
Challenging deep learning models in real-world
applications

Learning with few or no labeled data

Céline Hudelot

June 30, 2022

Céline Hudelot Challenging deep learning models in real-world applications June 30, 2022 1 / 149



Sources and references

Slides from Yassine Ouali, PhD student, MICS Laboratory, Label efficient
Deep Learning.
ICCV Tutorial 2019 : Learning with Limited Labels1

CVPR 2021 Tutorial : Data- and Label-Efficient Learning in An Imperfect
World2

Deep Learning Course, CentraleSupélec, Hervé Le Borgne - Frugality in AI.
Lilian Weng Blog : https://lilianweng.github.io/

1https://sites.google.com/view/learning-with-limited-data/schedule
2https://vita-group.github.io/cvpr_2021_data_efficient_tutorial.html
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Data is fueling deep learning !

Training accurate deep models usually requires lots of well-labeled data

Source : https://paperswithcode.com/sota/
image-classification-on-imagenet

(Yu et al, 2022) CoCa: Contrastive Captioners are Image-Text Foundation Models : an
encoder-decoder architecture trained with both contrastive loss and captioning (generative) loss.
It uses a pre-trained image-transformer (VIT) on ImageNet-21K 3(14,197,122 images, divided
into 21,841 classes).

3https://arxiv.org/pdf/2104.10972.pdf
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Training accurate deep models

Usually requires lot of well-labeled data
Data collection and annotation is expensive, tedious, time consuming.

I e.g. Average time taken to label a single image in the Cityscapes dataset is 90
minutes.
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Training accurate deep models

Usually requires lots of well-labeled data
Data collection and annotation is expensive, tedious, time consuming.

I e.g. Average time taken to label a single image in the Cityscapes dataset is 90
minutes.

I Often involves crowdsourcinga

Source : (Drutsa et al) Practice of Efficient Data Collection via Crowdsourcing at Large-Scaleb

a(Kovashka et al, 2016) Crowdsourcing in Computer Vision
bhttps://arxiv.org/abs/1912.04444 and

https://research.yandex.com/tutorials/crowd/kdd-2019
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Training accurate deep models

Usually requires lots of well-labeled data
Data collection and annotation is expensive, tedious, time consuming.
Crowd-sourcing may be infeasible for proprietary data.

For some tasks, data may not be available at all (long tail distribution)
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Training accurate deep models

Usually requires lots of well-labeled data
Data collection and annotation is expensive, tedious, time consuming
Crowd-sourcing may be infeasible for proprietary data.
For some tasks, data may not be available at all (long tail distribution)

Assuming the availability of large well-labeled dataset is not a realist
assumption
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Availability of labeled data
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Availability of labeled data

Large-Scale Long-Tailed Recognition in an Open World : Existing Computer Vision Setting v.s.
Real-World Scenario

Source : https://bair.berkeley.edu/blog/2019/05/13/oltr/
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Availability of labeled data
Problem of bias in dataset

See (Torralba et al, 2011) Unbiased Look at Dataset Bias4

4https://people.csail.mit.edu/torralba/publications/datasets_cvpr11.pdf
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How to learn with limited labeled data ?

Several strategies
Data augmentation.

I Leveraging ad-hoc input transformations that preserve corresponding output labels
I By using generative models

By learning a pre-trained representation and transfer learning.
I Supervised : but we need annotated data for the source domain.
I Unsupervised or self-supervised : need to define a good pre-text task.

Weak (or noisy) supervision.
I Leveraging web-based images or image captioning.
I Annotation for other tasks : classification labels used for segmentation.

Alternatives to supervised learning or specific learning setting.
I Semi-supervised learning, active learning, unsupervised learning
I Few shot learning

Using ad-hoc external data
I Data from others modalities
I Data from a different domain.
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Data Augmentation

Main assumption : more information can be extracted from the original dataset
through augmentations.

Definition
Data augmentation is a process of artificially increasing the amount of data by
generating new data points from existing data.

Best method to improve generalization = learn from more data
I Allow a better sampling of the unknown data distribution.

Answer (partially) to the practical limitation of data availability.

A very common strategy for image classification:
I The label must be robust to transformations of the input data x .
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Data Augmentation

Data augmentation plays a critical role in deep learning:
Increases the diversity of data, inducing a regularization effect and a better generalization.
Consistency, can be used to extract training signal from unlabeled data.
Instance discrimination, can be used for contrastive pre-training.
Self-supervision, can be used to create pre-text tasks.
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Data Augmentation

A common practice for all types of data

Source : https://github.com/AgaMiko/data-augmentation-review
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Data Augmentation

A large catalog of approaches
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Data Augmentation : Image Mixing

Principle
Blending two input images and their corresponding labels according to the following equations :

x̃ = B � xi + (I − B)� xj

ỹ = λyi + (1− λ)yj

with xi , xj original input images, yi , yj respective one-hot label encodings, λ a mixing ratio, B a
mixing mask matrix (for both pixel-wise and patch-wise mixing) and I the identity matrix of the
same dimensionality of B.

Approaches are built around these equations and mainly differ by :
the λ selection method
Construction of matrix B.
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Data Augmentation : Image Mixing
Core approach : mixup
(Zhang et al, ICLR 18) mixup: BEYOND EMPIRICAL RISK MINIMIZATIONa

Generates a weighted combinations of random image pairs from the training data.
Given two images xi , xj and their ground truth labels yi , yj , a synthetic training example
(x̂ , ŷ) is generated as:

x̂ = λxi + (1− λ) xj

ŷ = λyi + (1− λ) yj

ahttps://arxiv.org/pdf/1710.09412v2.pdf
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Data Augmentation : Image Mixing
Core approach : mixup - From Empiral risk minimization to mixup
Given a training set D = {(xi , yi )}n

i=1 where (xi , yi ) ∼ P for all i = 1, ..., n. We may approximate P by :
Empirical distribution (Empirical Risk Minimization)

Pδ(x , y) =
1
n

n∑
i=1

δ(x = xi , y = yi )

with δ(x = xi , y = yi ) a dirac centered at (xi , yi )
Vicinal distribution (Vicinal Risk Minimization) (Chapelle, 2020)

Pν(x̃ , ỹ) =
1
n

n∑
i=1

ν(x̃ , ỹ |xi , yi )

with ν a vicinity distribution, i.e. probability of finding the target pair (x̃ , ỹ) in the vicinity of (xi , yi )
In practice, augmentation with a Gaussian Noise ν(x̃ , ỹ) = N (x̃ − x , σ2)δ(ỹ = y) and empirical vicinal
risk.
mixup proposes a generic vicinal distribution

µ(x̃ , ỹ |xi , yi ) =
1
n

n∑
i=j

Eλ[δ(x̃ = λ.xi + (1− λ).xj , ỹ = λ.yi + (1− λ).yj )]
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Data Augmentation : Image Mixing

Core approach : mixup - From Empiral risk minimization to mixup
It introduces globally linear behavior in between training examples
(generalization).
Mixup trained models are relatively robust to input perturbations/corruptions
and at same time are calibrated better than their non-mixup counterparts.
Use in many works.
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Data Augmentation : Image Mixing
A lot of other approaches

Source : (Lewy et al, 22) An overview of mixing augmentation methods and augmentation
strategies5

5https://arxiv.org/pdf/2107.09887.pdf
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Data Augmentation : General image augmentation for DL
Recently, great advances in general purpose image augmentation for increasing quantity and
diversity of training data.

