

Liberté Égalité Fraternité

Modélisation de performance et démarches d'optimisation

Partie 2

Pauline Trouvé-Peloux

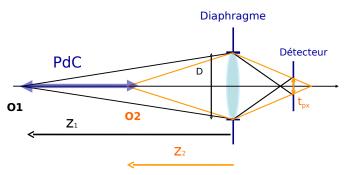
Organisation des cours

- Quelques outils de modélisation
- Optimisation d'un composant optique simple
- Optimisation de systèmes optiques complets
- Vers le "deep codesign"

- 1 Co-conception d'un composant optique simple
- 2 Co-conception de systèmes optiques complets
- 3 Conclusion

- 1 Co-conception d'un composant optique simple
- 2 Co-conception de systèmes optiques complets
- 3 Conclusion

- 1 Co-conception d'un composant optique simple
 - Masque de phase pour l'extension de profondeur de champ
 - Ouverture codée pour l'estimation de la 3D par Depth from Defocus
 - Bilan

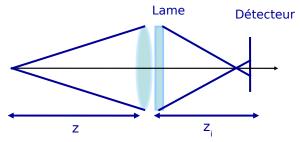

Extension de profondeur de champ (EDOF)

Définition de la profondeur de champ

Région de l'espace où les objets sont "vu nets"

perfocal distance oppositrare using. If you the the depth of field wi' the to infinity, I For amera has a hyperfo

Source : wikipedia


⇒ EDOF : voir net dans une plus grande zone de profondeur

Optimisation d'un masque de phase pour l'EDOF *Principe*

Principe proposé par Cathey et Dowski (1995) [1]

- Rendre la FEP invariante avec la profondeur
- Un seul traitement de déconvolution dans toute l'image

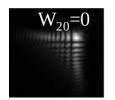
$$h_{\psi}^{\theta}(x_{P}, y_{P}) \propto \left| TF \left(A(x, y) \exp^{i\psi \frac{(x^{2}+y^{2})}{R^{2}}} \exp^{i\phi_{\mathsf{Masque}}^{\theta}(x, y)} \right) \right|_{\left(\frac{x_{P}'}{\lambda z_{i}}, \frac{y_{P}'}{\lambda z_{i}}\right)}^{2}$$

$$\psi = rac{\pi R^2}{\lambda} \left(rac{1}{z} + rac{1}{z_i} - rac{1}{f}
ight)$$

Optimisation d'un masque de phase pour l'EDOF

Composant optique non conventionnel

Exemple de composant optique


Masque de phase cubique $\phi_{Masque}^{\theta}(x, y) = \alpha(x^3 + y^3)$

Travaux de Dowski et Cathey (1995) [1]

Thèse à l'IOGS de F. Diaz (2009)[2]

a

Exemples de FEP à différentes profondeurs (W = $\frac{\psi}{2\pi}$):

⇒ la qualité image est fortement dégradée

Optimisation d'un masque de phase *Modèlistation et traitement*

Travaux de thèse de F. Diaz [2]

Modélisation de la scène et du bruit : DSP_x et DSP_b paramétriques

Traitement de l'image

Rappel : Filtre de Wiener classique à une profondeur k (en Fourier)

$$\tilde{d}_{\psi_k}^{\theta}(\mu,\nu) = \frac{\tilde{h}_{\psi_k}^{\theta*}(\mu,\nu) \mathsf{DSP}_{\mathsf{x}}(\mu,\nu)}{|\tilde{h}_{\psi_k}^{\theta}(\mu,\nu)|^2 \mathsf{DSP}_{\mathsf{x}}(\mu,\nu) + \mathsf{DSP}_{\mathsf{b}}(\mu,\nu)}$$

lci on veut un filtre unique pour toutes les profondeurs :

Filtre de Wiener moyen

$$\tilde{d}^{\theta}(\mu,\nu) = \frac{\frac{1}{K} \sum_{k=1}^{K} \tilde{h}_{\psi_{k}}^{\theta*}(\mu,\nu) \mathsf{DSP}_{x}(\mu,\nu)}{\frac{1}{K} \sum_{k=1}^{K} |\tilde{h}_{\psi_{k}}^{\theta}(\mu,\nu)|^{2} \mathsf{DSP}_{x}(\mu,\nu) + \mathsf{DSP}_{b}(\mu,\nu)}$$

