeled examples.

X,U = MixMatch(X, U, T, K, a)

J L >~ Hly,poly | X)]

¥ @iy
1 n _
CMM = m Z 19— po(y [ B3
(u,9)eu

L£=LMM 4\, MM
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Hybrid approaches : ReMixMatch

Improves MixMatch by introducing two new mechanisms:
@ Distribution alignment : encourages the marginal distribution to be close to the marginal
distribution of the ground truth labels.

@ Augmentation anchoring :Given an unlabeled sample, it first generates an anchor version
with weak augmentation and then averages K strongly augmented versions using
CTAugment (Control Theory Augment).

Ground-truth labels'

. H Ailod =15

J .

: D[][IDDD Medel-nlrediciﬂ-s
bt

Figure 1: Distribution alignment. Guessed label

distributions are adjusted according to the ratio
of the empirical ground-truth class distribution
divided by the average model predictions on un-
labeled data.

Figure 2: Augmentation anchoring. We use
the prediction for a weakly augmented image
( , middle) as the target for predictions on
strong augmentations of the same image (blue).

(Berthelot et al, 2020) ReMixMatch: Semi-Supervised Learning with Distribution Alignment and
Augmentation Anchoring (https://arxiv.org/abs/1911.09785)
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Hybrid approaches : FixMatch

It generates pseudo labels on unlabeled samples with weak augmentation and only

keeps predictions with high confidence.

Only keep predictions
Weakly-d with high confidence
augmente Prediction Pseudo-label

Unlabeled |
example

Strongly-
augmented

(Sohn et al, 2020) : FixMatch: Simplifying Semi-Supervised Learning with Consistency and
Confidence (https://arxiv.org/abs/2001.07685)
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Hybrid approaches : FixMatch

B
E Z CE[yb, Po y | -Aweak(xb))]
b=1

1 LB

ﬁu = M_B Z l[max()“/b) > T] CE(}A/b,Pe(y | Astrong(ub)))

where ¥, is the pseudo label for an unlabeled example; y is a hyperparameter that
determines the relative sizes of X and U .

@ Weak augmentation : A standard flip-and-shift augmentation

@ Strong augmentation : AutoAugment, Cutout, RandAugment, CTAugment
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Graph-based semi-supervised learning

Graph-based semi-supervised learning
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Graph-based semi-supervised learning

Labeled and Unlabeled Data as a Graph

e |dea: Construct a graph connecting similar
fonr data points

\ /"V// 4 -~ ;
A ! S o Let the hidden/observed labels be random

AN % variables on the nodes of this graph (i.e. the
.z<3 \774 graph is an MRF)
A
/—7\ 9, PR ; .
ane y = G \\ ¢ Intuition: Similar data points have similar
\ 0\ labels
/\7 )

¢ Information “propagates” from labeled data
points

e Graph encodes intuition
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Graph-based semi-supervised learning

Smoothness Assumption
If two instances are similar X;
according to the graph, then N

output labels should be similar

x;  sim(xy,x;)

Two stages :
@ Graph construction :

» Neighborhood methods, metric learning
@ Inference : a lot of approaches.
To go deeper, some reviews (Song et al 2021)*3

Bhttps://arxiv.org/pdf/2102.13303.pdf
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Overview

@ Alternatives to supervised learning
@ Semi-supervised Learning

@ Deep Unsupervised Learning

=] = = .
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Unsupervised Learning

In unsupervised learning, we are interested in extracting information from the
unlabeled data x; (without using labels y;).

@ Low-dimensional embeddings of the data : Autoencoders.

@ Generative model able of approximating the data distribution Px(x) :
Generative adversarial networks

o Self-supervision : defining new training objectives based on the data itself
to train the model.

s 1R - l
o3| Egsag e B ey W
Reconsiucisd L < ] —
input data S :»\aw 55 1-d density estimation e
Features [ 2 mm'a_a.a ; l, Rowed image: '
oo |elEmE o , ﬁ -
Input data z E 8 e e
¥
(F/e\::gf;nr;dri::g) 2-d density estimation - R

Auto-encoder and dimensionality

: GaNs and density estimation Self-supervision
reduction

Céline Hudelot Challenging deep learning models in real-world applicat June 30, 2022 86 /149



Unsupervised Learning : Auto-encoders

Auto encoders can be used for self-supervised learning by either reconstructing the initial image,
or only parts of it.

Sparse auto-encoders

Find a sparse representation of the input data®

wingy ~ 3 £ (@9 (h)+ A, with h; = f (), foralli €[
n
=

——
loss regularizer

“https://web.stanford.edu/class/cs294a/sparseAutoencoder. pdf

Denoising auto-encoders

The model must be robust to noise?

eeiem e

https://www. jmlr.org/papers/volumell/vincent10a/vincent10a.pdf
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Unsupervised Learning : Auto-encoders

Auto encoders can be used for self-supervised learning by either reconstructing the initial image,

or only parts of it.

Other approaches?

“https://arxiv.org/abs/1611.09842, https://arxiv.org/abs/1604.07379

Split-Brain autoencoder

!]_

Raw Data

Predicted

Raw Data
Channels

Predicted Data

Channels

Context autoencoder

Céline Hudelot
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What is Self-Supervision ?

A form of unsupervised learning where the data provides the supervision.

Usually, define a pretext task for which the network is forced to learn what we really care
about.

For most pretext tasks, a part of the data is withheld and the network has to predict it.

The features/representations learned on the pretext task are subsequently used for a
different downstream task, usually where some annotations are available.