AutoAugment (Cubuk et al, 2019)a , Fast AutoAugment (Lim et al, 2019)b

ahttps://arxiv.org/abs/1805.09501
bhttps://arxiv.org/abs/1905.00397

Formulate the problem of finding the best augmentation policy as a discrete search problem.

O : set of augmentation operations O : X → X on the input space X
Each operation O has two parameters : calling probability p and magnitude λ (variability of the
operation).
S set of sub-policies τ , with τ that consists of Nτ consecutive operations applied sequentially to the
image with probability p.
Final policy T : collection of NT sub policies and T (D) resulting set of augmented images of dataset
D.

Céline Hudelot Challenging deep learning models in real-world applications June 30, 2022 25 / 149

https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1905.00397


Data Augmentation : General image augmentation for DL
Fast AutoAugment (Lim et al, 2019)6 : Search by density matching and bayesian optimisation

Search strategy
Let D a probability distribution on X × Y. We assume dataset D is sampled from this
distribution.
For a classification modelM(.|θ) : X → Y, expected accuracy : R(θ|D) and expected loss
L(θ|D)
Goal: for a given pair (Dtrain,Dvalid), improve the generalization ability by searching
augmentation policies that match the density of Dtrain with density of augmented Dvalid :
search by density matching
It is evaluated by measuring how much one dataset follows the pattern of the other by
using the model predictions on both datasets.
Objective used :

T∗ = argmaxTR(θ∗|T (DA))
where θ∗ is trained on DM with a splittting of Dtrain on DM and DA

Efficient strategy with a k−fold stratified shuffling : we train parameters on DM , evaluate
them on DA and we explore B candidate policies via Bayesian optimization (sample a
sequence of sub-policies and tune their parameters to minimize the expected loss L(θ||.)
(exploration - exploitation).
Select top−N policies for each fold and merge them
At the end, we augment the whole dataset Dtrain and retrain the model parameter.

6https://arxiv.org/abs/1905.00397Céline Hudelot Challenging deep learning models in real-world applications June 30, 2022 26 / 149
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Data Augmentation : General image augmentation for DL
Fast AutoAugment (Lim et al, 2019) : Search by density matching and bayesian optimisation
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Data Augmentation : GANs for data augmentation
(Shrivastava el al, 2017)7 Learning from Simulated and Unsupervised Images through Adversarial
Training (Best Paper CVPR 2017)

Simulated+Unsupervised (S+U) learning
Goal : improve the realism of synthetic images from a simulator using unlabeled real data while
preserving the annotation.

7https://arxiv.org/pdf/1612.07828.pdf
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Data Augmentation : GANs for data augmentation

(Shrivastava el al, 2017) Learning from Simulated and Unsupervised Images through Adversarial
Training (Best Paper CVPR 2017)

Simulated+Unsupervised (S+U) learning

Refiner network to add realism to synthetic images
Discriminator classifies an image as real or refined
Self-regularization term minimizes the image difference between the synthetic and the
refined images
The refiner is trained using a combination of an adversarial loss and a self-regularization loss
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Data Augmentation : GANs for data augmentation

(Shrivastava el al, 2017) Learning from Simulated and Unsupervised Images through Adversarial
Training (Best Paper CVPR 2017)
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Data Augmentation : GANs for data augmentation
(Choi et al, 2020) StarGAN v2: Diverse Image Synthesis for Multiple Domains8

8https://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_
Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf
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Data Augmentation : GANs for data augmentation
Generated data : sufficient ?
(Besnier et al, ICASSP, 2020) THIS DATASET DOES NOT EXIST: TRAINING
MODELS FROM GENERATED IMAGESa

Hard Sample Mining (HSM) with latent code optimization : when training from generated images, we
can use the generator to produce more informative images rather than drawing mere samples

I The more informative or harder images are specific to the current state of the classifier C i
θ

I The hard images for C i
θ are the images which are difficult to classify correctly by C i

θ
I Idea : optimize iteratively an original random latent code z to minimize the score of the class

predicted by C i
θ

Dataset smoothing : progressively change the dataset by only partially replacing the generated training
data with new samples every epoch, aiming for a diverse but gradually changing dataset

ahttps://valeoai.github.io/blog/publications/gan-dataset/
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Data Augmentation : GANs for data augmentation

Generated data : sufficient ?
(Besnier et al, ICASSP, 2020) THIS DATASET DOES NOT EXIST: TRAINING
MODELS FROM GENERATED IMAGESa

Generator : BiGANs Classifier : Resnet18
ahttps://valeoai.github.io/blog/publications/gan-dataset/
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Data Augmentation : GANs for data augmentation

(Jahanian et al, ICLR 22): GENERATIVE MODELS AS A DATA SOURCE FOR
MULTIVIEW REPRESENTATION LEARNING10

10https://ali-design.github.io/GenRep/
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Data Augmentation
Many ressources

https://brunokrinski.github.io/awesome-data-augmentation/

Albumentations (https://github.com/albumentations-team/albumentations)
Imgaug (https://github.com/aleju/imgaug)
Augly : data augmentations library that currently supports four modalities
(https://github.com/facebookresearch/AugLy)
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Alternatives to supervised learning

Richness of unlabeled data
Data privacy friendly
Cheaper
Scales better
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Learning with limited labeled data

Semi-supervised deep learning
Few-shot learning
Unsupervised and self-supervised learning
Transfer learning and domain adaptation (robust ML)
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Sources and references

(Ouali et al, 2020) An Overview of Deep Semi-Supervised Learning
(https://arxiv.org/abs/2006.05278)
(Yang et al, 2021) A Survey on Deep Semi-supervised Learning
(https://arxiv.org/pdf/2103.00550.pdf)
Lil’Log : Learning with not Enough Data Part 1: Semi-Supervised Learning
(https:
//lilianweng.github.io/posts/2021-12-05-semi-supervised/)
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Semi-supervised Learning

Reference : SSL book :
https://mitpress.mit.edu/books/semi-supervised-learning
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Semi-supervised Learning

