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Coherent imaging Light propagation model

Huygens-Fresnel principle (scalar theory)

The Huygens-Fresnel principle states that each point of a medium (disturbed
by passing wave) becomes source of disturbance which propagates from this
point in all directions indiscriminately. (Indeed, when a uniform medium is
disturbed at some point then due to directional symmetry this disturbance
propagates in all directions equally and without any path/direction
discrimination). The interference (=addition) of all disturbances then results
in a certain amplitude of detected wave.
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Coherent imaging Light propagation model

Simulation of light propagation in free space

R = || ~MP|| =
√
(x− ξ)2 + (y− η)2 + z2
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Simulation of light propagation in free space

R = || ~MP|| =
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Coherent imaging Light propagation model

Simulation of light propagation in free space

kR = k
√

(x− ξ)2 + (y− η)2 + z2 (∗)

kR ' kz+k (x− ξ)2 + (y− η)2

2z

kR ' kz+ kx
2 + y2

2z
− k

2xξ+ 2yη
2z

(*) with k = n 2π
λ , n is the refractive index of the medium.
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Coherent imaging Light propagation model

Rayleigh Sommerfeld model

U(x,y, z) =
1
jλ

∫ ∫+∞
−∞ U(ξ,η, 0)

ejkR

R
cosθdξdη

R = || ~MP|| =
√
(x− ξ)2 + (y− η)2 + z2 and cosθ = cos(~ez,~R) = z

R

* Goodman, "Introduction to Fourier optics", Roberts and Company Publishers, 2005
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Coherent imaging Light propagation model

Rayleigh Sommerfeld model

U(x,y, z) =
1
jλ

∫ ∫+∞
−∞ U(ξ,η, 0)

ejkR

R
cosθdξdη

Replace cos(θ) by its expression
Replace R by its expression
Use the convolution product definition to simplify the expression
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Coherent imaging Light propagation model

Rayleigh Sommerfeld model

U(x,y, z) =
1
jλ

∫ ∫+∞
−∞ U(ξ,η, 0)

ejkR

R
cosθdξdη

Replace cos(θ) by its expression
Replace R by its expression
Use the convolution product definition to simplify the expression

U(x,y, z) = z
jλ

∫ ∫+∞
−∞ U(ξ,η, 0)ejkrR2 dξdη

U(x,y, z) = z
jλ

∫ ∫+∞
−∞ U(ξ,η, 0)ejk

√
(x−ξ)2+(y−η)2+z2

(x−ξ)2+(y−η)2+z2 dξdη

Reminder convolution product :
f(x,y) =

∫ ∫+∞
−∞ g(ξ,η).h(x− ξ,y− η)dξdη = g ∗

x,y
h

Uz(x,y) = U ∗
x,y
hz with hz(ξ,η) =

z
jλ
ejk
√
ξ2+η2+z2

ξ2+η2+z2
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Coherent imaging Light propagation model

Rayleigh Sommerfeld model

In space domain :

Uz(x,y) = U ∗
x,y
hz with hz(ξ,η) =

z
jλ
ejk
√
ξ2+η2+z2

ξ2+η2+z2

hz is called :

the propagation kernel
the impulse response
the PSF (Point Spread Function)

In Fourier domain (Angular Spectrum) :

Ũz(µx,µy) = Ũ0(µx,µy).h̃z(µx,µy)

with h̃z(µx,µy) = e
jzk

√
1− (2πµx)2

k2 −
(2πµy)2

k2

h̃z is called :

the Transfer Function
the amplitude Transfer Function
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Coherent imaging Light propagation model

Fresnel approximation

Uz(x,y) =
z
jλ

∫ ∫+∞
−∞ U0(ξ,η)

ejk
√

(x−ξ)2+(y−η)2+z2

(x−ξ)2+(y−η)2+z2 dξdη

For large z, cos(θ) ' 1 and the phase expression of the spherical wave kR
can be simplified in (2.1) using a Taylor’s serie expansion of order 1.