Predict any part of the input from any ime —
other part.
Predict the from the past.

Predict the from the recent past.

v

¥

Predict the from the present. E

v

4

» Predict the from the bottom. ﬁﬁ%

> Predict the occluded from the visible /Y

» Pretend there is a part of the input you « Past Piciant Future —
don’t know and predict that. slide: LeCun

Source : LeCun talk
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Self-Supervision

Goals
@ Learn equally good (if not better) features without supervision.

@ Be able to deploy similar quality systems without relying on too many labels
for the downstream tasks.

o Generalize better potentially because you learn more about the world.
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Self-Supervision

Stage 1: Train network on pretext task (without human labels)

: .

}H

Self-supervised
rotation classification

T4(-)

A’H
IR-I

Stage 2: Train classifier on learned features for new task with fewer labels

Fixed
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Céline Hudelot

Self-Supervision

Stage 1: Train network on pretext task (without human labels)

I I

Self-supervised H
150 p —> rotation classification|
E ro0)
]R"
Stage 2: Fine-tune network for new task with fewer labels

Fine-tuned Object Detection

O
Challenging deep learning models in real-world applicat
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Self-Supervision : Image distorsions

Exemplar CNNs?

°https://arxiv.org/abs/1406.6909

Create a class by augmenting the same image multiple times.

@ Sample N patches of size 32 x 32 pixels from different images at varying positions and
scales, only from regions containing considerable gradients as those areas cover edges and
tend to contain objects or parts of objects. They are exemplary patches.

@ Each patch is distorted by applying a variety of random transformations (i.e., translation,
rotation, scaling, etc.). All the resulting distorted patches are considered to belong to the
same surrogate class.

@ The pretext task is to discriminate between a set of surrogate classes. We can arbitrarily
create as many surrogate classes as we want.
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Self-Supervision : Image distorsions

Rotation?

°https://arxiv.org/pdf/1803.07728.pdf

Create a class by augmenting the same image multiple times.

@ Rotation of an entire image is another interesting and cheap way to modify an input image

while the semantic content stays unchanged.

@ Each input image is first rotated by a multiple of 90" at random, corresponding to

[0, 90, 180, 270]

@ The model is trained to predict which rotation has been applied, thus a 4—class

classification problem.

Challenging deep learning models in real-world applicat
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Self-Supervision : patches

Relative position?

“https://arxiv.org/abs/1505.05192

@ Randomly sample the first patch without any reference to image content

@ Considering that the first patch is placed in the middle of a 3 x 3 grid, and the second
patch is sampled from its 8 neighbooring locations around it.

@ The model is trained to predict which one of 8 neighbooring locations the second patch is
selected from, a classification problem over 8 classes.
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Self-Supervision : patches

Permutation prediction ?

°https://arxiv.org/abs/1603.09246

Patches can be used in other ways, such as applying a given permutation from a set of fixed
permutations, say 64 permutations, and the models predict which of these 64 permutation was

applied
‘.{\smmea : ’ : :2- = /’:
B - -—f
G B il i)
] B §0 =t =7 )
P =i =
= N B e
“ W=t =y
2 ./ ~R ' P - -
v
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Self-Supervision : patches

Learning to count ?

“https://arxiv.org/pdf/1708.06734.pdf

Another idea is to consider feature or visual primitives as a scalar-value attribute that can be
summed up over multiple patches and compared across different patches. Then the relationship
between patches can be defined by counting features and simple arithmetic.

an

- ox
an
- » ose
l'_ A - » oo
e o
-» oa
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Self-Supervision : Colorization

Colorization ?

“https://arxiv.org/abs/1603.08511
Colorization can be used as a powerful self-supervised task.
@ A model is trained to color a grayscale input image

@ the task is to map this image to a distribution over quantized color value outputs

e T ,
Grayscale image: L channel Concatenate (L,ab) channels
X ¢ RHxWx1 (X,Y)

[ 1—{lall —C=1

Slide: Richard Zhang

@ The model outputs colors in the Lab color space. The Lab color is designed to approximate
human vision, while, in contrast, RGB or CMYK models the color output of physical
devices.
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Self-Supervision : Contrastive Learning

Contrastive Learning

Contrastive learning aims at embedding augmented versions of the same sample close to each
other while trying to push away embeddings from different samples.

Inputimage Pnsmve sample

Encoder

o
-

Encoder  —

P

o

Negative samples Embedding

Space

il &

Objective

@ Learn a a deep neural network, that maps semantically nearby points (i.e. positive pairs)
closer together in the embedding space, while pushing apart points that are dissimilar (i.e.
negative pairs)

@ One of the major design choices in contrastive learning is how to select the positive and
negative pairs.

@ The standard approach for generating positive pairs without additional annotations is to
create multiple views of each example, for instance, splitting an image into luminance and
chrominance, applying different random crops and data augmentations, or using different
patches within a single image.

@ Negative pairs, on the other hand, can be generated by randomly sampling images and
et



Self-Supervision : Contrastive Learning

Contrastive Learning Losses

Contrastive loss (Chopra et al, 2015)?

http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

@ Given a list of input samples {x;}, each has a corresponding label y; € {1,...,L} among L
classes

@ We would like to learn a function fy(.) : X — RY that encode x; into an embedding vector
such that examples from the same class have similar embeddings and samples from
different classes have very different ones.

