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June, 21th 2021. Peyresq summer school.

yohann.tendero@ipsa.fr


Syllabus

§ (YT) Modèles continus et discrets pour le ”flutter shutter”

§ (Pauline Trouvé) Modèles en co-conception et démarches
d’optimisation associées

§ (YT) Exemples d’optimisation - choix du modèles
discret/discret vs continu/discret)

§ (Pauline Trouvé) Deep Codesign



Forewords

Computational photography

§ Aims at optimizing the overall imaging chain:
from the acquisition device to the final image produced by the
algorithms.

§ In other words, we increase the ”final image quality” using
new algorithms designed jointly with the cameras.

§ Some examples of applications :
§ Focus stacking. Camera combines several images at different

focus to produce an ”always in focus picture”
§ High Dynamic range. Camera combines several images to

avoid over/underexposure.
§ Face detection. Used to detect ”regions of interest” and tune

the focus + apply contrast change to produce the picture.
§ Flutter shutter. Modify the camera shutter to avoid motion

blurs.



Nicephore Niepce, the first photography (1827). Exposure time: 8
hours.



Overview

§ Image quality and exposure time. Acquisition models.

§ Signal to noise ratio, fundamental thm. of photography

§ Exposure time and motion blur

§ Flutter shutter camera (principles and models)



Passive acquisition systems: image quality and exposure
time
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From the light source to the pixels

Sensor array : photon counter.



Poisson random variable

Poisson random variable (r.v.): X „ Ppλq, λ ą 0 is called intensity

The realizations of a Poisson r.v. are supported on N

For any k P N we have PpX “ kq “ e´λ λ
k

k!

We have EpX q “ λ and varpX q “ λ



Simulating Poisson random variables

Simulation of a Poisson random variable X with intensity λ (D.
Knuth):

(The above algorithm returns X ).



Behavior of Poisson r.v. for large intensities

Convergence to Gaussian distribution for large intensities

(This explains the “If λ ď 50” in the algorithm).



Usefulness of using the Gaussian approximation for large λ

When simulating random variables :

§ we always assume that we can obtain independent realization
of Ur0, 1s

§ this is, obviously, no really the case: the realizations are
deterministic.
They satisfy ”nice” statistical properties so that ”they look as
random as possible”

§ However, every random generator is periodic!

§ and, obviously, the realizations doesn’t look like independent
realizations

§ So it is always worth estimating how many calls to the
pseudo-random generator will be needed.



Recall: simulating Gaussian random variables

Simulation of a Gaussian random variable (polar Box-Muller)

(As usual, we tacitly assume rand „ Ur0, 1s).
Also, using a sin we could get two independent r.v. with one call to rand



Simplest observation model

Often, one just assumes that the observed image obs is given by

obspnq “ g ‹ lpnq ` ηpnq

where l denotes the scene, g is a PSF that models the camera
optical system and ηpnq is an (additive) Gaussian white noise.
Yet, one observes (see eg. Colom et al., Analysis and Extension of
the Percentile Method, Estimating a Noise Curve from a Single
Image) that the noise variance depends on the local signal value.
A flutter shutter camera modifies the values observed by the
camera and another model can therefore be used.



Photon acquisition model
§ ∆t length of a time interval

§ Ideal observable landscape:
ũ “ 1
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Ideal case: a “∆t snapshot” at a pixel at position n is a Poisson
random variable

Pg˚lpr0,∆ts ˆ rn ´
1

2
, n `

1

2
sq „ P

ˆ
ż ∆t

0
ũpnqdt

˙

.

X „ P pλq, PpX “ kq “ λk e´λ

k!
.



Measuring image acquisition quality

Signal to Noise Ratio (SNR):
If X is an L2 random variable the SNR is

SNRpX q :“
|EpX q|

a

varpX q
.

Interpretation: Loosely speaking the SNR measures the relative
fluctuation of a r.v. around its mean.



Fundamental Theorem of Photography

1) The value observed obspnq at pixel n can be any realization of

obspnq „ P
ˆ
ż ∆t

0
ũpnqdt

˙

“ P p∆tũpnqdtq .

2) This pixel value is rescaled to be independent of the exposure

time: obspnq
∆t .

3) The quantity stored (the digital image) is therefore obspnq
∆t

Theorem
The SNR of pixel n is

a

∆tũpnq, where ũpnq is the light intensity
(photons per s) received at position n.

E
´

obspnq
∆t

¯

“ EPp∆tũpnqdtq
∆t “ ũpnq: this is what we would observe if

there were no noise.
var

´

obspnq
∆t

¯

“
ũpnq
∆t . Hence, the SNR at pixel n is

a

∆tupnq.
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Direct consequences of Fundamental Theorem of
Photography

Theorem
The SNR of pixel n is

a

∆tũpnq, where ũpnq is the light intensity
(photons per s) received at position n.