kR = kz
(
1+ (x−ξ)2

z2
+ (y−η)2

z2

) 1
2 ' kz

(
1+ (x−ξ)2

2z2 + (y−η)2

2z2

)
Replace cos(θ) by 1 and kR by its approximation
Use the convolution product definition to simplify the expression
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Coherent imaging Light propagation model

Fresnel approximation

Uz(x,y) =
z
jλ

∫ ∫+∞
−∞ U0(ξ,η)

ejk
√

(x−ξ)2+(y−η)2+z2

(x−ξ)2+(y−η)2+z2 dξdη

For large z, cos(θ) ' 1 and the phase expression of the spherical wave kR
can be simplified in (2.1) using a Taylor’s serie expansion of order 1.

kR = kz
(
1+ (x−ξ)2

z2
+ (y−η)2

z2

) 1
2 ' kz

(
1+ (x−ξ)2

2z2 + (y−η)2

2z2

)
Replace cos(θ) by 1 and kR by its approximation
Use the convolution product definition to simplify the expression

Uz(x,y) =
1
jλz

∫ ∫+∞
−∞ U0(ξ,η)e

jk
(
z+ (x−ξ)2

2z + (y−η)2
2z

)
dξdη

Note : In the denominator R has been replaced by z.
This simplification cannot be done in the phase term because a small change in R in
the phase term leads to a big change in the phase (e.g., δR = λ/2, δφ = π).
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Coherent imaging Light propagation model

Fresnel approximation

Uz(x,y) =
1
jλz

∫ ∫+∞
−∞ U0(ξ,η)e

jk
(
z+ (x−ξ)2

2z + (y−η)2
2z

)
dξdη

Using the convolution product :

Uz(x,y) = U ∗
x,y
hFrz with hFrz (ξ,η) = 1

jλz
ejkzejk

ξ2+η2
2z

Fresnel assumption is valid if the second order term in the Taylor series of R
is negligeable : z3 > 10. π4λ {[(x− ξ)

2 + (y− η)2]2}max = zRS−Fr

For a diffractive area and a observation area squared of width W :
z3 > 10.π

λ
W4

In most many practical cases, a less restrictive condition can be applied : z� 64πλ
* Goodman, "Introduction to Fourier optics", Roberts and Company Publishers, 2005
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Coherent imaging Light propagation model

Fraunhofer approximation

Uz(x,y) =
1
jλz

∫ ∫+∞
−∞ U0(ξ,η)e

jk
(
z+ (x−ξ)2

2z + (y−η)2
2z

)
dξdη

Expand (x− ξ)2 and (y− η)2 in the phase and simplify the expression

simplify the expression by neglecting the term k
(ξ2+η2)

2z
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Coherent imaging Light propagation model

Fraunhofer approximation

Uz(x,y) ' ejkzejk
(x2+y2)

2z
jλz

∫ ∫+∞
−∞ U0(ξ,η)e−jk(

x
z
ξ+y

z
η)�����
ejk

(ξ2+η2)
2z dξdη

Uz(x,y) ' ejkzejk
(x2+y2)

2z
jλz

∫ ∫+∞
−∞ U0(ξ,η)e

−j2π( x
λz
ξ+ y

λz
η)dξdη︸ ︷︷ ︸

Fourier Transform F

Uz(x,y) ' ejkzejk
(x2+y2)

2z
jλz

Fµx,µy [U0(ξ,η)] with µx = x
λz

and µy = y
λz

Fraunhofer assumption is valid if :

Fresnel approximation is valid, i.e. z3 > 10. π4λ {[(x− ξ)
2 + (y− η)2]2}max

π
(
ξ2+η2

λz

)
max

� 1
If D is the width of a circular aperture in the transmittance plane :
z� πD

2

4λ
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Coherent imaging Light propagation model