Main assumptions about the structure of data
H1 : The Smoothness Assumption: if two input points that reside in a high-density region
are close then so should be their corresponding outputs.
H2 : The Cluster Assumption : If points are in a same cluster, they are likely to be of the
same class (particular case of the Smoothness Assumption in which we suppose that input
data points form cluters)
H3 : Low-density Separation Assumption : The decision boundary between classes tends
to be located in the sparse, low density regions, because otherwise the decision boundary
would cut a high-density cluster into two classes, corresponding to two clusters, which
invalidates H1 and H2
H4 : The Manifold Assumption : The (high dimensional) data (roughly) lie on a
low-dimensional manifold, i.e. discover the low dimensional representation from unlabeled
data and use the labeled data to solve the simplified task in the lower dimensional space.
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Semi-supervised Learning

Main methods
Consistency training : a realistic perturbation applied to the unlabeled point should not
change significantly the prediction, i.e. the model can be trained to have a consistent
prediction on a given unlabeled example and its perturbed version.
Pseudo-labeling methods : leveraging of a model trained on a labeled set to produce
additional training examples by labeling instances of the unlabeled set based on some
heuristics.
Generative models : If a generative model is able to generate realistic images from the
data distribution p(x), then it must learn transferable features to a supervised task p(y |x)
Graph-based methods : Labeled and unlabeled data are considered as nodes of a graph
and the objective is to propagate the labeled nodes to the unlabeled ones using the
similarity between nodes and edge information.
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Deep Semi-supervised Learning : an overview

(Yang et al, 2021) A Survey on Deep Semi-supervised Learning11

11https://arxiv.org/abs/2103.00550
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Consistency training

Consistency training

Main assumption : randomness within a neural network (e.g. with Dropout or data
augmentation transformations) should not modify model predictions given the same input : use
of a consistency regularization loss as Lu
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Consistency training
A realistic perturbation applied to the unlabeled point should not change significantly the
prediction, i.e. the model can be trained to have a consistent prediction on a given unlabeled
example and its perturbed version.
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Consistency training
In consistency training, we are favoring models that give consistent predictions for similar
unlabeled data points.
Given a set of unlabeled data Du and a set of labeled data Dl

Consistency training methods generally consists into adding an unsupervised loss term Lu
in addition to the supervised one Ls (here cross-entropy)

L = Lu + Ls = Lu +
1
|Dl |

∑
x,t∈Dl

H(ỹ , t)

The unsupervised loss is generally a distance between two predictions (ỹ1, ỹ2) over the
unlabeled data.

L = w
1
|Du |

∑
x∈Du

dMSE (ỹ1, ỹ2) +
1
|Dl |

∑
x,y∈Dl

H(y , f (x))
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Ladder networks

Ladder networks
Combine supervised learning with unsupervised learning in deep neural
networks.
Ladder networks are trained to simultaneously minimize the sum of
supervised and unsupervised cost functions by backpropagation, avoiding
the need for layer-wise pre-training

(Rasmus et al , 2015) Semi-supervised Learning with Ladder Networks
(https://arxiv.org/abs/1507.02672). See also
https://rinuboney.github.io/2016/01/19/ladder-network.html
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Ladder networks
Principle

At each training iteration, the input is passed through two encoders, a clean one and a corrupted one
which adds Gaussian noise to the layers ⇒ two predictions.
A decoder can invert the mappings on each layer of the encoder. It uses a denoising function to
reconstruct the activations of each layer given the corrupted version. The target at each layer is the
clean version of the activation and the difference between the reconstruction and the clean version
serves as the denoising cost of that layer.
The unsupervised training loss is then computed as the MSE between the activations of the clean
encoder and the reconstructed activations.

Lu =
1
|D|

∑
x∈D

L∑
l=0

λl dMSE (z(l)
, ẑ(l))
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Pi-Model

Idea
Ensemble method : a set of labels is more reliable than a simple one and thus consistency
regularization : two augmentations should result in the same prediction.

The Π−Model is a simplification of Ladder networks where the corrupted encoder is removed
and the same network is used to get prediction for both corrupted and uncorrupted inputs.

LΠ
u =

∑
x∈D

MSE(fθ(x), f
′
θ (x))

with f ′ the same neural network with different stochastic augmentation or dropout masks.

(Laine and Aila, 2017) Temporal Ensembling for Semi-Supervised Learning
(https://arxiv.org/abs/1610.02242)
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Pi-Model
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Temporal ensembling

The Π−Model requests the network to run two passes per sample, doubling the computation
cost. Temporal Ensembling maintains an exponential moving average (EMA) of the model
prediction in time per training sample as the learning target, which is only evaluated and
updated once per epoch.

z̃(t)
i =

αz̃(t−1)
i + (1− α)zi

1− αt

Moving average and bias correction a la Adam

(Laine and Aila, 2017) Temporal Ensembling for Semi-Supervised Learning
(https://arxiv.org/abs/1610.02242)
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Temporal ensembling
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Mean Teachers

In temporal ensembling, we kept an exponential moving average over the target of each input.
But why not keep an exponential moving average over the model itself, which can then be used
to generate stable targets over the unlabeled examples ? We call this model the teacher model.
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Mean Teachers
The loss is the sum of the supervised and unsupervised loss, where the teacher model is used to
obtain the targets for the unsupervised loss for a given input.

L = w
1
|Du |

∑
x∈Du

dMSE (fθ(x), f
θ
′ (x)) +

1
|Dl |

∑
x,y∈Dl

H(y , fθ(x))

with θ′t = αθ
′
t−1 + (1− α)θt

(Tarveinen and Valpola,2017) Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results
(https://arxiv.org/abs/1703.01780)
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Noisy samples as learning targets

Recent consistency training methods learn to minimize prediction difference
between the original unlabeled sample and its corresponding augmented version.
It is quite similar to previous models but the consistency regularization loss is only
applied to the unlabeled data.
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VAT : Virtual Adversarial Training

Until now : random perturbations to each input to generate artificial input points,
encouraging the model to assign similar outputs to the unlabeled data points and their
perturbed versions
Random noise and random data augmentation leave the predictor particularly vulnerable to
small perturbations in a specific direction, the adversarial direction : direction in the input
space in which the label probability p(y |x) of the model is most sensitive.
Why not find the perturbation that the model is most sensitive towards, and use it to
perturb the inputs?
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VAT : Virtual Adversarial Training

The loss computation consists of two steps, first find the adversarial perturbation,
then use this perturbation to perturb the input and get the perturbed prediction
to compute the unsupervised loss.