Avec θ le paramètre du masque à optimiser

Image restaurée :

$$\widehat{x}_k(\theta, \psi_k) = d^{\theta} * y_{\psi_k}^{\theta}$$

Optimisation d'un masque de phase pour l'EDOF Critère de performance

Performance de déconvolution à la profondeur k:

$$MSE_k(\theta, \psi_k) = E\left[||x - \widehat{x_k}(\theta, \psi_k)||^2\right]$$

Dans l'espace de Fourier, avec DSP_x et DSP_b les densités spectrales de puissance de la scène et du bruit (écrit en 1D) :

$$\mathsf{MSE}(\theta, \psi_k) = \int_{\mu} |\tilde{d}^{\theta} \tilde{h}^{\theta}_{\psi_k} - 1|^2 \mathsf{DSP}_{\mathsf{x}}(\mu) d\mu + \int_{\mu} \mathsf{DSP}_{b} |\tilde{d}^{\theta}|^2(\mu) d\mu$$

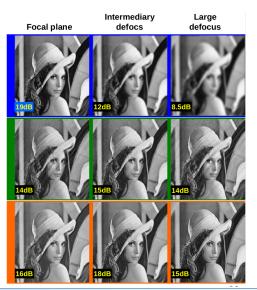
Sur un ensemble discret de profondeurs :

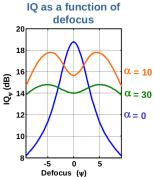
$$MSE_{max}(\theta) = \max_{k} MSE_{k}(\theta, \psi_{k})$$


Expression en termes de critère de qualité image à maximiser

$$\widehat{\theta} = \arg\max_{\theta} Ql(\theta) \quad Ql(\theta) = \frac{E_x}{MSE_{max}(\theta)}$$

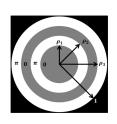
Avec E_x l'énergie de la scène $\int |x(u) - E[x(u)]|^2 du$.

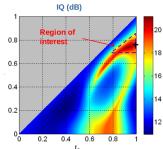

Optimisation d'un masque de phase pour l'EDOF Résultats d'optimisation



 \Longrightarrow Compromis entre qualité de restauration et invariance stricte

Résultats de déconvolution





Masque de phase pour l'EDOF

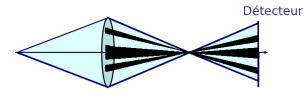
Autre composant optique

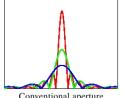
- Masque de phase annulaire
- Thèses à l'IOGS (R. Falcón[3], O. Lévêque [4], A. Fontbonne [5])

Poursuite des travaux sur l'EDOF par masque de phase :

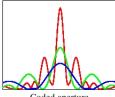
- Optimisation du nombre d'anneaux [3]
- Application à la localisation 3D de particules en microscopie [4]
- Validation expérimentale robustesse à une source polychromatique [5]

- 1 Co-conception d'un composant optique simple
 - Masque de phase pour l'extension de profondeur de champ
 - Ouverture codée pour l'estimation de la 3D par Depth from Defocus
 - Bilan


Depth from Defocus


- L'estimation locale du flou de défocalisation permet d'estimer la profondeur
- Enjeu de co-conception : comment rendre le flou de défocalisation encore plus informatif?

Pupille codée en amplitude


Pupille codée proposée par Levin et al (2007)[6] pour "encoder" le flou de défocalisation

 $FTM = |\tilde{h}|$ à plusieurs profondeurs

Conventional aperture

Coded aperture

Optimisation d'une pupille codée pour la 3D par DFD *Modélisation du problème*

Densité de probabilité de la scène

Modèle Gaussien :

$$p(\mathbf{x}) \propto \exp{-\frac{\alpha}{2} \left(|F_{\nu} \mathbf{x}|^2 + |F_{h} \mathbf{x}|^2 \right)}$$

Avec F_h et F_v matrices de convolution des gradients horizontaux et verticaux.