Simulation of light propagation in free space : summary

Uz(x,y) =U0 ∗
x,y
hRSz | Uz(x,y) 'U ∗

x,y
hFrz | Uz(x,y) '∝ Ũ( xλz ,

y
λz , 0)

hRSz (ξ,η) = z
jλ
ejk
√
ξ2+η2+z2

ξ2+η2+z2 | hFrz (ξ,η) = 1
jλze

jkzejk
ξ2+η2

2z | e−j2π(µxξ+µyη)

Interferences of Spherical | Interferences of Paraboloidal | Interferences of Plane
waves | waves | waves

Note 1 : Fraunhofer propagation is called "far field" propagation whereas
Rayleigh-Sommerfeld and Fresnel propagation are called "near field propagations".

Note 2 : For z . lambda, scalar approximation is no more valid
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Coherent imaging Propagation models properties

Propagation models properties

The propagation operators have properties linked with physical properties of
light propagation.

In the case of Fresnel propagation :
the Fresnel kernel, which is a chirp function, has a Gaussian form 1, its
Fourier Transform (FT) is also a Gaussian :

hz(ξ,η) =
eikz

iλz
e
iπ
λz

(ξ2+η2) ↔ Fµx,µy(hz) = h̃z(µx,µy)

= eikze−iπλz(µ
2
x+µ

2
y)

1. FT of a Gaussian function : f(x) = e
− x

2
a2 ↔ f̃(µx) = a

√
πe−a

2(πµx)2
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Coherent imaging Propagation models properties

Propagation models properties

Additivity = Propagation
hz1 ∗ hz2 = hz1+z2 ↔ h̃z1 .h̃z2 = h̃z1+z2

Inverse = Inverse wave propagation
hz ∗ h−z = δ ↔ h̃z.h̃−z = 1

Neutral element/Identity element
=propagation of a plane wave

A ∗ hz = A ↔ Aδ.h̃z = Aδ

Comment 1 : Fresnel transform is redundant, all information is in each
plane z.
Comment 2 : These properties are true in a perfect analog world, with an
infinite number of pixels and pixel size equal to zero.

PhD Thesis of Loic Denis, "Traitement et analyse quantitative d’hologrammes
numériques", 2006.Corinne Fournier – Unconventional imaging and co-design 21 / 63



Coherent imaging Implementation of the free space propagation
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Coherent imaging Implementation of the free space propagation

Implementation of the free space propagation

Let us consider the near field propagation. Whatever is the model, RS’s one
or Fresnel’s one, the propagation can be expressed in a convolution form.
Uz(x,y) = U0 ∗

x,y
hz

Using the convolution theorem, Fourier Transforms F can be used to
compute the convolution :

Uz = F−1[F(U0).F(hz)] (1)

F(hz) = h̃z can be computed analytically in Frequency domain :

Uz = F−1[F(U0).h̃z] (2)

The complexity is less in eq(2)...
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Coherent imaging Implementation of the free space propagation

Sampling Issues

Several points have to be considered when implementing a propagation
operator :

Physical Issue
validity of the optical approximation
Numerical Issue
Sampling of the Fresnel function
Kernel separability
Borders effects
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Coherent imaging Implementation of the free space propagation

Sampling of the propagation kernel
The spatial frequencies of the propagation kernels increase with the radial
distance
In the case of Fresnel kernel :

Spectrogram :
gives the frequency as a func-
tion of the space variable

slope 
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Coherent imaging Implementation of the free space propagation

Sampling of the propagation kernel
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Coherent imaging Implementation of the free space propagation

Sampling of the propagation kernel
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Coherent imaging Implementation of the free space propagation

Sampling of the propagation kernel
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Coherent imaging Implementation of the free space propagation

Sampling of the propagation kernel

The low threshold value of z below which the kernel is badly sampled can be
estimated by considering the Shannon-Nyquist theorem

The instantaneous frequency finst of the signal should be lower than the
Nyquist-Shannon frequency (equal to 1