We deduce that to increase the image quality (the SNR) we can

§ Increase the exposure time ∆t

§ Increase the photon emission ũ, i.e., use a flash.

(However, a flash can only be used indoors).
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use a flash.

(However, a flash can only be used indoors).



Direct consequences of Fundamental Theorem of
Photography

Theorem
The SNR of pixel n is

a
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Recall: Fourier transform & convolution

For f , g P L1pRq or L2pRq we have f ˚ g convolution of two
functions

pf ˚ gqpxq “

ż

R
f pyqgpx ´ yqdy

For f , g P L1pRq or L2pRq, then

Fpf qpξq :“ f̂ pξq :“

ż

R
f pxqe´ixξdx

and F´1pFpf qqpxq :“ ~Fpf qpxq “ f pxq “ 1
2π

ş

R Fpf qpξqe ixξdξ.
Moreover Fpf ˚ gqpξq “ Fpf qpξqFpgqpξq and (Plancherel)

ż

R
|f pxq|2dx “ }f }2L2pRq “

1

2π

ż

R
|Fpf q|2 pξqdξ “ 1

2π
}Fpf q}2L2pRq (1)



Recall: band-limited functions and cardinal sine

§ Band-limited: û is band limited if ûpξq is supported on r´π, πs

§ Cardinal sine function sincpxq :“ sinpπxq
πx

Fpsincqpξq “ 1r´π,πspξq

§ The sinc function acts as a Dirac for band limited functions:

u ˚ sincpxq “ upxq @x P R.



Graph of cardinal sine



Fourier transform of cardinal sine



Photographing dynamic scenes could
only be done using short exposure

times, until...

The Coded Exposure

Agrawal et al. “Resolving Objects at Higher Resolution from a
Single Motion-Blurred Image”, CVPR 2007.
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Short Exposure Long Exposure Coded Exposure

Ground TruthMatlab Lucy

Our result
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Counterintuitive solution

To reduce motion blur, increase it!

Move camera as picture is taken.

-Kernel is known (no motion estimation needed).

-Kernel identical over the image.

 

Levin et al., ''Motion-invariant Photography'', 
SIGGRAPH, 2008.



Acquisition model: discrete one

Many Authors (eg Agrawal et al., Levin et al.) build the following
model:

§ The observed data is given by a finite sensor array
§ The camera diaphragm (or shutter) opens/closes on

sub-intervals of the time-aperture following a finite binary
sequence called ”code”

§ Do drawing.
§ Hence,in the ideal noiseless case the observed values should

be given by the discrete convolution

u ‹ α

where u denotes the discrete version of the observed
landscape, α is the ”code” and ‹ a discrete convolution

§ and the noisy observed value is

u ‹ α` η

where η is (in most cases) a Gaussian noise
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Image model: continuous one

§ ∆t length of a time interval

§ v relative velocity (unit: pixels
per second)

§ ũ “ 1
r´ 1

2
, 1

2
s
˚ g ˚ l ideal

observable landscape.

Ideal case:“∆t snapshot” at a pixel at position n is a Poisson
random variable

Pg˚lpr0,∆ts ˆ rn ´
1

2
, n `

1

2
sq „ P

ˆ
ż ∆t

0
ũpn ´ vtqdt

˙

.

X „ P pλq, PpX “ kq “ λk e´λ

k!
.



Imaging dynamic scenes : standard motion blur kernel

§ Observed value at pixel n : P
´

ş∆t
0 ũpn ´ vtqdt

¯

.

§ We have
ş∆t

0 ũpn ´ vtqdt “ 1
|v |pũ ˚ 1r0,v∆tsqpnq

§ and F
`

1r0,v∆ts

˘

“
şv∆t

0 e´ixξdx “ 2
sinp ξv∆t

2
q

ξ e´iξ
v∆t

2 .

§ Hence, F
`

1r0,v∆ts

˘

has zeros on r´π, πs the support of Fpũq
if |v |∆t ě 2.

Bottom line:
the standard motion blur kernel is not invertible in general.



  

● Effect of a blur of 10 pixels, SNR=100.

The blur function : 10 pixels blur (left), the modulus of it's Fourier transform : only a 
few zeroes (right).



  From left to right : the landscape, the observed, the restored (bestial).



  

Simulation algorithm of snapshot and deconvolution

1) Take a landscape

2) Convolve with the blur function to obtain the blurry 
landscape (intensities for step 3) 

3) Simulate the observed : simulate Poisson r.v.  

4) Deconvolution : Wiener filter with oracle

The Wiener filter is the optimum of



  From left to right : the landscape, the observed, the restored (oracle Wiener filtering).



Imaging dynamic scenes : need to limit the exposure time
or use a flutter shutter

§ Observed value at pixel n :

P
´

ş∆t
0 ũpn ´ vtqdt

¯

“ P
´

1
|v |pũ ˚ 1r0,v∆tsqpnq

¯

.

§ Hence, F
`

1r0,v∆ts

˘

has zeros on r´π, πs the support of Fpũq
if |v |∆t ě 2.