Modélisation de la FEP

Optique géométrique : la FEP correspond à la forme de la pupille, avec un grandissement dépendant de la profondeur $h_k(u,v)=h_O\left(\frac{u}{k},\frac{v}{k}\right)$

Modèle de bruit : Bruit blanc Gaussien de variance σ_b^2

Densité de probabilité de l'image

 $p_k(\mathbf{y})$ est également Gaussienne et s'écrit en Fourier :

$$p_k(\tilde{y}) \propto \exp{-\frac{1}{2} \sum_{\mu,\nu} \frac{|\tilde{y}(\mu,\nu)|^2}{\sigma_k(\mu,\nu)}}$$

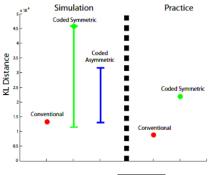
$$\sigma_k(\mu,\nu) = |\tilde{h}_k(\mu,\nu)|^2 \left(\alpha |\tilde{F}_1(\mu,\nu)|^2 + \alpha |\tilde{F}_2(\mu,\nu)|^2\right)^{-1} + \sigma_b^2$$

Optimisation d'une pupille codée pour la 3D par DFD Critère de co-conception

Objectif: Maximiser la dissimilarité entre les $p_k(\mathbf{y})$

Critère : Utiliser la divergence de Kullback-Leibler

$$D_{\mathsf{KL}}(p_{k_1}||p_{k_2}) = \int_{\mathbf{y}} p_{k_1}(\mathbf{y}) \log \frac{p_{k_1}(\mathbf{y})}{p_{k_2}(\mathbf{y})} d\mathbf{y}$$

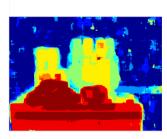

En remplaçant par le modèle de densité de probabilité de **y** en Fourier cela donne :

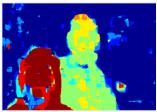
$$D_{KL}(p_{k_1}||p_{k_2}) = \sum_{\mu,\nu} \left(\frac{\sigma_{k_1}(\mu,\nu)}{\sigma_{k_2}(\mu,\nu)} - \log \frac{\sigma_{k_1}(\mu,\nu)}{\sigma_{k_2}(\mu,\nu)} \right)$$

La pupille est optimisée en maximisant la valeur minimale de D_{KL} entre 8 profondeurs.

Résultats d'optimisation de la pupille codée

Pupille optimale





Exemples de résultats

- 1 Co-conception d'un composant optique simple
 - Masque de phase pour l'extension de profondeur de champ
 - Ouverture codée pour l'estimation de la 3D par Depth from Defocus
 - Bilan

Bilan

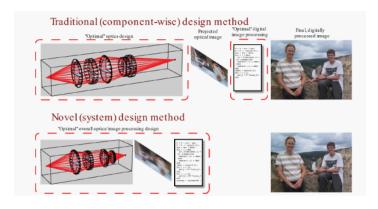
Deux exemples d'optimisations d'un composant du système optique :

- Pour l'extension de profondeur de champ
- Pour l'estimation de profondeur

Approches de co-conception :

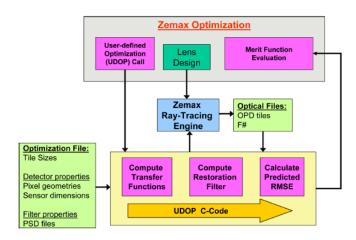
- Définition d'un critère analytique "simple" à calculer
- Trouver des règles empiriques sur des exemples simples pour limiter la recherche de solutions

- 1 Co-conception d'un composant optique simple
- 2 Co-conception de systèmes optiques complets
- 3 Conclusion


- 2 Co-conception de systèmes optiques complets
 - Co-conception pour la qualité image
 - Co-conception pour la simplification du système optique
 - Co-conception pour la 3D
 - Bilan

Co-conception pour la qualité image

Objectif : Concevoir des systèmes plus compacts et moins coûteux



[Stork et al, Applied Optics, 2008]

Co-conception pour la qualité image Démarche d'optimisation

Démarche proposée par Stork et Robinson (2008) [7]

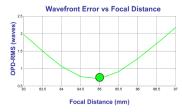
Co-conception pour la qualité image *Modélisation*

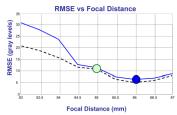
Modélisation de la scène : DSP apprise

Modélisation du bruit : Bruit blanc Gaussien de variance σ_b^2

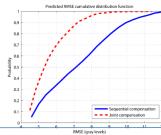
Modélisation optique : FEP h donnée par le logiciel de conception optique

Traitement : Filtrage de Wiener *d*


Critère de performance (écrit en 1D)


$$\mathsf{MSE} = \int_{\mu} \mathsf{DSP_x}(\mu) |\tilde{h}(\mu)\tilde{d}(\mu) - 1|^2 + |\tilde{d}(\mu)|^2 \sigma_b^2 d\mu$$

Co-conception pour la qualité image Résultats d'optimisation


Optimisation de la mise au point d'une lentille simple

⇒ On arrive à des conclusions contre-intuitives pour un opticien!