2pp
where pp is the pixel pitch of the

digital sensor).
Reminder : fxinst = 1

2π
∂φ
∂x

where φ is the signal phase.
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Coherent imaging Implementation of the free space propagation

Sampling of the propagation kernel

The low threshold value of z below which the kernel is badly sampled can be
estimated by considering the Shannon-Nyquist theorem

The instantaneous frequency finst of the signal should be lower than the
Nyquist-Shannon frequency (equal to 1

2pp
where pp is the pixel pitch of the

digital sensor).
Reminder : fxinst = 1

2π
∂φ
∂x

where φ is the signal phase.

In the case of the Fresnel kernel (implementation : eq(1) slide 23)
hFrz (x,y) = 1

jλz
ejkzejk

x2+y2
2z , the phase is φ(x,y) = −π/2+ kz+ kx

2+y2

2z

fxmaxinst =
xmax

λ.z < 1
2pp

thus z > 2xmaxpp
λ

As xmax = ppN/2 with N the columns number on the sensor

z > zFrlim sampling =
Np2

p

λ
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Coherent imaging Implementation of the free space propagation

Sampling of the transfer function

In frequency domain (implementation : eq(2) slide 23) the Fourier Transform
of the Fresnel kernel is :
Fµx,µy(hz) = h̃z(µx,µy) = e

jkze−jπλz(µ
2
x+µ

2
y)

fxmaxinst = µ
max
x λ.z < 1

2(1/Npp)
thus z < Npp

2µmaxx λ

µmaxx = 1
2pp

z <
Np2

p

λ
= zFrlim sampling
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Coherent imaging Implementation of the free space propagation

Sampling and propagation summary

z range where Fresnel 
approximation 

is valid

z range where 
Fresnel approximation 

is  NOT valid

z range where 
Rayleigh-Sommerfeld approximation 

is valid

z range where 

 
sampling is 

correct

z range where 

 
sampling is 

correct

zRS−Fr = 10. π4λ {[(x− ξ)
2 + (y− η)2]2}max

zFrlim sampling =
Np2

p

λ

Corinne Fournier – Unconventional imaging and co-design 33 / 63



Coherent imaging Image formation model

Image formation model

1 Coherent imaging

Light propagation model
Huygens-Fresnel principle

Rayleigh Sommerfeld model/ Fresnel model /Fraunhofer model

Simulation of light propagation in free space : summary

Propagation models properties

Implementation of the free space propagation

Image formation model
Image formation by a lens

Image formation : holography

Image formation : Phase masks and aberrations

2 Incoherent imaging

Incoherent PSF

Corinne Fournier – Unconventional imaging and co-design 34 / 63



Coherent imaging Image formation model

Image formation by a lens

The model of thin lens assumes that a lens simply delays the incident
wavefront by an amount proportional to the thickness of the lens ∆(x,y).
Phase shift : φ(x,y) = nlk0∆(x,y) + k0[∆0 − ∆(x,y)] (propagation in air and
nl the refractive index of the lens material)

Front view Side view

The transmittance of the thin lens is : tl(x,y) = ejk0∆0ejk0(nl−1)∆(x,y)

The complexe wave behind the lens is : U
′

l(x,y) = tl(x,y)Ul(x,y)
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Coherent imaging Image formation model

Thin lens model

In paraxial approximation (rays make a small angle θ to the optical axis) :
∆(x,y) = ∆0 −

x2+y2

2

(
1
R1

− 1
R2

)
tl(x,y) = ejk0nl∆0e

jk0(nl−1)x
2+y2

2

(
1
R1

− 1
R2

)
Keeping only the phase term that depends on (x,y) and introducing the lens
focal length f :

tl(x,y) = e−jk0
x2+y2

2f with f = (nl − 1)
(

1
R1

− 1
R2

)
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Coherent imaging Image formation model

Thin lens model

Application : Use the Fresnel propagation and the lens model to find the thin
lens formula.
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Coherent imaging Image formation model

Thin lens model : Numerical aperture

The thin lens model is equivalent to an optical setup that includes 2 thin lens
of focal length z0 and zI and same focal point.