LVATu = w 1
|Du|

∑
x∈Du

dMSE (fθ(x), fθ(x + radv ))

(Miyato et al, 2018) Virtual Adversarial Training: A Regularization Method for Supervised and
Semi-Supervised Learning (https://arxiv.org/abs/1704.03976)
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ICT : Interpolation Consistency Training

Principle
Enhancement of the dataset by adding more interpolations of data points and
expects the model prediction to be consistent with interpolations of the
corresponding labels.
Use of the mixup operation that mixes two images via a simple weighted sum
and combines it with label smoothing.
ICT expects the prediction model to produce a label on a mixup sample to
match the interpolation of predictions of corresponding inputs.

mixupλ(xi , xj) = λxi + (1− λ)xj

p(mixupλ(y | xi , xj)) ≈ λp(y | xi ) + (1− λ)p(y | xj)
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ICT : Interpolation Consistency Training

(Verma et al, 2019) Interpolation Consistency Training for Semi-Supervised Learning
(https://arxiv.org/abs/1903.03825)
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Entropy Minimization

Entropy Minimization
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Entropy Minimization

H3 : Low-density Separation Assumption : The decision boundary between
classes tends to be located in the sparse, low density regions, i.e. decision
boundary should not pass through high-density regions of the marginal data
distribution.

Entropy Minimization
Entropy minimization encourages more confident predictions on unlabeled data i.e
the classifier outputs low-entropy predictions on unlabeled data.
Entropy computation

K∑
k=1

fθ(x)k log fθ(x)k

with K the number of classes and fθ(x)k is the confidence with which the model
predicts that input x belongs to class k.

Adding of a loss term that encourages the network to make “confident”
(low-entropy) predictions for all unlabeled examples, regardless of their class.
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Entropy Minimization

If we consider an input x and classes [y1, y2, y3].
Classifier A : probabilities [0.1, 0.8, 0.1]
Classifier B : probabilities [0.1, 0.6, 0.3]

Classifier A is more confident and has lower entropy.
By minimizing the entropy loss, we learn a model closer to classifier A then
classifier B.
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Entropy Minimization
(Grandvalet et al, 2004) Semi-supervised Learning by Entropy Minimization12
Entropy minimization will discourage the decision boundary from passing near data
points where it would otherwise be forced to produce a low-confidence prediction.

Figure: Decision Boundary found by various SSL approaches on the “two moons dataset”.
From Paper: Realistic Evaluation of Deep Semi-Supervised Learning Algorithms.

(Oliver et al, 2019 ) Realistic Evaluation of Deep Semi-Supervised Learning Algorithms
(https://arxiv.org/pdf/1804.09170.pdf)

12https://proceedings.neurips.cc/paper/2004/file/
96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
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Pseudo Labeling

Pseudo Labeling
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Pseudo Labeling

In pseudo labeling, a model is trained on labeled data and used to predict
pseudo-labels for the unlabeled data. The model is then trained on both ground
truth labels and pseudo-labels simultaneously.

One important question is, what unlabeled examples do we select to add to the
labeled data ?
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Pseudo Labeling

In pseudo labeling, a model is trained on labeled data and used to predict
pseudo-labels for the unlabeled data. The model is then trained on both ground
truth labels and pseudo-labels simultaneously.
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Pseudo Labeling
Principle

Train a model simultaneously on a batch of both labeled and unlabeled images.
The model is trained on labeled images in usual supervised manner with a cross-entropy
loss.
The same model is used to get predictions for a batch of unlabeled images and the
maximum confidence class is used as the pseudo-label.
Then, cross-entropy loss is calculated by comparing model predictions and the pseudo-label
for the unlabeled images

(Lee, 2013) Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep
Neural Networks (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.664.3543)
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Pseudo Labeling

Pseudo-Label are target classes for unlabeled data as if they were true labels. The class,
which has maximum predicted probability predicted using a network for each unlabeled
sample, is picked up.

Pseudo-Label is used in a fine-tuning phase with Dropout. The pre-trained network is
trained in a supervised fashion with labeled and unlabeled data simultaneously.

α(t) is a coefficient balancing them at epoch t. If too high, it disturbs training even for
labeled data. If too small, we cannot use benefit from unlabeled data.

Pseudo label is equivalent to Entropy Regularization.
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Label propagation
Main ideas

Construct a similarity graph among samples based on feature embedding
Pseudo labels are “diffused” from known samples to unlabeled ones where the propagation
weights are proportional to pairwise similarity scores in the graph

(Iscen et al, 2019) Label Propagation for Deep Semi-supervised Learning
(https://arxiv.org/abs/1904.04717)
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Hybrid approaches

Hybrid approaches
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Hybrid approaches : Pseudo Labeling with Consistency
Regularization

MixMatch
ReMixMatch
DivideMix
FixMatch
...
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Hybrid approaches : MixMatch

Principle : Merging of
Consistency regularization: Encourage the model to output the same predictions on
perturbed unlabeled samples.
Entropy minimization: Encourage the model to output confident predictions on unlabeled
data.
MixUp augmentation: Encourage the model to have linear behaviour between samples.
Label guessing : pseudo-labelling

(Berthelot et al, 2019) MixMatch: A Holistic Approach to Semi-Supervised Learning
(https://arxiv.org/abs/1905.02249)
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Hybrid approaches : MixMatch

Label-guessing principle in MixMatch

For each u, K augmentations are generated, ū(k) = Augment(u) for k = 1, . . . ,K and the
pseudo label is guessed based on the average : ŷ = 1

K
∑K

k=1 pθ(y | ū(k))
Then, temperature sharpening function to reduce the entropy of the label distribution
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Hybrid approaches : MixMatch

Temperature sharpening
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Hybrid approaches : MixMatch
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Hybrid approaches : MixMatch

Given a batch of labeled data X and unlabeled data U , we create augmented
versions of them via MixMatch(.), X̄ and Ū , containing augmented samples and
guessed labels for unlabeled examples.

X̄ , Ū = MixMatch(X ,U ,T ,K , α)

LMM
s = 1

|X̄ |

∑
(x̄l ,y)∈X̄

H[y , pθ(y | x̄l )]

LMM
u = 1

L|Ū |
∑

(ū,ŷ)∈Ū

‖ŷ − pθ(y | ū)‖22

L = LMM
s + λuLMM

u
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Hybrid approaches : ReMixMatch
Improves MixMatch by introducing two new mechanisms:

Distribution alignment : encourages the marginal distribution to be close to the marginal
distribution of the ground truth labels.
Augmentation anchoring :Given an unlabeled sample, it first generates an anchor version
with weak augmentation and then averages K strongly augmented versions using
CTAugment (Control Theory Augment).

(Berthelot et al, 2020) ReMixMatch: Semi-Supervised Learning with Distribution Alignment and
Augmentation Anchoring (https://arxiv.org/abs/1911.09785)
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Hybrid approaches : FixMatch

It generates pseudo labels on unlabeled samples with weak augmentation and only
keeps predictions with high confidence.

(Sohn et al, 2020) : FixMatch: Simplifying Semi-Supervised Learning with Consistency and
Confidence (https://arxiv.org/abs/2001.07685)

Céline Hudelot Challenging deep learning models in real-world applications June 30, 2022 80 / 149

https://arxiv.org/abs/2001.07685


Hybrid approaches : FixMatch

Ls = 1
B

B∑
b=1

CE[yb, pθ(y | Aweak(xb))]

Lu = 1
µB

µB∑
b=1

1[max(ŷb) ≥ τ ] CE(ŷb, pθ(y | Astrong(ub)))

where ŷb is the pseudo label for an unlabeled example; µ is a hyperparameter that
determines the relative sizes of X and U .