The non-negative quantity |v |∆t is nothing but the length of the
blur. (It’s a distance).

To have an invertible kernel ∆t must be such that p0 ăq∆t ă 2
|v | .

This limits the image quality.

In other words, contrarily to the steady case: we can
no more control the SNR using the exposure time.



Recall: Ideal image model (classic camera)

§ ∆t length of a time interval

§ v relative velocity (unit: pixels
per second)

§ ũ “ 1
r´ 1

2
, 1

2
s
˚ g ˚ l ideal

observable landscape.

Ideal case:“∆t snapshot” at a pixel at position n is a Poisson
random variable

Pg˚lpr0,∆ts ˆ rn ´
1

2
, n `

1

2
sq „ P

ˆ
ż ∆t

0
ũpn ´ vtqdt

˙

.

X „ P pλq, PpX “ kq “ λk e´λ

k!
.



Ideal image model (flutter camera)

§ ∆t length of a time interval

§ v relative velocity (unit: pixels
per second)

§ ũ “ 1
r´ 1

2
, 1

2
s
˚ g ˚ l ideal

observable landscape.

Ideal case:“∆t snapshot” at a pixel at position n is a Poisson
random variable

Pg˚lpr0,∆ts ˆ rn ´
1

2
, n `

1

2
sq „ P

ˆ
ż ∆t

0
αptqũpn ´ vtqdt

˙

.

X „ P pλq, PpX “ kq “ λk e´λ

k!
.



Formalization : continuous model

Definition
Each observation at a pixel centered at x is corrupted by an
additive noise ηpxq called readout noise. We assume that
Epηpxqq “ 0, that varpηpxqq “ σr ă `8 and that the obscurity
noise has a variance σ2

o ă `8. We have

obspxq „ P
ˆ
ż t2

t1

`

rupx ´ vtq ` σ2
o

˘

dt

˙

` ηpxq.

We assume that

lim
TÑ8

1

2T

ż T

´T
|rupxq|dx :“ µ P R

exists and is finite, that u :“ pru ´ µq P L1pRq and r´π, πs band limited.



Formalization in the general case

Definition
Each observation at a pixel centered at x is corrupted by an
additive noise ηpxq called readout noise. We assume that
Epηpxqq “ 0, that varpηpxqq “ σr ă `8 and that the obscurity
noise has a variance σ2

o ă `8. We have

obspxq „ P
ˆ
ż t2

t1

`

rupx ´ vtq ` σ2
o

˘

dt

˙

` ηpxq.

We assume that

lim
TÑ8

1

2T

ż T

´T
|rupxq|dx :“ µ P R

exists and is finite, that u :“ pru ´ µq P L1pRq and r´π, πs band limited.



Exposure function

The Agrawal et al. code. The binary exposure function
for the Agrawal et al.
code.

Code: pα0, ..., αL´1q P RL
ô Exposure function αptq “

L´1
ÿ

k“0

αk1rk∆t,pk`1q∆trptq.



Numerical coded exposure setup

1. The camera takes a burst of L images using an exposure time ∆t;

2. The k-th elementary image is assigned a numerical weight αk P R;

3. All images are added together to get one observed image.
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Numerical and analog flutter shutter

Code: pα0, ..., αL´1q P RL ô Exposure function: αptq “
L´1
ÿ

k“0

αk1rk∆t,pk`1q∆trptq.

Definition

§ Numerical samples:

obspnq „
řL´1

k“0 αk

´

P
´

şpk`1q∆t

k∆t
ũpn ´ vtq ` σ2

odt
¯

` ηpkq
¯

.

§ Analog samples (αptq P r0, 1s):

obspnq „ P
”´

1
|v |αp

¨
v q ˚ ũ

¯

pnq ` }α}L1pRqσ
2
o

ı

` ηpnq

Assumption: ηpnq i.i.d. and independent form the Poisson r.v.

Recalls:

§ Velocity v : unit in pixel(s) per ∆t.

§ σ2
o ă `8: variance of the obscurity noise.

§ E pηpnqq “ 0, var pηpnqq “ σ2
r ă `8.



Conclusion

There are two models for the flutter shutter (and two variants of
flutter shutter: analog and numerical)

§ (Discrete) obspnq „ pu ‹ α` ηqpnq
§ (Continuous)

§ Numerical samples:

obspnq „
řL´1

k“0 αk

´

P
´

şpk`1q∆t

k∆t
ũpn ´ vtq ` σ2

odt
¯

` ηpkq
¯

.

§ Analog samples (αptq P r0, 1s):

obspnq „ P
”´

1
|v |αp

¨
v q ˚ ũ

¯

pnq ` }α}L1pRqσ
2
o

ı

` ηpnq

Code: pα0, ..., αL´1q P RL ô Exposure function: αptq “
L´1
ÿ

k“0

αk1rk∆t,pk`1q∆trptq.
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