Fourier 
plane

Ufimg(x,y) = F−1
x,y

(
Ũimg(µx,µy).P(

x
λzI

, y
λzI

)
)
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Coherent imaging Image formation model

Image formation : holography
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Coherent imaging Image formation model

Inline Holographic setups

Most simple and low cost setups in coherent imaging :

(a) lensless microscopy,
magnification G = 1

(b) lensless microscopy,
magnification
G = z+zs

z
> 1

(c) inline holographic
microscopy
magnification
G = 40, 60, 100

Note : Colors are used in the figure for visualization reasons. The light is although
monochromatic.
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Coherent imaging Image formation model

Inline Holography : Lensless microscopy model

Uz(x,y) = U0 ∗
x,y
hz = A.

(
t ∗
x,y
hz

)
, the amplitude model is linear.

Iz(x,y) = |Uz(x,y)|2, the intensity model is not linear.
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Coherent imaging Image formation model

Inline Holography : Lensless microscopy model

Introducing the complex opacity function ϑ such as ϑ = 1− t :

Uz(x,y) = U0 ∗
x,y
hz = A.

(
(1− ϑ) ∗

x,y
hz

)
Iz(x,y) ∝ |1− ϑ ∗

x,y
hz|

2

= 1+ |ϑ ∗
x,y
hz|

2 incident wave intensity and diffracted wave intensity

−ϑ ∗
x,y
hz wave diffracted by the object

−ϑ∗ ∗
x,y
h∗z wave diffracted by a virtual object (located at -z) of conjugate

phase
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Coherent imaging Image formation model

Inline Holography : Lensless microscopy model

Before being sampled on the pixel grid, the signal is low-pass filtered on the
pixel photosensitive area.

Model of the sensitive area effect :
Iκz(x,y) =∫x+κpp
x−κpp

∫y+κpp
y−κpp

Iz(x,y)dxdy
Iκz(x,y) = Iz ∗

x,y
Π(κ.pp,κ.pp)

κ2 is called the fill factor (=pixel’s
light sensitive area to its total
area).

...

...

Pixel

Photo-
sensitive  

area

Sampling step 
=

pixel pitch 
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Coherent imaging Image formation model

Inline Holography : Lensless microscopy model

After being low-pass filtered by the pixel photosensitive area, the intensity is
sampled.

Sampling of the signal :
Iκz(m,n) = Iκz(x,y).Xpp,pp(x,y)
Filtering + Sampling

Iκz(m,n) =(
Iz ∗
x,y
Π(κ.pp,κ.pp)

)
.Xpp,pp(x,y)

...

...

Pixel

Photo-
sensitive  

area

Sampling step 
=

pixel pitch 

Xpp,pp(x,y) = 1 if x = mpp and y = npp

0 else

Corinne Fournier – Unconventional imaging and co-design 44 / 63



Coherent imaging Image formation model

Inline Holographic Microscopy setup

Object Image

Sensor
 

Microscope
 objective

Tube lens

Uz(x,y) = Uimg ∗
x,y
hz

Taking into account only the magnification of the image :
Uimg(x,y) =

1
G
Uobj(x/G,y/G) with Uobj(x,y) = Uinc.tobj(x,y)

Taking into account the numerical aperture of the objective :
Ufimg(x,y) = Uimg ∗

x,y
PSF

Uz(x,y) =
1
G
Uinc.tobj(ξ/G,η/G)︸ ︷︷ ︸

Magnified object

∗
x,y

(
PSF ∗

ξ,η
hz

)
︸ ︷︷ ︸

New PSF
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Coherent imaging Image formation model