Weak augmentation : A standard flip-and-shift augmentation
Strong augmentation : AutoAugment, Cutout, RandAugment, CTAugment
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Graph-based semi-supervised learning

Graph-based semi-supervised learning
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Graph-based semi-supervised learning

Labeled and Unlabeled Data as a Graph
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Graph-based semi-supervised learning

Two stages :
Graph construction :

I Neighborhood methods, metric learning
Inference : a lot of approaches.

To go deeper, some reviews (Song et al 2021)13

13https://arxiv.org/pdf/2102.13303.pdf
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Unsupervised Learning
In unsupervised learning, we are interested in extracting information from the
unlabeled data xi (without using labels yi).

Low-dimensional embeddings of the data : Autoencoders.
Generative model able of approximating the data distribution PX (x) :
Generative adversarial networks
Self-supervision : defining new training objectives based on the data itself
to train the model.
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Unsupervised Learning : Auto-encoders
Auto encoders can be used for self-supervised learning by either reconstructing the initial image,
or only parts of it.

Sparse auto-encoders
Find a sparse representation of the input dataa

ahttps://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf

Denoising auto-encoders
The model must be robust to noisea

ahttps://www.jmlr.org/papers/volume11/vincent10a/vincent10a.pdf
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Unsupervised Learning : Auto-encoders

Auto encoders can be used for self-supervised learning by either reconstructing the initial image,
or only parts of it.

Other approachesa

ahttps://arxiv.org/abs/1611.09842, https://arxiv.org/abs/1604.07379
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What is Self-Supervision ?

A form of unsupervised learning where the data provides the supervision.
Usually, define a pretext task for which the network is forced to learn what we really care
about.
For most pretext tasks, a part of the data is withheld and the network has to predict it.
The features/representations learned on the pretext task are subsequently used for a
different downstream task, usually where some annotations are available.

Source : LeCun talk
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Self-Supervision

Goals
Learn equally good (if not better) features without supervision.
Be able to deploy similar quality systems without relying on too many labels
for the downstream tasks.
Generalize better potentially because you learn more about the world.
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Self-Supervision
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Self-Supervision
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Self-Supervision : Image distorsions
Exemplar CNNsa

ahttps://arxiv.org/abs/1406.6909

Create a class by augmenting the same image multiple times.

Sample N patches of size 32× 32 pixels from different images at varying positions and
scales, only from regions containing considerable gradients as those areas cover edges and
tend to contain objects or parts of objects. They are exemplary patches.
Each patch is distorted by applying a variety of random transformations (i.e., translation,
rotation, scaling, etc.). All the resulting distorted patches are considered to belong to the
same surrogate class.
The pretext task is to discriminate between a set of surrogate classes. We can arbitrarily
create as many surrogate classes as we want.
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Self-Supervision : Image distorsions
Rotationa

ahttps://arxiv.org/pdf/1803.07728.pdf

Create a class by augmenting the same image multiple times.

Rotation of an entire image is another interesting and cheap way to modify an input image
while the semantic content stays unchanged.
Each input image is first rotated by a multiple of 90ř at random, corresponding to
[0, 90, 180, 270]
The model is trained to predict which rotation has been applied, thus a 4−class
classification problem.
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Self-Supervision : patches

Relative positiona

ahttps://arxiv.org/abs/1505.05192

Randomly sample the first patch without any reference to image content
Considering that the first patch is placed in the middle of a 3× 3 grid, and the second
patch is sampled from its 8 neighbooring locations around it.
The model is trained to predict which one of 8 neighbooring locations the second patch is
selected from, a classification problem over 8 classes.
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Self-Supervision : patches

Permutation prediction a

ahttps://arxiv.org/abs/1603.09246

Patches can be used in other ways, such as applying a given permutation from a set of fixed
permutations, say 64 permutations, and the models predict which of these 64 permutation was
applied
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Self-Supervision : patches

Learning to count a

ahttps://arxiv.org/pdf/1708.06734.pdf

Another idea is to consider feature or visual primitives as a scalar-value attribute that can be
summed up over multiple patches and compared across different patches. Then the relationship
between patches can be defined by counting features and simple arithmetic.
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Self-Supervision : Colorization

Colorization a

ahttps://arxiv.org/abs/1603.08511

Colorization can be used as a powerful self-supervised task.
A model is trained to color a grayscale input image
the task is to map this image to a distribution over quantized color value outputs

The model outputs colors in the Lab color space. The Lab color is designed to approximate
human vision, while, in contrast, RGB or CMYK models the color output of physical
devices.
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Self-Supervision : Contrastive Learning
Contrastive Learning
Contrastive learning aims at embedding augmented versions of the same sample close to each
other while trying to push away embeddings from different samples.

Objective
Learn a a deep neural network, that maps semantically nearby points (i.e. positive pairs)
closer together in the embedding space, while pushing apart points that are dissimilar (i.e.
negative pairs)
One of the major design choices in contrastive learning is how to select the positive and
negative pairs.
The standard approach for generating positive pairs without additional annotations is to
create multiple views of each example, for instance, splitting an image into luminance and
chrominance, applying different random crops and data augmentations, or using different
patches within a single image.
Negative pairs, on the other hand, can be generated by randomly sampling images and
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Self-Supervision : Contrastive Learning

Contrastive Learning Losses

Contrastive loss (Chopra et al, 2015)a

ahttp://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

Given a list of input samples {xi}, each has a corresponding label yi ∈ {1, . . . , L} among L
classes
We would like to learn a function fθ(.) : X → Rd that encode xi into an embedding vector
such that examples from the same class have similar embeddings and samples from
different classes have very different ones.
Contrastive loss takes a pair of inputs (xi , xj ) and minimizes the embedding distance when
they are from the same class but maximizes the distance otherwise

Lcont(xi , xj , θ) = 1[yi = yj ]‖fθ(xi )− fθ(xj )‖22 + 1[yi 6= yj ] max(0, ε− ‖fθ(xi )− fθ(xj )‖2)2
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Self-Supervision : Contrastive Learning
Contrastive Learning Losses

Triplet Loss (Schroff et al, 2015) a

ahttps://arxiv.org/abs/1503.03832

Given one given anchor {x}, we select one positive sample x+ (same class) and one
negative sample x− (another different class)
Triplet loss learns to minimize the distance between the anchor {x} and positive x+ and
maximize the distance between the anchor {x} and negative x− at the same time

Ltriplet(x, x+, x−) =
∑
x∈X

max
(
0, ‖f (x)− f (x+)‖22 − ‖f (x)− f (x−)‖22 + ε

)
It is crucial to select challenging x− to improve the model.
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Self-Supervision : Contrastive Learning
Contrastive Learning Losses