@ Contrastive loss takes a pair of inputs (x;, x;) and minimizes the embedding distance when
they are from the same class but maximizes the distance otherwise

Leont(xi> xj,0) = Llyi = yjllIfa(xi) — fa(x))[13 + Ly # yj] max(0, € — [|fo(xi) — fo(x;)]2)? )
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Self-Supervision : Contrastive Learning
Contrastive Learning Losses

Triplet Loss (Schroff et al, 2015) @

“https://arxiv.org/abs/1503.03832

@ Given one given anchor {x}, we select one positive sample x* (same class) and one
negative sample x~ (another different class)

@ Triplet loss learns to minimize the distance between the anchor {x} and positive x* and
maximize the distance between the anchor {x} and negative x~ at the same time

Laiptee(x X x7) = > max (0, [1F(x) — FOc)B — [1F(x) — £ +€)

xEX

@ It is crucial to select challenging x~ to improve the model.

Negative

Anchor LEARNING
Negative

Anchor
Positive Positive
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Self-Supervision : Contrastive Learning

Contrastive Learning Losses

Lifted Structured Loss (Song et al, 2015)?

“https://arxiv.org/abs/1511.06452

Use of all the pairwise edges within one training batch for better computational efficiency.
@ Given P the set of positive pairs and A the set of negative pairs
@ Dj = |f(xi) — f(xj)I2

@ The structured loss function is

1
Lstruct = _2|P| Z max(O, L"sa’)uct)z
(iJ)eP
e = Dy max (( e € Pt € D)

where L

@ The red part is used for hard negative mining and as it is not smooth, it is relaxed to
prevent to converge to a bad local optimum

W= 0y+iog( Y eole—Du)+ 3 wte- )

(i,k)EN U,HNeEN
V.
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Self-Supervision

Contrastive Learning

Contrastive Learning Losses

Oo—oO OoO—=oO Oo—oO
X1 X2 X3 X4 X5 X6
(a) Contrastive embedding
o—O0—~O0 o—O0—©O0
X1 X2 X3 X4 X5 X6
(b) Triplet embedding
X1 X2 X3 X4 X5 X6

(c) Lifted structured embedding
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Self-Supervision : Contrastive Learning

Contrastive Learning Losses

N-pair Loss (Sohn et al, 2016)?

“https://papers.nips.cc/paper/2016/file/
6b180037abbebea991d8b1232f8a8ca9-Paper . pdf
Generalizes triplet loss to include comparison with multiple negative samples

@ Given a (N + 1)—tuplet of training samples {x,x,x",.

.+, Xy_,} including one positive
and N — 1 negatives ones.

@ N—pair loss is defined as
N—1
LN-pair (X, xT, {xl_},N:_ll) = log (1 + Zexp(f(x)—rf(xi_) — f(x)Tf(x+)))
i=1
. exp(f(x) T f(x1))
exp(F(x)TF(x+)) + o0 exp(F(x) T F(x))

= —lo

@ If we only sample one negative sample per class, it is equivalent to the softmax loss for
multi-class classification.
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Self-Supervision : Contrastive Learning
InfoNCE - Noise Contrastive Estimation (van den Oord, 2018)

@ Given a context vector ¢, the positive sample should be drawn from the conditional distribution p(x|c)
@ N — 1 negative samples are drawn from the proposal distribution p(x) independant from the context.
@ We label all the samples X = {x,-},{\’:1 among which one of them is a positive sample xpos
@ The probability of detecting the positive sample correctly is :

p(xpos |€)

p(C _ pos‘x, c) _ P(Xposlc) Hi:l,,.,,N;i#pos P(Xi) _ P(Xpos) _ f(xp057 C)

Zszl [P(lec) H/’:l,,.,,N;i#j p(x,-)] Zszl p;(:?ijl-;) EJN:1 f(xj, )

with the scoring function f(x, c) o %

@ The InfoNCE loss optimizes the negative log probability of classifying the positive sample correctly:

Linfonce = —E [ log f(x—’c))]

Ex’ex e

@ Connection with mutual information optimization

I(x;c) = Z p(x, c) log _plx,€) Z p(x, <) log p(xc)

p()p(c) p(x)

X,C X,C
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Self-Supervision : Contrastive Learning

Common setup (Wang et al, 2020)
© Let pyata(.) the data distribution over R” and pyos(.,.) the distribution of
positive pairs over R"*"
@ These two distributions should satisfy

Symmetry : Vx,x, Pros (X, xt) = ppos(x+,x)
Matching marginal : VX, [ Ppos(X, X7)dx" = paaca(x)

iy, | 108 exp((x) " £(x*)/7) ]
(%) ~Pposs ;111 X paata exp(F(x)TF(x+) /) + 2M, exp(F(x)TF(x;)/7)

M
- [ — £ T F(x") /74 log (3 exp(F() T £(x;) /T))] ; Assuming infnite negatives
i=1

Leontrastive = E

~E
(3% %) ~Ppos

= LBy T H) + B, (108 e[ D e300/

(Wang et al, 2020) Understanding Contrastive Representation Learning through
Alignment and Uniformity on the Hyperspherel

Yhttps://arxiv.org/abs/2005.10242
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Self-Supervision : Contrastive Learning

@ Two key properties related to the contrastive loss :
> Alignement : Similar samples have similar features
» Uniformity: Preserve maximal information

@ The contrastive loss optimizes these properties.
@ They have a positive effects on the downstream tasks.

)

[
T

-
TR

y
Alignment: Similar samples have similar features.
(Figure inspired by Tian etal. (2019).)