Inline Holographic Microscopy model

Object Image

Sensor
 

Microscope

 objective
Tube lens

Iz(x,y) = |Uz(x,y)|2 = |
1
G
Uinc.tobj(ξ/G,η/G)︸ ︷︷ ︸

Magnified object

∗
x,y

(
PSF ∗

ξ,η
hz

)
︸ ︷︷ ︸

New PSF

|2

In the case of z=0, and a point source object (modeled by a Dirac function) :
Iz(x,y) = |PSF(x,y)|2
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Coherent imaging Image formation model

Off-axis Holographic microscopy setup

Laser

Object

 

Microscope

Objective

Sensor

BS

BS
 

Microscope

Objective

The interferences between the object wave (in blue) and the reference wave
(in red) are modeled by :
I = |UObj +URef|

2 = |UObj|
2 + |URef|

2 +UObj.URef∗ +URef.UObj∗

URef(x,y) = e−i(k
Ref
x x+kRefy y)

UObj(x,y) = Uz(x,y) = Uinc.timg ∗
x,y

(
PSF ∗

ξ,η
hz

)
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Coherent imaging Image formation model

Off-axis Holographic microscopy model

To simplify and shorten the mathematical notations let us assume
kRefx x+ kRefy y = kxx

I(x,y) =

|UObj(x,y)|
2 + |e−ikxx|2︸ ︷︷ ︸

(0)

+UObj(x,y).e
ikxx︸ ︷︷ ︸

(+1)

+UObj
∗(x,y).e−ikxx︸ ︷︷ ︸

(−1)

Fµx,µy [I(x,y)] =

|ŨObj(µx,µy)|
2 + F(1)︸ ︷︷ ︸

(0̃)

+ ŨObj
∗(µx,µy) ∗ δ(µx + kxx,µy)︸ ︷︷ ︸˜(+1)

+ ŨObj(µx,µy) ∗ δ(µx − kxx,µy)︸ ︷︷ ︸
(−̃1)
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Coherent imaging Image formation model

Off-axis Holographic microscopy model illustration 1

Images examples in the case kRefx = kRefy :
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Coherent imaging Image formation model

Off-axis Holographic microscopy model illustration 2

Fµx,µy [I(x,y)]

* Verrier, Nicolas, et al. "Holographic microscopy reconstruction in both object and image
half-spaces with an undistorted three-dimensional grid." Applied optics,2015.
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Coherent imaging Image formation model

Tomographic Diffractive microscopy setup

Object

Rotating

 miror

 

Microscope

Objective

Sensor

BS
 

Microscope

Objective
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Coherent imaging Image formation model

Tomographic Diffractive microscopy model

UObj(x,y) = Uz(x,y) =
(
Uinc(ξ,η).timg(ξ,η)

)
∗
x,y

(
PSF ∗

ξ,η
hz

)
UObj(x,y, 0) =

(
U0
ince

jkincξ.timg(ξ,η)
)
∗
x,y
PSF(ξ,η)

ŨObj(µx,µy) =
(
U0
incδ(kinc/2π,0) ∗

µx,µy
t̃img

)
.P̃SF(µx,µy)

Shift of the transmittance spectrum in Fourier domain →Super-resolution
(numerical aperture is multiplied by 2).

+ 3D information...
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Coherent imaging Image formation model

Image formation : Phase masks and aberrations
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Coherent imaging Image formation model

Phase masks (setup)

Using a 4f setup, and a phase mask, it is possible to co-design a 3D PSF –>
give accurate positioning of objects in 3D.