Lifted Structured Loss (Song et al, 2015)a

ahttps://arxiv.org/abs/1511.06452

Use of all the pairwise edges within one training batch for better computational efficiency.
Given P the set of positive pairs and N the set of negative pairs
Dij = |f (xi )− f (xj )|2
The structured loss function is

Lstruct =
1

2|P|

∑
(i,j)∈P

max(0,L(ij)
struct)

2

where L(ij)
struct = Dij + max

(
max

(i,k)∈N
ε− Dik , max

(j,l)∈N
ε− Djl

)
The red part is used for hard negative mining and as it is not smooth, it is relaxed to
prevent to converge to a bad local optimum

L(ij)
struct = Dij + log

( ∑
(i,k)∈N

exp(ε− Dik ) +
∑

(j,l)∈N

exp(ε− Djl )
)
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Self-Supervision : Contrastive Learning

Contrastive Learning Losses
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Self-Supervision : Contrastive Learning
Contrastive Learning Losses

N-pair Loss (Sohn et al, 2016)a

ahttps://papers.nips.cc/paper/2016/file/
6b180037abbebea991d8b1232f8a8ca9-Paper.pdf

Generalizes triplet loss to include comparison with multiple negative samples
Given a (N + 1)−tuplet of training samples {x, x+, x−1 , . . . , x

−
N−1} including one positive

and N − 1 negatives ones.
N−pair loss is defined as

LN-pair(x, x+, {x−i }
N−1
i=1 ) = log

(
1 +

N−1∑
i=1

exp(f (x)>f (x−i )− f (x)>f (x+))
)

= − log
exp(f (x)>f (x+))

exp(f (x)>f (x+)) +
∑N−1

i=1 exp(f (x)>f (x−i ))

If we only sample one negative sample per class, it is equivalent to the softmax loss for
multi-class classification.

Céline Hudelot Challenging deep learning models in real-world applications June 30, 2022 104 / 149

https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf
https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf


Self-Supervision : Contrastive Learning
InfoNCE - Noise Contrastive Estimation (van den Oord, 2018)

Given a context vector c, the positive sample should be drawn from the conditional distribution p(x|c)
N − 1 negative samples are drawn from the proposal distribution p(x) independant from the context.

We label all the samples X = {xi}N
i=1 among which one of them is a positive sample xpos

The probability of detecting the positive sample correctly is :

p(C = pos|X , c) =
p(xpos|c)

∏
i=1,...,N;i 6=pos

p(xi )∑N
j=1

[
p(xj |c)

∏
i=1,...,N;i 6=j

p(xi )
] =

p(xpos|c)
p(xpos)∑N
j=1

p(xj |c)
p(xj )

=
f (xpos, c)∑N

j=1
f (xj , c)

with the scoring function f (x, c) ∝ p(x|c)
p(x)

The InfoNCE loss optimizes the negative log probability of classifying the positive sample correctly:

LInfoNCE = −E
[

log
f (x, c)∑

x′∈X
f (x′, c)

]
Connection with mutual information optimization

I(x; c) =
∑
x,c

p(x, c) log
p(x, c)

p(x)p(c)
=
∑
x,c

p(x, c) log
p(x|c)
p(x)
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Self-Supervision : Contrastive Learning

Common setup (Wang et al, 2020)
Let pdata(.) the data distribution over Rn and ppos(., .) the distribution of
positive pairs over Rn×n

These two distributions should satisfy
I Symmetry : ∀x, x+, ppos(x, x+) = ppos(x+, x)
I Matching marginal : ∀x,

∫
ppos(x, x+)dx+ = pdata(x)

(Wang et al, 2020) Understanding Contrastive Representation Learning through
Alignment and Uniformity on the Hypersphere14

14https://arxiv.org/abs/2005.10242
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Self-Supervision : Contrastive Learning
Two key properties related to the contrastive loss :

I Alignement : Similar samples have similar features
I Uniformity: Preserve maximal information

The contrastive loss optimizes these properties.
They have a positive effects on the downstream tasks.
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Self-Supervision : Contrastive Learning
Key ingredients

Heavy Data Augmentation : introduces the non-essential variations into
examples without modifying semantic meanings and thus encourages the
model to learn the essential part of the representation.
Large Batch Size : especially when it relies on in-batch negatives to enable
the loss function can cover a diverse enough collection of negative samples.
Hard negative Mining : Hard negative samples should have different labels
from the anchor sample, but have embedding features very close to the
anchor embedding
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Self-Supervision : Contrastive Learning

SimCLR (Chen et al, 2020)15 : Learns representations for visual inputs by
maximizing agreement between differently augmented views of the same sample
via a contrastive loss in the latent space

Randomly sample a minibatch of N samples.
Each sample is applied with two different data
augmentations operations (same family) : 2N data points
Given one positive pair, other 2(N − 1) points are negative
samples, the representation is produced by a base encoder
f (.)

hi = f (x̃i ), hj = f (x̃j )

The contrastive learning loss is defined using cosine
similarity sim(., .)

zi = g(hi ), zj = g(hj )

L(i,j)
SimCLR = − log

exp(sim(zi , zj )/τ)∑2N
k=1

1[k 6=i] exp(sim(zi , zk )/τ)

The representation h is used for downstream tasks (it
requires a different post-processing head)

15https://arxiv.org/abs/2002.05709
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Self-Supervision : Contrastive Learning
And many other approaches

Barlow Twins (Zbontar et al. 2021)a feeds two distorted versions of samples into the same
network to extract features and learns to make the cross-correlation matrix between these
two groups of output features close to the identity.

LBT =
∑

i

(1− Cii )2︸ ︷︷ ︸
invariance term

+λ
∑

i

∑
i 6=j

C2ij︸ ︷︷ ︸
redundancy reduction term

where Cij =

∑
b
zA

b,iz
B
b,j√∑

b
(zA

b,i )2
√∑

b
(zB

b,j )2

Cij cosine similarity between network output vector dimension at index i, j and batch index b.

ahttps://arxiv.org/abs/2103.03230
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Self-Supervision : Contrastive Learning
And many other approaches

BYOL (Bootstrap Your Own Latent; Grill, et al 2020)a which not use negative samples. It relies on two
neural networks, referred to as online and target networks that interact and learn from each other. The
target network (parameterized by ξ ) has the same architecture as the online one (parameterized by θ ),
but with polyak averaged weights ξ ← τξ + (1− τ)θ
The goal is to learn a representation y that can be used in downstream tasks.
The online network parameterized by θ contains: an encoder fθ , a projector gθ and a predictor qθ .
LBYOL
θ is MSE between L2-normalized prediction q̄θ(z) and z̄′

Symmetric loss L̃BYOL
θ by switching views and final loss LBYOL

θ + L̃BYOL
θ

ahttps://arxiv.org/abs/2006.07733
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Self-Supervision : Contrastive Learning