Comparaison de performance avec et sans co-conception sur 1000 systèmes complexes

- 2 Co-conception de systèmes optiques complets
 - Co-conception pour la qualité image
 - Co-conception pour la simplification du système optique
 - Co-conception pour la 3D
 - Bilan

Co-conception pour la simplification du système optique Démarche de co-conception

Travaux de thèse de M. Burcklen (2018) [8] à l'IOGS

Objectif

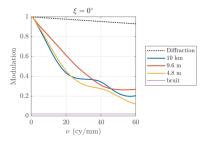
Allèger un système optique en conservant une bonne qualité d'image hors axe

Pour réduire les contraintes optiques, un traitement de déconvolution unique sur toute l'image est ajouté

⇒ II faut diminuer la variation de la FEP avec le champ

Enjeu

Comment concevoir conjointement cet imageur?

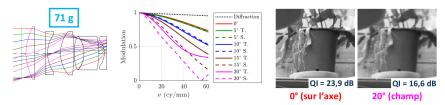

Co-conception pour la simplification du système optique Démarche de co-conception

Principe

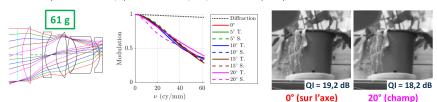
S'inspirer des travaux sur l'EDOF pour trouver des règles empiriques de co-conception

Observation des résultats d'optimisation de masque de phase pour l'EDOF :

- les FTM sont quasi-invariantes
- les FTM ne s'annulent pas
- les FTM sont suffisamment hautes pour ne pas amplifier le bruit lors du traitement


⇒ Traduction de ces critères de co-conception en des critères approchés que connait le logiciel de conception optique

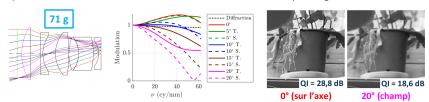
Co-conception pour la simplification du système optique Résultats d'optimisation


Performance des systèmes optiques seuls suivant les modes d'optimisation

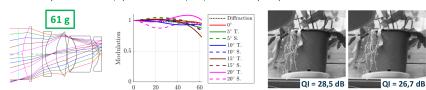
Optimisation conventionnelle: en minimisant la taille RMS du spot diagram

Optimisation conjointe

variables : rayons de courbures, épaisseurs de verre/d'air, coefficients asphériques



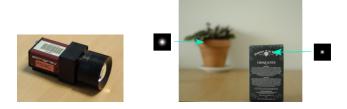
Co-conception pour la simplification du système optique Résultats d'optimisation


Performance des systèmes avec traitement suivant les modes d'optimisation

Optimisation conventionnelle: en minimisant la taille RMS du spot diagram

Optimisation conjointe

variables : rayons de courbures, épaisseurs de verre/d'air, coefficients asphériques



- 2 Co-conception de systèmes optiques complets
 - Co-conception pour la qualité image
 - Co-conception pour la simplification du système optique
 - Co-conception pour la 3D
 - Bilan

CAM3D : caméra monovoie 3D passive développée à l'ONERA (thèse de P. Trouvé) [9]

- Lentille chromatique pour le DFD
- Modèles de performances
- Cahier des charges issu de la robotique autonome
- Pré-dimensionnement par optique géométrique
- Optimisation fine par un logiciel de conception optique

Variation de la focale de l'objectif avec la longueur d'onde

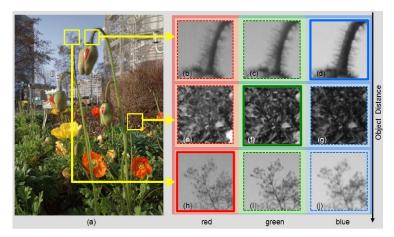
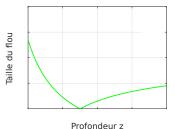
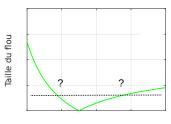
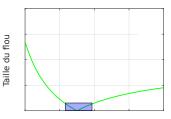