Ref :
Shuang, Bo, et al. "Generalized recovery algorithm for 3D super-resolution microscopy
using rotating point spread functions." Scientific reports 6.1 (2016) : 1-9.
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Coherent imaging Image formation model

Phase masks : 3D PSF

Example of 3D PSF

Ref :
Shuang, Bo, et al. "Generalized recovery algorithm for 3D super-resolution microscopy
using rotating point spread functions." Scientific reports 6.1 (2016) : 1-9.
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Coherent imaging Image formation model

Phase masks : model

The phase mask acts in Fourier Domain of the image. Taking into account
only the magnification G of the image :
UGimg(x,y) = Uobj(x/G,y/G)/G
Taking into account the numerical aperture (NA) of the objective :
UPSFimg(x,y) = U

G
img ∗

x,y
PSFNA

UPSFimg(x,y) = F−1
x,y
(
Ũimg(µx,µy). ˜PSFNA(µx,µy)

)
Taking into account the mask in Fourier space :
UMaskimg (x,y) = UPSFimg ∗

x,y
PSFMask

UMaskimg (x,y) = F−1
x,y

(
Ũ
PSF

img(µx,µy). ˜PSFMask(µx,µy)
)

UMaskimg = UGimg ∗ PSFNA ∗ PSFMask
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Coherent imaging Image formation model

Phase masks : codesign

Phase mask can be used to record 3D information in the image, to improve
axial localization/resolution 2 of an image.
See Pauline Trouvé’s lecture.

2. Verrier, Nicolas, et al. "Co-design of an in-line holographic microscope with enhanced
axial resolution : selective filtering digital holography." JOSA A, 2016
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Coherent imaging Image formation model

Model of aberration

Vocabulary : a diffraction limited system assume that there is no aberration.

Aberrations distort the exit-pupil wavefront. It is no more a truncated
spherical wavefront.
It can lead, e.g. to defocus error (spherical aberration).
The aberrations can be modeled by a phase mask located in the exit-pupil
plane.
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Coherent imaging Image formation model

Model of aberration

Distortion of the exit-pupil wavefront can be modeled by a "virtual" shifting
phase plate in the aperture deforming the wave front that leaves the pupill.
Let’s consider the path-length error Werr(x,y) at point (x,y). The complex
transmittance of the imaginary shifting plate, called the generalized pupil
function is given by :
Perr(x,y) = P(x,y)ejkW

err(x,y)

The coherent PSF is given by :
PSF = F(Perr)
In Fourier domain the aberrations can be modeled by Zernike polynoms.
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Incoherent imaging

Incoherent imaging

1 Coherent imaging

Light propagation model
Huygens-Fresnel principle

Rayleigh Sommerfeld model/ Fresnel model /Fraunhofer model

Simulation of light propagation in free space : summary

Propagation models properties

Implementation of the free space propagation

Image formation model
Image formation by a lens

Image formation : holography

Image formation : Phase masks and aberrations

2 Incoherent imaging

Incoherent PSF
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Incoherent imaging Incoherent PSF

Incoherent PSF

1 Coherent imaging

Light propagation model
Huygens-Fresnel principle

Rayleigh Sommerfeld model/ Fresnel model /Fraunhofer model

Simulation of light propagation in free space : summary

Propagation models properties

Implementation of the free space propagation

Image formation model
Image formation by a lens

Image formation : holography

Image formation : Phase masks and aberrations

2 Incoherent imaging

Incoherent PSF
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Incoherent imaging Incoherent PSF

Incoherent PSF and Optical Transfer Function

When using incoherent illumination, the various impulse responses in the
image plane vary in uncorrelated fashions. They must therefore be added on
intensity basis.

In space domain :

Iimg(x,y) = Iobj ∗
x,y

|PSFcoh|2

In Fourier domain :

Ĩimg(µx,µy) = Ĩobj(µx,µy).
(
P̃SFcoh ∗

(µx,µy)
P̃SFcoh

∗)
︸ ︷︷ ︸

Transfer Function
The normalized incoherent Transfert function is called the Optical Transfer
function OTF)
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Incoherent imaging Incoherent PSF

Incoherent PSF and Optical Transfer Function

For a diffraction limited incoherent system :
P̃SFcoh(µx,µy) = P(λziµx, λziµy)
˜PSFincoh(µx,µy) = P(λziνx, λziνy) ∗

(µx,µy)
P(λziµx, λziµy)
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