And many other approaches
BYOL (Bootstrap Your Own Latent; Grill, et al 2020) : not use negative samples. It relies on two
neural networks, referred to as online and target networks that interact and learn from each other. The
target network
BYOL generally performs no better than random when batch normalization is removed.a

Interpretation : presence of batch normalization implicitly causes a form of contrastive learning : using
negative samples is important for avoiding model collapse.

ahttps://generallyintelligent.ai/blog/
2020-08-24-understanding-self-supervised-contrastive-learning/
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Self-Supervision : Contrastive Learning

And many other approaches
Some approaches have been proposed to improve the computing embeddings for a large number of
negative samples : with memory bank (Instance contrastive learning (Wu et al, 2018)a), with a dynamic
dictionary look-up (Momentum Contrast (MoCo; He et al, 2019)b)
Evaluation : Transfer learning of a lot of downstream tasks.
Some frameworks : A library for state-of-the-art self-supervised learning from images
https://vissl.ai/

ahttps://arxiv.org/abs/1805.01978
bhttps://arxiv.org/abs/1911.05722
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Motivations
(Lake et al, 2015) Human-level concept learning through probabilistic program induction16

People learning new concepts can often generalize successfully from just a single example, yet
machine learning algorithms typically require tens or hundreds of examples to perform with
similar accuracy

16https://www.cs.cmu.edu/~rsalakhu/papers/LakeEtAl2015Science.pdf
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Motivations

Few-shot learning
Equip the learner with ability to rapidly learn new concept with few training
samples.

Elephant shrew.
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Motivations
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Few shot learning : general setting

A few-shot classification task
Each classification task consists of a training set, also called support set, and a
testing set, also called query set. A N−way K−shot classification task has :

N: number of classes
K : number of examples per class (small)
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Few shot learning : general setting
Few shot classification usually involves two stage :

a training phase where we have access to a meta training set (or base set)
with a large number of classes.
a testing phase where we evaluate the learner on a set of tasks with novel
classes not seen during training.
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Meta-learning and Episodic Training
Principle
Match the training environment to the testing environment and learn to avoid
overfitting. The learner in trained on a number of sampled tasks created from the
meta training set.
Meta-learner : trained over a variety of learning tasks (represented by a dataset
D) and optimized for the best performance on a distribution of tasks, including
potentially unseen tasks.

θ∗ = arg min
θ

ED∼p(D)[Lθ(D)]

The training set is transformed into many training tasks.
The learner is then trained on a distribution of such tasks (episodes).
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Meta-learning and Episodic Training

Classical Learning
A dataset D = {xi , yi}, pairs of feature vectors and labels with each label belongs to a
known label set Llabel.
A classifier fθ with parameter θ outputs a probability of a data point belonging to the class
y given the feature vector x : Pθ(y |x)
The optimal parameters should maximize the probability of true labels across multiple
training batches B ⊂ D

θ∗ = arg maxθE(x,y)∈D[Pθ(y |x)]

θ∗ = arg maxθEB⊂D[
∑

(x,y)∈B

Pθ(y |x)] ; trained with mini-batches.
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Meta-learning and Episodic Training

Few shot Learning
“Fake” datasets with a subset of labels to avoid exposing all the labels to the model and modify
the optimization procedure accordingly to encourage fast learning:

Sample a subset of labels L ⊂ Llabel

Sample a support set SL ⊂ D and a training batch BL ⊂ D that only contain data points
with labels belonging to L
Do several sampling : each pair of sampled dataset (SL,BL) will be consider as one data
point

θ = arg max
θ

EL⊂L[ESL⊂D,BL⊂D[
∑

(x,y)∈BL

Pθ(x , y , SL)]]
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Meta-learning and Episodic Training

Common approaches
Depends on how Pθ(y |x) is modeled.

Metric-based : The predicted probability over a set of known labels y is a weighted sum of
labels of support set samples.
Model-based : No assumption on the form of Pθ(y |x) : model designed specifically for fast
learning.
Optimization-based : Adjust gradient-based optimization algorithm so that the model can
be good at learning with a few examples.
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Metric-based approches for FSL

Principle
The predicted probability over a set of known labels y is a weighted sum of labels of support set
samples. The weight is generated by a kernel function kθ , measuring the similarity between two
data samples.

Pθ(y |x, S) =
∑

(xi ,yi )∈S

kθ(x, xi )yi

Principle : learn embedding vectors of input data explicitly and use them to design proper kernel
functions.

Céline Hudelot Challenging deep learning models in real-world applications June 30, 2022 126 / 149



Metric-based approches for FSL

Convolutional Siamese Neural Network (Koch et al, 2015) a

ahttp://www.cs.toronto.edu/~rsalakhu/papers/oneshot1.pdf

Given a support set S and a test image x, the final predicted class is:

ĉS (x) = c(arg max
xi∈S

P(x, xi ))
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Metric-based approches for FSL
Matching Network (Vinyals et al , 2015) a

ahttps://proceedings.neurips.cc/paper/2016/file/
90e1357833654983612fb05e3ec9148c-Paper.pdf

Goal : learn a classifier cS for any given small support set S = {xi , yi}k
i=1. The classifier output is a sum of

labels of support samples weighted by attention kernel a(x, xi ) proportional to the similarity between x and xi

cS (x) = P(y |x, S) =
k∑

i=1

a(x, xi )yi , where S = {(xi , yi )}k
i=1

a(x, xi ) =
exp(cos(f (x), g(xi ))∑k
j=1

exp(cos(f (x), g(xj ))
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Metric-based approches for FSL

Relation Network (Sung et al , 2018) a

ahttps://openaccess.thecvf.com/content_cvpr_2018/papers_backup/Sung_
Learning_to_Compare_CVPR_2018_paper.pdf

Similar to siamese network but :
The relationship is not captured by a simple distance in the feature space, but predicted by
a CNN classifier gφ
The objective function is MSE loss instead of cross-entropy, because conceptually RN
focuses more on predicting relation scores which is more like regression, rather than binary
classification.
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Metric-based approches for FSL
Prototycal Network (Snell et al , 2017) a

ahhttps://proceedings.neurips.cc/paper/2017/file/
cb8da6767461f2812ae4290eac7cbc42-Paper.pdf

An embedding function fθ is used to encode each input into a M−dimensional feature vector.
A prototype feature vector is defined for every class as the mean vector of the embedded support data
samples in this class.

vc =
1
|Sc |

∑
(xi ,yi )∈Sc

fθ(xi )

The distribution over classes for a given test input x is a softmax over the inverse of distances between
the test data embedding and prototype vectors.

P(y = c|x) = softmax(−dϕ(fθ(x), vc )) =
exp(−dϕ(fθ(x), vc ))∑

c′∈C
exp(−dϕ(fθ(x), vc′ ))

The loss function is the negative log-likelihood: L(θ) = − log Pθ(y = c|x)
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Model-based meta-learning for FSL
Principle

Model designed specifically for fast learning — a model that updates its parameters rapidly
with a few training steps.