Figure tirée de la publication de Guichard et al. [10]



Variation du flou de défocalisation pour une optique conventionnelle

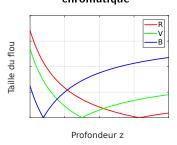
Variation du flou de défocalisation pour une optique conventionnelle



Profondeur z

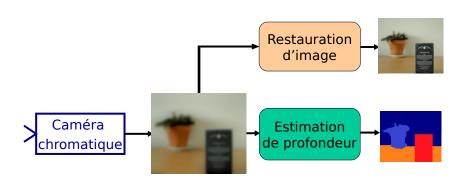
Deux profondeurs correspondent au même niveau de flou

Variation du flou de défocalisation pour une optique conventionnelle



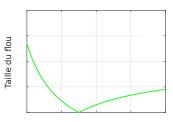
Profondeur z

Dans la profondeur de champ de la caméra, aucun flou ne peux être mesuré (zone aveugle)

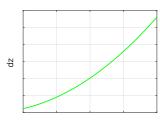


Variation du flou de défocalisation avec la profondeur pour une optique chromatique

- Pas de zone aveugle
- Pas d'ambiguité sur la profondeur
- Mais réduit la qualité image



Deux sorties de la caméras, donc deux modèles de performance


Approche "optique" : regarder la variation du flou avec la profondeur z

Profondeur z

$$\epsilon(z) = 2Rz_i \left| \frac{1}{f'} - \frac{1}{z} - \frac{1}{z_0} \right|$$

- Meilleure précision quand p \rightarrow 0?
- Et la profondeur de champ?
- Et le bruit?
- Et une optique non conventionnelle?

Profondeur z

$$dz \simeq \frac{z^2}{2Rf'}d\epsilon$$

⇒ Besoin d'un modèle de performance plus précis

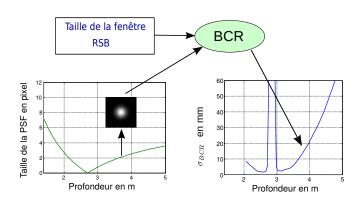
Modèle de scène Gaussien : $p(\mathbf{x}) \propto \exp^{-\frac{||D\mathbf{x}||^2}{2\sigma_{\mathbf{x}}^2}}$

D matrice de convolution des gradients horizontaux et verticaux

Modélisation du bruit : blanc Gaussien de variance σ_b^2

Densité de probabilité de l'image associée à la profondeur z

$$p(\mathbf{y};z) = \left| \frac{Q(z)}{2\pi} \right|_{+}^{1/2} \exp^{-\frac{1}{2}\mathbf{y}^{t}Q(z)\mathbf{y}}$$

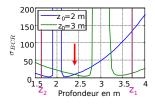

Avec
$$Q(z) = \frac{1}{\sigma_b^2} (I - H(z)(H^t(z)H(z) + \alpha D^t D)^{-1}H^t(z))$$

 $\alpha = \sigma_b^2/\sigma_x^2$
 $|A|_+$ produit des valeurs propres non nulles de A .

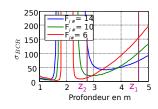
Modélisation de la performance Calcul de la borne de Cramér Rao

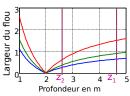
$$\sigma_{BCR}^2(z) = \left(\frac{1}{2} \operatorname{tr} \left(Q^+(z) \frac{\partial Q}{\partial z} Q^+(z) \frac{\partial Q}{\partial z} \right) \right)^{-1}$$

Avec A^+ la pseudo inverse de A

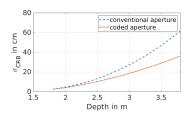


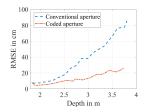
- Caractérisation de la précision en fonction de la profondeur
- Prends en compte le bruit
- Prends en compte l'optique la question de la profondeur de champ
- Prends en compte le traitement



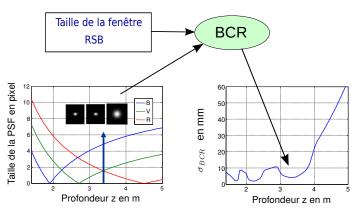


Utilisation du modèle pour différentes configurations


- || n'existe pas "un" système optimal pour le DFD
- La taille elle même du flou détermine la performance
- Conclusions qui peuvent s'opposer au modèle purement optique