,"'\
( m

,M.F/

Uniformity: Preserve maximal information.
Figure 1; Wustration of aligament and wniformity of fea-
ions on the output unit STL-10

(Coates et al., 2011) images are used for demonstration.
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Self-Supervision : Contrastive Learning

Key ingredients

@ Heavy Data Augmentation : introduces the non-essential variations into
examples without modifying semantic meanings and thus encourages the
model to learn the essential part of the representation.

o Large Batch Size : especially when it relies on in-batch negatives to enable
the loss function can cover a diverse enough collection of negative samples.

@ Hard negative Mining : Hard negative samples should have different labels
from the anchor sample, but have embedding features very close to the
anchor embedding

S
-+ +

8 z ~ Pr false negative

sample

Top-1 Accuracy

Biased
—=— Unbiased

3062 126 254 510
Negative Sample Size (N)
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Self-Supervision : Contrastive Learning

SimCLR (Chen et al, 2020)% : Learns representations for visual inputs by
maximizing agreement between differently augmented views of the same sample
via a contrastive loss in the latent space

o
]
]
Maximize agreement
zi i
a0] o)
hi +— Representation —» h;
o
1)
o

Bhttps://arxiv.org/abs/2002.05709

Randomly sample a minibatch of N samples.

Each sample is applied with two different data
augmentations operations (same family) : 2V data points

Given one positive pair, other 2(N — 1) points are negative
samples, the representation is produced by a base encoder
f(.) 3 }

hi = (%), h; = (%)
The contrastive learning loss is defined using cosine
similarity sim(., .)

zi = g(hi), z =g(h))
in exp(sim(zi, zj)/T)
Leier = —log = -
Zk:l T gt exp(sim(z;, zk)/T)

The representation h is used for downstream tasks (it
requires a different post-processing head)
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Self-Supervision : Contrastive Learning

And many other approaches

@ Barlow Twins (Zbontar et al. 2021)? feeds two distorted versions of samples into the same
network to extract features and learns to make the cross-correlation matrix between these

two groups of output features close to the identity.

Distorted Represen-
images  Net  tations
Empirical Target

Cross-corr. cross-corr.

iealure
dimension

*backprop.
— 2 2
Ler = (1 = C,‘,') +A C'J
i i A
—— ———
invariance term redundancy reduction term

Z z, 2
\/Zb(zb,i \/Eb(zf,j)z

Cjj cosine similarity between network output vector dimension at index 7, j and batch index b.

where Cjj =

°https://arxiv.org/abs/2103.03230
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Self-Supervision

And many other approaches

@ BYOL (Bootstrap Your Own Latent; Grill, et al 2020)? which not use negative samples. It relies on two
neural networks, referred to as online and target networks that interact and learn from each other. The
target network (parameterized by £ ) has the same architecture as the online one (parameterized by 6 ),
but with polyak averaged weights & < 7€ + (1 — 7)60

BYOL
‘69

input
image

Contrastive Learning

is MSE between L2-normalized prediction Gg(z) and 2’

Symmetric loss stOL by switching views and final loss LSYOL + ﬁsYOL

The goal is to learn a representation y that can be used in downstream tasks.

The online network parameterized by 6 contains: an encoder fy, a projector gg and a predictor qg.

view representation projection prediction
fo — 9o — a0
v Y z q0(2) }\ online
s \
- — \
loss |
'
v Yy Z sg(2') i" target
e — 3 _— sg

“https://arxiv.org/abs/2006.07733

y
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Self-Supervision : Contrastive Learning

And many other approaches

@ BYOL (Bootstrap Your Own Latent; Grill, et al 2020) : not use negative samples. It relies on two
neural networks, referred to as online and target networks that interact and learn from each other. The
target network

@ BYOL generally performs no better than random when batch normalization is removed.?

@ Interpretation : presence of batch normalization implicitly causes a form of contrastive learning : using
negative samples is important for avoiding model collapse.

https://generallyintelligent.ai/blog/
2020-08-24-understanding-self-supervised-contrastive-learning/

Céline Hudelot Challenging deep learning models in real-world applicat June 30, 2022 112 /149


https://generallyintelligent.ai/blog/2020-08-24-understanding-self-supervised-contrastive-learning/
https://generallyintelligent.ai/blog/2020-08-24-understanding-self-supervised-contrastive-learning/

Self-Supervision : Contrastive Learning

And many other approaches

@ Some approaches have been proposed to improve the computing embeddings for a large number of
negative samples : with memory bank (Instance contrastive learning (Wu et al, 2018)?), with a dynamic

dictionary look-up (Momentum Contrast (MoCo; He et al, 2019)°)
@ Evaluation : Transfer learning of a lot of downstream tasks.

@ Some frameworks : A library for state-of-the-art self-supervised learning from images
https://vissl.ai/

°https://arxiv.org/abs/1805.01978
bnttps://arxiv.org/abs/1911.05722
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Overview

© Few shot learning
@ Motivations
General setting
Episodic Training
Transfer learning approaches
Transductive Few Shot Learning
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Motivations

(Lake et al, 2015) Human-level concept learning through probabilistic program induction'®

People learning new concepts can often generalize successfully from just a single example, yet
machine learning algorithms typically require tens or hundreds of examples to perform with

similar accuracy
A ) @ i) B

HERE

ii) l v)

Fig. 1. People can learn rich concepts from limited data. (A and B) A single example of a new concept (red boxes) can be enough information to support
the () classification of new examples, (i) generation of new examples, (ii) parsing an object into parts and relations (parts segmented by color), and (iv)
generation of new concepts from related concepts. [Image credit for (A), iv. bottom: With permission from Glenn Roberts and Motorcycle Mojo Magazine]

Whttps://www.cs.cmu.edu/~rsalakhu/papers/LakeEtA12015Science . pdf
Céline Hudelot
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Motivations

Few-shot learning

Equip the learner with ability to rapidly learn new concept with few training
samples.
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Motivations

Few-shot learning

Equip the learner with ability to rapidly learn new concept with few training
samples.