This rapid parameter update can be achieved by its internal architecture or controlled by
another meta-learner model.

I Memory-augmented Neural Networks (Santoro el al, 2016)a

I Meta Networks (Munkhdalai el al, 2017)b

ahttp://proceedings.mlr.press/v48/santoro16.pdf
bhhttps://arxiv.org/abs/1703.00837

Memory-augmented Neural Networks

Meta Networks
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Optimization-based meta-learning for FSL

Model-Agnostic Meta-Learning (Finn el al, 2017)17 : find a robust initial set of parameters that
makes gradient descent work across episodes

Principle
Our model : fθ with parameters θ.

Given a task τi and its associated dataset (D(i)
train,D

(i)
test), we update the

model parameters by one or more gradient descent steps :

θ
′
i = θ − α∇θL(0)

τi
(fθ)

with L(0) the loss computed using the mini data batch with id (0)
We sample a new data batch with id (1) for updating the
meta-objective

θ
∗ = arg min

θ

∑
τi∼p(τ)

L(1)
τi

(fθ′i
) = arg min

θ

∑
τi∼p(τ)

L(1)
τi

(f
θ−α∇θL

(0)
τi

(fθ )
)

θ ← θ − β∇θ
∑
τi∼p(τ)

L(1)
τi

(f
θ−α∇θL

(0)
τi

(fθ )
)

17https://arxiv.org/abs/1703.03400
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)18

Two loop structure
outer loop : meta initialization for the networks parameters to a setting that enables fast
adaptation to new tasks.
inner loop : adapts these parameters for each task separately

18https://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)19
Is this inner/outer loop necessary?

How much of the effectiveness of such methods is contingent on the inner/outer loop
structure?

Which of the two loop is more important ?
I Rapid learning : the representations change dramatically for each task and the inner

loop plays an important role.
I Feature reuse : the outer loop gives rise to general purpose representations that

require little adaption for each task.

19https://openreview.net/pdf?id=rkgMkCEtPB
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Optimization-based meta-learning for FSL

Understanding the effectiveness of MAML (Raghu et al,2020)20

Similarity of the representation before and after adaptation

Representation remain largely the same expect for the final classification layer.
Importance of having a good initialization of the representations for fast
adaptation : general-purpose representation.

20https://openreview.net/pdf?id=rkgMkCEtPB
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Meta-learning for FSL : a small reacp

Source : (Chen et al, 2019) A closer look at few-shot classification21

21https://arxiv.org/pdf/1904.04232.pdf
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Transfer learning approaches
(Chen et al, 2019) A closer look at few-shot classification22

Principle
Follows the standard transfer learning procedure of network pre-training and fine-tuning

Training stage : train a feature extractor fθ and the classifier C(.|Wb) from scratch by minimizing a
standard CE classification loss Lpred using the training examples in the base classes.
Fine-tuning stage : adapt the model to recognize novel classes in the fine-tuning stage : the pre-trained
network parameters θ of fθ are fixed and we train a new classifier C(.|Wn) by minimizing Lpred using
the support set with the novel classes Xn.

22https://arxiv.org/pdf/1904.04232.pdf
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Transfer learning approaches

(Tian et al, 2020) Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? 23

Principle
Training stage : train a feature extractor fθ on the whole meta training set without episodic training
Test-time : For each sampled task, we first extract the features of the support and query examples
using the pre-trained and frozen feature extractor, then we train a linear classifier on the L2 normalized
features of the support set and apply on the features of the test set.

23https://arxiv.org/pdf/2003.11539.pdf
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24https://arxiv.org/pdf/2003.11539.pdf
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Transductive Few Shot Learning

Principle
The model has access to all the unlabeled data that we want to classify, and it only needs
to produce labels for those samples (as opposed to every possible input sample).
Transduction is used as a form of semi-supervised learning, where we have some unlabeled
samples from which the model can obtain extra information about the data distribution to
make better predictions.
In few-shot learning, transductive algorithms make use of all the queries in an episode
instead of treating them individually.
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Transductive Few Shot Learning

(Liu et al, 2019) Learning to propagate labels : transductive propagation network for few-shot learning 25

25https://arxiv.org/pdf/1805.10002.pdf
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Transductive Few Shot Learning
(Liu et al, 2019) Learning to propagate labels : transductive propagation network
for few-shot learning 26

Graph construction : Gaussian similarity function with σ to select carefully for the best label propagation

Wij = exp
(
−

d(xi , xj )
2σ2

)
Convolutional network to produce an example-wise length-scale parameter

Wij = exp
(
−

1
2

d
( fϕ(xi )

σi
,

fϕ(xj )
σj

))
Label propagation with the normalized graph Laplacians (I − αS)−1Y

26https://arxiv.org/pdf/1805.10002.pdf
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Benchmarks
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Benchmarks

Large scale experiments
(Triantafillou et al, 2019)a Meta-dataset: a dataset of datasets for learning to
learn from few examples

ahttps://arxiv.org/abs/1903.03096
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Benchmarks

Large scale experiments
(Triantafillou et al, 2019) Meta-dataset: a dataset of datasets for learning to learn
from few examplesa

Many diverse image datasets
Hierarchically aware
Heterogeneous episodes : different number of classes, different numbers of
support examples per class
Test generalization across domains : traffic signs and MSCOCO never seen
Optimization over a wide range of hyperparameters to allow to initialize from
pre-trained features.
Pre-training : on ImageNet only or train on all datasets (except traffic signs
and MSCOCO)

ahttps://github.com/google-research/meta-dataset
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Some open issues in Few shot learning
Distribution shift between the query and the support set

(Bennequin et al, 2021)
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Some open issues in Few shot learning

Open set few shot recognition

(Jeong et al, 2021) Few-shot Open-set Recognition by Transformation Consistency
27 (Liu et al, 2020) Few-Shot Open-Set Recognition using Meta-Learning 28

27https://arxiv.org/pdf/2103.01537.pdf
28https://openaccess.thecvf.com/content_CVPR_2020/papers/Liu_Few-Shot_Open-Set_

Recognition_Using_Meta-Learning_CVPR_2020_paper.pdf
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Some open issues in Few shot learning
Distribution shift between the query and the support set

(Bennequin et al, 2021)29 Bridging Few-Shot Learning and Adaptation: New
Challenges of Support-Query Shift

29https://arxiv.org/pdf/2105.11804.pdf
Céline Hudelot Challenging deep learning models in real-world applications June 30, 2022 148 / 149

https://arxiv.org/pdf/2105.11804.pdf


Conclusion

A short overview of the main approaches for few shot learning
To practice : EasyFSL :
https://github.com/sicara/easy-few-shot-learning
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