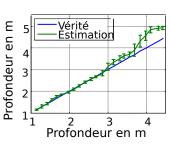


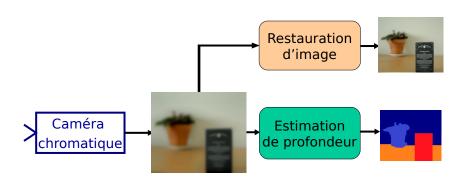
Performance théorique et expérimentale de la pupille codée proposée par Levin et al [6]

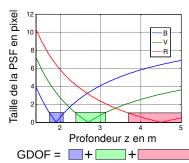


- Validation expérimentale du modèle
- Gain de la pupille codée important pour de grande défocalisation

⇒ Modèle de scène gaussien dans la décomposition luminance/chrominance


- Disparition des asymptotes verticales
- On peut comparer différents systèmes chromatiques


- Réalisation d'une optique chromatique à l'IOGS
- Etalonnage des FEP à plusieurs profondeurs
- Estimation de profondeur par maximum de vraisemblance


Deux sorties de la caméras, donc deux modèles de performance

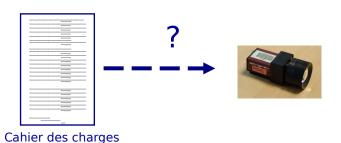
Principe

- Chaque canal a une profondeur de champ différente
- Il existe toujours un canal plus net que les autres
- On peut "transférer" les hautes fréquences du canal le plus net vers les canaux flous - Travaux de F. Guichard et al [10]

$$y_c = \alpha HF_R + \beta HF_V + \gamma HF_B$$

Soit L la plage de profoneurs d'intérêt

$$GDOF = (\cup_c DOF_c) \cap L$$



Co-conception pour la 3D Cahier des charges

Contraintes liées à l'application de robotique autonome :

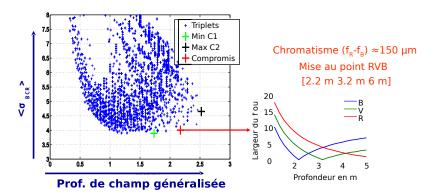
- Portée d'autonomie 1 à 5 m.
- Champ restreint 25°
- Résolution spatiale en profondeur 2cm à 3 m
- Précision souhaitée de l'ordre de guelgues cm

A partir du contexte, on peut déduire un certain nombre de paramètres :

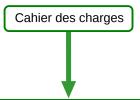
Dimensionnement préliminaire

Détecteur Stingray (pixels: $3.45 \mu m$)

Focale : 24 mm Ouverture : 3


Fenêtres traitées: 45x45 pixels

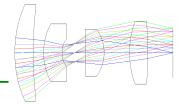
Chromatisme ?
Mise au point RVB ?



Principe

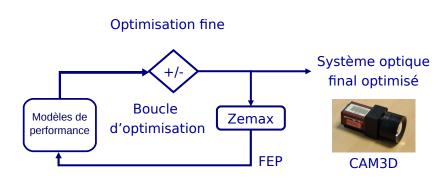
- Simulation de plusieurs systèmes optiques chromatiques (optique géométrique avec FEP gaussiennes)
- Comparaison des critères de performances et choix d'un système

Dimensionnement préliminaire

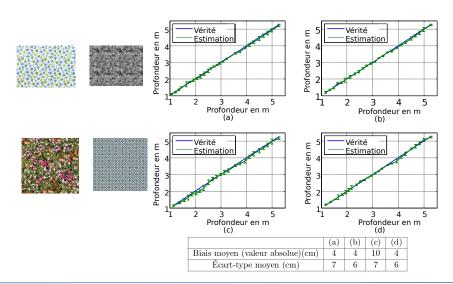

Détecteur Stingray (pixels: 345 μm)

Focale : 24 mm Ouverture : 3

Fenêtres traitées: 45x45 pixels


Chromatisme axial 150 μm

Mise au point RVB [2.2 m 3.2 m 6m]



Première architecture sur zemax

Sommaire

- 2 Co-conception de systèmes optiques complets
 - Co-conception pour la qualité image
 - Co-conception pour la simplification du système optique
 - Co-conception pour la 3D
 - Bilan

Bilan

Comment faire de la co-conception avec un logiciel de conception optique?