Elephant shrew.
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Motivations

Few-shot learning

Equip the learner with ability to rapidly learn new concept with few training
samples.

Elephant shrew rediscovered in
Africa after 50 years

By Helen Brig
BBC Environment correspondent

©18 August 2020

in Africa y y.
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Motivations

Few-shot learning

Equip the learner with ability to rapidly learn new concept with few training
samples.

Elephant Shrew
Few training samples
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Motivations

“Few-Shot Learning”, why do we need it? Catering

some applications ...

Brand Logos Smart appliances

new brands can be
added on the fiy

with just one o
two examples
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Few shot learning : general setting

A few-shot classification task

Each classification task consists of a training set, also called support set, and a
testing set, also called query set. A N—way K—shot classification task has :
@ N: number of classes

@ K: number of examples per class (small)

5-way (classes) 1-shot (example per class) Task

Pangolin

Wombat Galago Elephant Shrew

Test set (query set)
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Few shot learning : general setting

Few shot classification usually involves two stage :

@ a training phase where we have access to a meta training set (or base set)
with a large number of classes.

@ a testing phase where we evaluate the learner on a set of tasks with novel
classes not seen during training.

Training Phase

Testing Phase

Gold fish

Crib

Crate Dining Table Train

B

v Forklift

- - [ &5 g Query Set

Cornet
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Meta-learning and Episodic Training
Principle

Match the training environment to the testing environment and learn to avoid
overfitting. The learner in trained on a number of sampled tasks created from the
meta training set.

Meta-learner : trained over a variety of learning tasks (represented by a dataset
D) and optimized for the best performance on a distribution of tasks, including
potentially unseen tasks.

0* = arg m@in Epp)[Lo(D)]

Training Phase

N-way K-shot
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Meta-learning and Episodic Training

Classical Learning
@ A dataset D = {x;, y;}, pairs of feature vectors and labels with each label belongs to a
known label set L£'2bel,

@ A classifier fy with parameter 6 outputs a probability of a data point belonging to the class
y given the feature vector x : Py(y|x)

@ The optimal parameters should maximize the probability of true labels across multiple
training batches B C D

0" = argmaxyE ,yep[Po(y[x)]

0" = arg maxgEBCp[ Z Pg (y|X)] ; trained with mini-batches.
(x.y)eB
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Meta-learning and Episodic Training

Few shot Learning

“Fake" datasets with a subset of labels to avoid exposing all the labels to the model and modify
the optimization procedure accordingly to encourage fast learning:

@ Sample a subset of labels L C £'2b¢!

@ Sample a support set S- C D and a training batch BL C D that only contain data points
with labels belonging to L

@ Do several sampling : each pair of sampled dataset (SL, BL) will be consider as one data
point

_ L
G_argm;xEch[EsLCnBch[ Z Po(x,y,S™)]|
(x,y)eBt
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Meta-learning and Episodic Training

Common approaches

Depends on how Py(y|x) is modeled.

@ Metric-based : The predicted probability over a set of known labels y is a weighted sum of
labels of support set samples.

@ Model-based : No assumption on the form of Py(y|x) : model designed specifically for fast
learning.

@ Optimization-based : Adjust gradient-based optimization algorithm so that the model can
be good at learning with a few examples.
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Metric-based approches for FSL

Principle

The predicted probability over a set of known labels y is a weighted sum of labels of support set
samples. The weight is generated by a kernel function kg , measuring the similarity between two
data samples.

Polylx,S) = D ko(x,xi)yi
(xi,yi)ES
Principle : learn embedding vectors of input data explicitly and use them to design proper kernel
functions.

v
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Metric-based approches for FSL

Convolutional Siamese Neural Network (Koch et al, 2015) @

“http://www.cs.toronto.edu/~rsalakhu/papers/oneshotl.pdf

(@)
LAl ©
input 1 embed 1
probability
@ ofinput 1 &2 are
e in th 1
E CNN O in the same class
input 2 distance
&
embed 2

Given a support set S and a test image X, the final predicted class is:

&s(x) = c(arg eSS P(x,x;))
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Metric-based approches for FSL
Matching Network (Vinyals et al , 2015) ?

“https://proceedings.neurips.cc/paper/2016/file/
90e1357833654983612fb05e3ec9148c-Paper . pdf

Goal : learn a classifier cs for any given small support set S = {x;, y,-}f-‘;l. The classifier output is a sum of
labels of support samples weighted by attention kernel a(x, x;) proportional to the similarity between x and x;

k

es(x) = P(y[x, ) = ) _ alx,xi)yi, where S = {(x;, %)}y

i=1

a(x, x;) = exp(cos(f(x), g(xi))

Z;;l exp(cos(f(x), g(x;))

v
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Metric-based approches for FSL

Relation Network (Sung et al , 2018) ?