- Introduire directement les nouveaux critères dans l'optimiseur du logiciel
- Modifier la fonction optimisée par le logiciel avec des critères de co-conception approchés qu'il connaît

Comment partir de zéro?

■ Faire un pré-dimensionnement à l'aide de modèles simples

Sommaire

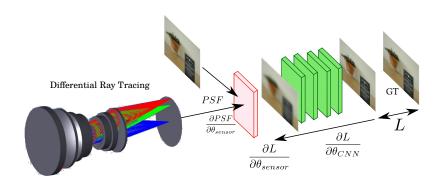
- 1 Co-conception d'un composant optique simple
- 2 Co-conception de systèmes optiques complets
- 3 Conclusion

Conclusion - A retenir

Quelques exemples de modèles de scène/optique/traitement

Une modélisation simple du système permet :

- d'aboutir à des critères de co-conception analytiques
- une optimisation de quelques paramètres d'un composant
- de définir des règles empiriques de bon fonctionnement
- de faire des pré-dimensionnements globaux


Le logiciel de conception optique permet :

- l'optimisation d'un système complet et réaliste
- des études de tolérancement
- les plans des lentilles à réaliser

Suite du cours : Co-conception et réseau de neurones.....

Co-conception et réseau de neurones

Liberte Égalité Fraternité

Merci de votre attention!

Des questions?

Bibliographie

- [1] E. R. Dowski et W. T. Cathey, Extended depth of field through wave-front coding. Applied optics, 34, pp. 1859-1866 (1995).
- [2] F. Diaz, F. Goudail, B. Loiseaux et J.-P. Huignard, Increase in depth of field taking into account deconvolution by optimization of pupil mask, Opt. Lett., 34 (19), pp. 2970-2972 (Oct 2009),

R. Falcón, F. Goudail et C. Kulcsár, How many rings for binary phase masks co-optimized for depth of field extension?.

Dans Imaging and Applied Optics 2016, p. CTh1D.5. Optical Society of America (2016),

- [4] O. Lévêque, C. Kulcsár, A. Lee, H. Sauer, A. Aleksanyan, P. Bon, L. Cognet et F. Goudail, Co-designed annular binary phase masks for depth-of-field extension in single-molecule localization microscopy, Opt. Express, 28 (22), pp. 32426–32446 (Oct 2020), http: //www.opticsexpress.org/abstract.cfm?URI=oe-28-22-32426.
- A. Fontbonne, H. Sauer et F. Goudail,

 Theoretical and experimental analysis of co-designed binary phase masks for enhancing the depth of field of panchromatic cameras,

 Optical Engineering, 60 (3), pp. 1 20 (2021),

 https://doi.org/10.1117/1.0E.60.3.033101.
- [6] A. Levin, R. Fergus, F. Durand et W. T. Freeman, Image and Depth from a Conventional Camera with a Coded Aperture, Dans ACM SIGGRAPH 2007 Papers, SIGGRAPH '07, New York, NY, USA, ACM (2007),

http://doi.acm.org/10.1145/1275808.1276464

- [7] D. G. Stork et M. D. Robinson,

 Theoretical foundations for joint digital-optical analysis of electro-optical imaging systems,
 - Appl. Opt., 47 (10), pp. B64–B75 (Apr 2008),
- [8] M.-A. Burcklen, H. Sauer, F. Diaz et F. Goudail, Joint digital-optical design of complex lenses using a surrogate image quality criterion adapted to commercial optical design software, Appl. Opt., 57 (30), pp. 9005–9015 (Oct 2018),
 - http://ao.osa.org/abstract.cfm?URI=ao-57-30-9005
- [9] P. Trouvé, Conception conjointe optique/traitement pour un imageur compact à capacité 3D,
 - Theses, Ecole Centrale de Nantes (ECN) (décembre 2012),

[10] F. Guichard, H. Nguyen Phi, R. Tessières, M. Pyanet, I. Tarchouna et F. Cao,

Extended Depth-of-Field using sharpness transport across color channels,

Proceedings of SPIE - The International Society for Optical Engineering, 7250, p. 72500 (01 2009).