“https://openaccess.thecvf.com/content_cvpr_2018/papers_backup/Sung_
Learning_to_Compare_CVPR_2018_paper.pdf

Similar to siamese network but :

@ The relationship is not captured by a simple distance in the feature space, but predicted by
a CNN classifier gy

@ The objective function is MSE loss instead of cross-entropy, because conceptually RN

focuses more on predicting relation scores which is more like regression, rather than binary
classification.

‘& embedding module elatonmodle
== Featro maps concatenaton

\
%", Relation One-hot

.
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Metric-based approches for FSL
Prototycal Network (Snell et al , 2017) °

“hhttps://proceedings.neurips.cc/paper/2017/file/
cb8da6767461£2812ae4290eac7cbc42-Paper . pdf

@ An embedding function fy is used to encode each input into a M—dimensional feature vector.

@ A prototype feature vector is defined for every class as the mean vector of the embedded support data

samples in this class.
1
Ve = fg X
TS Z )

(xj,¥;)€Sc

@ The distribution over classes for a given test input x is a softmax over the inverse of distances between
the test data embedding and prototype vectors.

exp(—dy (f(x), ve))

P(y = c|x) = softmax(—d,(fo(x),vc)) = Z on(—do () )
rec &P(=dy(fo(x), ver

@ The loss function is the negative log-likelihood: £(0) = — log Pg(y = c|x)

4
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Model-based meta-learning for FSL

Principle
@ Model designed specifically for fast learning — a model that updates its parameters rapidly
with a few training steps.
@ This rapid parameter update can be achieved by its internal architecture or controlled by
another meta-learner model.

Memory-augmented Neural Networks (Santoro el al, 2016)?
Meta Networks (Munkhdalai el al, 2017)®

“http://proceedings.mlr.press/v48/santorol6.pdf
bnhttps://arxiv.org/abs/1703.00837

Meta Networks

Fast parameterization

Memory-augmented Neural Networks v

Meta learner:

—> Slow weights § | Fastweights g+ ey memory
R={riHS,
Output

Faslpﬂrama\emau
Man nfo M=
”
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Optimization-based meta-learning for FSL

Model-Agnostic Meta-Learning (Finn el al, 2017)!7 : find a robust initial set of parameters that

makes gradient descent work across episodes

Principle

@ Our model : fy with parameters 6.

@ Given a task 7; and its associated dataset (D(') Egt), we update the

train’?
model parameters by one or more gradient descent steps :

0] =0 —aveL(f)

with £ the loss computed using the mini data batch with id (0)

@ We sample a new data batch with id (1) for updating the
meta-objective

* < (1) _ q (1)
0" = arg meln E L3 (f‘g,{) = arg mem E L (fe—aV9££f’i)(fg))
Ti~ep(7) Tieop(7)

6« 06— ng E ﬁ 9 anL( )(fe))

https://arxiv.org/abs/1703.03400
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)!8

Algorithm 1 Model-Agnostic Meta-Learning
Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters

Model-Agnostic Meta-Learning
Task 3

1: randomly initialize 6 63

2: while not done do El

3:  Sample batch of tasks 7; ~ p(T) iner loop:

4 forall T; do outerloop 0 adaptation

5: Evaluate VL7, (fg) with respect to K examples meta-initialization ey 03

6: Compute adapted parameters with gradient de- Task 2
x

scent: 0] = 6 — aVoLr (fy) o;

7 end for Note: the meta-update is using different set of data. Task1

8:  Update 0 < 0 — Vo 37 ) L7.(for)

9: end while

Two loop structure

@ outer loop : meta initialization for the networks parameters to a setting that enables fast
adaptation to new tasks.

@ inner loop : adapts these parameters for each task separately

Bhttps://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)!°

@ s this inner/outer loop necessary?

Ohttps://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)!°
@ s this inner/outer loop necessary?

@ How much of the effectiveness of such methods is contingent on the inner/outer loop
structure?

Ohttps://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)!°

@ s this inner/outer loop necessary?
@ How much of the effectiveness of such methods is contingent on the inner/outer loop

structure?

@ Which of the two loop is more important ?

Ohttps://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)!°
@ s this inner/outer loop necessary?
@ How much of the effectiveness of such methods is contingent on the inner/outer loop
structure?
@ Which of the two loop is more important ?
> Rapid learning : the representations change dramatically for each task and the inner
loop plays an important role.

Ohttps://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)!°

@ s this inner/outer loop necessary?

@ How much of the effectiveness of such methods is contingent on the inner/outer loop

structure?

@ Which of the two loop is more important ?

> Rapid learning : the representations change dramatically for each task and the inner

loop plays an important role.

> Feature reuse : the outer loop gives rise to general purpose representations that

require little adaption for each task.

Rapid Learning Feature Reuse
-,i Task 1
\ % Task 1 \f‘ I
I b
/ 4
O Task 2 p
Poeea8 2 | Tagk 300
Task 3, B &
&E T

Ohttps://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)%°

Similarity of the representation before and after adaptation

CKA Similarity Before and After

CCA Similarity Before and After
i Inner Loop

Inner Loop

- > > -
* - -
- =

CKA Similarity

CCA Similarity
el

Comvz  Com3  Cowd  Head
Layer

Comi  Cow2  Conva  Convd  Head onvl
Layer

@ Representation remain largely the same expect for the final classification layer.

@ Importance of having a good initialization of the representations for fast
adaptation : general-purpose representation.

Onttps://openreview.net/pdf?id=rkgMkCEtPB
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Meta-learning for FSL : a small reacp

Meta-training stage Meta-testing stage

Sampled N classes

Novel support set S, -
(Novel class data X,

Base class data X,
any)

Base query set Q;, conditioned model
Support set conditioned model 1 (-[S)
MatchingNet ProtoNet

; ] Class,
| S‘.\ | sHieer
i Cosine Euclidean

Figure 2: Meta-learning few-shot classification algorithms. The meta-learning classifier M(-|S)
is conditioned on the support set S. (Top) In the meta-train stage, the support set S;, and the query
set Q are first sampled from random N classes, and then train the parameters in M(.|S;) to
minimize the N-way prediction 10ss LN—way- In the meta-testing stage, the adapted classifier
M(.|S,) can predict novel classes with the support set in the novel classes S,,. (Botton) The design

of M(-|S) in different meta-learning algorithms.

Source : (Chen et al, 2019) A closer look at few-shot classification?!

2lhttps://arxiv.org/pdf/1904.04232. pdf
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Transfer learning approaches

(Chen et al, 2019) A closer look at few-shot classification®?
Principle

Follows the standard transfer learning procedure of network pre-training and fine-tuning

@ Training stage : train a feature extractor fp and the classifier C(.|W}) from scratch by minimizing a
standard CE classification loss Ly cq using the training examples in the base classes.

@ Fine-tuning stage : adapt the model to recognize novel classes in the fine-tuning stage : the pre-trained

network parameters 6 of fy are fixed and we train a new classifier C(.|W,) by minimizing Lyreq using
the support set with the novel classes X,.

Training stage Fine-tuning stage

Base class data Novel class data Fixed .
(Many) Feature (Few) @
77 i

Feature
extractor Classifier extractor Classifier

\‘”f

X, (W,
) Classifier C(-|W)

Baseline / Basellne++

‘ 8 Cosine |jmmmd
, Li . -
w— R+ Z

2]
We R™® T3 oW fu(x) wiows. w] € R‘[”

2https://arxiv.org/pdf/1904.04232. pdf
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Transfer learning approaches

(Tian et al, 2020) Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? =

Principle
@ Training stage : train a feature extractor fy on the whole meta training set without episodic training

@ Test-time : For each sampled task, we first extract the features of the support and query examples
using the pre-trained and frozen feature extractor, then we train a linear classifier on the L, normalized
features of the support set and apply on the features of the test set.

Training Phase Testing Phase

w . : Feature Extraction

|
a8
|
o
)

2https://arxiv.org/pdf/2003.11539.pdf
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Transfer learning approaches

(Tian et al, 2020) Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? %

Principle

@ Training stage : train a feature extractor fy on the whole meta training set without episodic training

@ Test-time : For each sampled task, we first extract the features of the support and query examples
using the pre-trained and frozen feature extractor, then we train a linear classifier on the L, normalized
features of the support set and apply on the features of the test set.

minilmageNet 5-way 5-shot tieredimageNet 5-way 5-shot

AN et Prooter  NeaOpiier  Tanetar WAL Resoonet Prooter Vetaogtel  Tan el

2https://arxiv.org/pdf/2003.11539.pdf
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Transductive Few Shot Learning

Principle

@ The model has access to all the unlabeled data that we want to classify, and it only needs
to produce labels for those samples (as opposed to every possible input sample).

@ Transduction is used as a form of semi-supervised learning, where we have some unlabeled
samples from which the model can obtain extra information about the data distribution to
make better predictions.

@ In few-shot learning, transductive algorithms make use of all the queries in an episode
instead of treating them individually.
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Transductive Few Shot Learning

(Liu et al, 2019) Learning to propagate labels : transductive propagation network for few-shot learning %

( Task 1 ) | Task 2 ] Test Task )

T T T
[ Transductive Propagation Network ]

L4 & <
e - —— kel il Akl ] Fem—m—————— L]
1 | 1 | 1 1
1 | 1 | 1 1
1 | 1 1 1 1
1 1 | 1 1 1
[} | 1 \ 1 1
1 | 1 | 1 1
1 | 1 1 1 1
1 1 1 1
AR A - [ g ! LS S -

Meta-train H®A iabeled Meta-test
O unlabeled

Figure 1: A conceptual illustration of our transductive meta-learning framework, where lines between nodes
represent graph connections and their colors represent the potential direction of label propagation. The neigh-
borhood graph is episodic-wisely trained for transductive inference.

https://arxiv.org/pdf/1805.10002. pdf
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Transductive Few Shot Learning

(Liu et al, 2019) Learning to propagate labels : transductive propagation network
for few-shot learning 2°

Support T o auen! @
m; { — @ Label|O
@ | ,..w - ep (- gz L)) .\,/,
D> H ) Qi
[:> ::I::> .8.
o)  — .o.::> —=>
e} . ol
Q) 1
e L e 1:>
Feature Embedding Graph C “Tobel Pdpagation Loss

Figure 2: The overall framework of our algorithm in which the manifold structure of the entire query set helps to
learn better decision boundary. The proposed algorithm is composed of four components: feature embedding,
graph construction, label propagation, and loss generation.

@ Graph construction : Gaussian similarity function with o to select carefully for the best label propagation

d(Xivxj))

Wi = exp ( Ty

@ Convolutional network to produce an example-wise length-scale parameter

Wi = exp ( - ld(f“’(x")’ fw(Xj)))

2 agj aj

@ | abel propagation with the normalized graph Laplacians (I — aS)™'Y
2https://arxiv.org/pdf/1805.10002. pdf
e 502023 14314
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Benchmarks

Omniglot (Lake et al., 2015)

Mini-Imagenet (Vinyals et al., 2016)
oy .

[ D= =

- I
e N

#
oA
B

¢ 100 classes from Imagenet
* 64 training classes

* 16 validation classes

* 20 test classes

* 600 examples per class

* 1623 handwritten characters
« 50 alphabets
* 20 examples per character
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Benchmarks

Large scale experiments

(Triantafillou et al, 2019)? Meta-dataset: a dataset of datasets for learning to
learn from few examples

AEES BRER TR | M
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SDENE QAR £0O8E EEe® ERLE
DA S B0 SSE R NE EFEe

(a) ImageNet (b) Omniglot (c) Aircraft (d) Birds (e) DTD

EEHD SEQN QEEE BEEO SRS
ESNE DED SHEE Ear] mass
EESE o+ Nl IMEE S1)E s8N
EEESN PEHNE EENE B EERA

(f) Quick Draw (g) Fungi (h) VGG Flower (i) Traffic Signs (j) MSCOCO

“https://arxiv.org/abs/1903.03096
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Benchmarks

Large scale experiments

(Triantafillou et al, 2019) Meta-dataset: a dataset of datasets for learning to learn
from few examples?

Many diverse image datasets
Hierarchically aware

Heterogeneous episodes : different number of classes, different numbers of
support examples per class

Test generalization across domains : traffic signs and MSCOCO never seen
Optimization over a wide range of hyperparameters to allow to initialize from
pre-trained features.

Pre-training : on ImageNet only or train on all datasets (except traffic signs
and MSCOCO)

https://github.com/google-research/meta-dataset
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Some open issues in Few shot learning
Distribution shift between the query and the support set

Image space Forward pass Features space
H B = Backbone Non-overlapping supports and queries

£ *e

@ °
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support @@ quary

) @
Features space Forward pass Output space
............. SO 1.kt Lo A e
al Transport Prototypical Network
. s ¥ .o
A, ® A
A Ta »“’,‘«,
= frampoisi®g) |ransponec @ g aue
Transport = TSRS *. T “0 ry
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Fig. 3. Overview of Transported Prototypes. (1) A support set and a query set are fed
to a trained backbone that embeds images into a feature space. (2) Due to the shift
between distributions, support and query instances are embedded in non-overlapping
areas. (3) We compute the Optimal Transport from support instances to query in-
stances to build the transported support set. Note that we represent the transport
plan only for one instance per class to preserve clarity in the schema. (4) Provided
with the transported support, we apply the Prototypical Network [28] i.e., L? similar-
ity between transported support and query instances.

(Bennequin et al, 2021)
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Some open issues in Few shot

Open set few shot recognition

Few—shot learning

— set recognition

/ « ) e
. . ‘éoo]

- _ o e
- .
LR SR EUN
Few st open-satrecomiion
® Labeled sample M Query sample ¥¥ Detected unseen class sample

* Misjudged unscen class sample - - Decision boundary
Figure 1. A visualization of the few-shot open-set recognition task.
Few-shot learning methods fail to recognize unseen class sam-
ples, and open-set recognition methods require a large amount of
datasets. Few-shot open-set recognition is a generalized few-shot
learning task, where the model has to identify unseen class queries
while classifying seen class queries correctly.

learning

class

somle ™
Pﬂ

prototype:

T(P")

Figure 3. A visualization of our method. Each colored box rep-
resents a prototype or a query feature. SnaTCHer replaces a pre-
dicted class prototype to the query sample in the set of prototypes
(P* and P"), then it measures differences between the proto-
type set and the replaced set after the feature transformation T'(-).
SnaTCHer rejects samples by the distance from the transformed
prototype set T'(P). Our method alters estimating feature distribu-
tion of unseen class samples for the detection to the relative feature
transformation problem.

(Jeong et al, 2021) Few-shot Open-set Recognition by Transformation Consistency
27 (Liu et al, 2020) Few-Shot Open-Set Recognition using Meta-Learning 2%

2Thttps://arxiv.org/pdf/2103.015637.pdf

28https://openaccess.thecvf.com/content_CVPR_202O/papers/Liu_Few—Shot_Dpen—Set_
Recognition_Using_Meta-Learning_CVPR_2020_paper.pdf
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Some open issues in Few shot learning

Distribution shift between the query and the support set

Image space Forward pass Features space

Backbone'

Queries  Support

Non-overlapping supports and queries.

*e

Support €O Qury

Fostures space Forward pass Output space
Optimal Transport Prototypical Network
>y .
o o° S )
o

i, ® [N
Tanspot = Yt-\waﬂﬁ'. Inmwnm‘. Gy

®) @)

Fig. 3. Overview of Transported Prototypes. (1) A support set and a query set are fed
to a trained backbone that embeds i images into a feature space. (2) Due to the shlft
between distributions, support and query are embedded in non-o

areas. (3) We compute the Optimal Transport from support instances to query in-
stances to build the transported support set. Note that we represent the transport
plan only for one instance per class to preserve clarity in the schema. (4) Provided
with the transported support, we apply the Prototypical Network [28] 4.e., L? similar-
ity between transported support and query instances.

(Bennequin et al, 2021)?° Bridging Few-Shot Learning and Adaptation: New
Challenges of Support-Query Shift

Phttps://arxiv.org/pdf/2105.11804.pdf
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Conclusion

@ A short overview of the main approaches for few shot learning

@ To practice : EasyFSL :
https://github.com/sicara/easy-few-shot-learning
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