Génération d'images par entrainement de réseaux adversaires PEYRESQ SUMMER SCHOOL

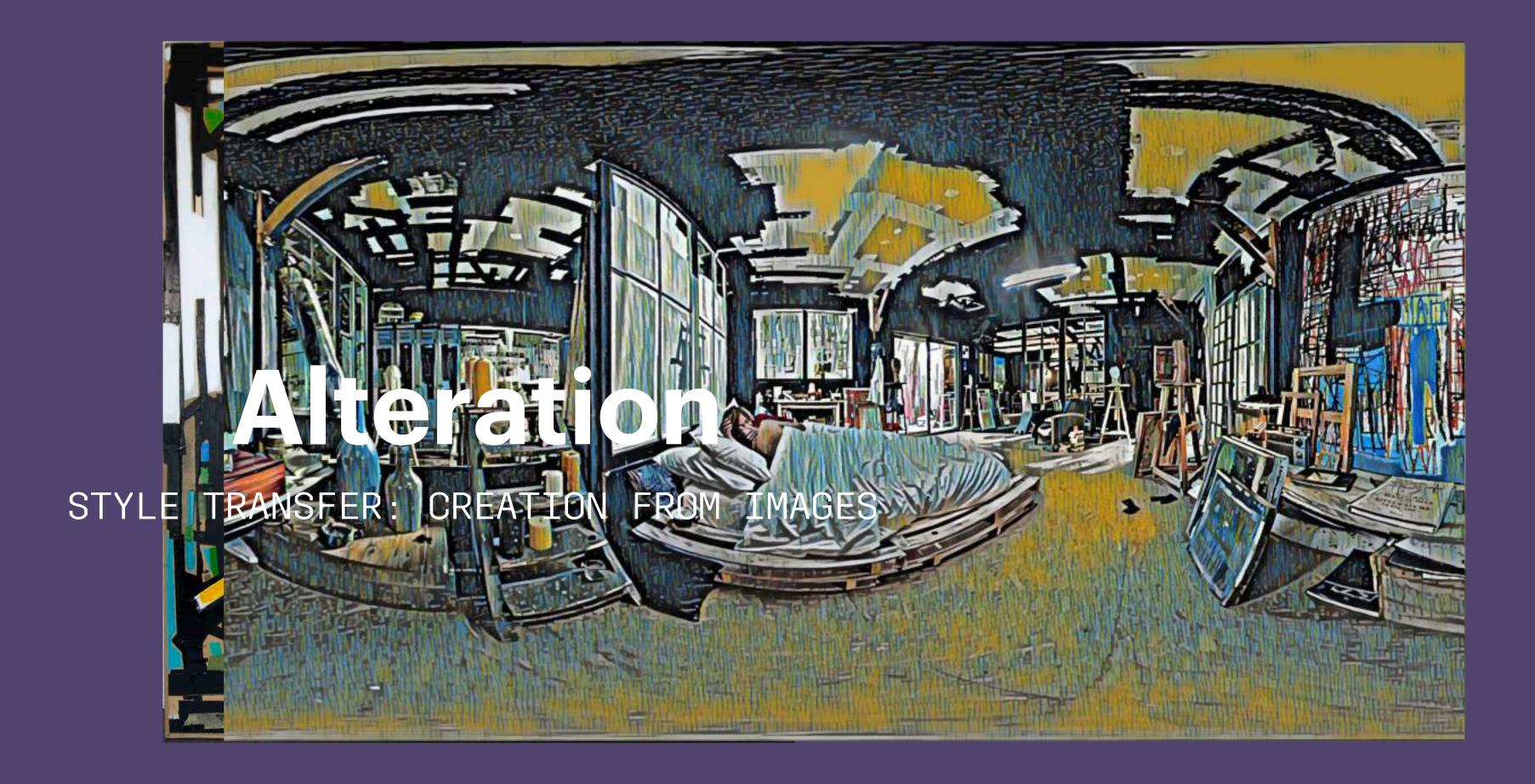
Camille Couprie, Facebook AI research

Introduction

DesIGN: Design Inspiration from Generative Networks AI AND CREATIVITY

Othman Sbai, Mohamed Elhoseiny, Antoine Bordes, Yann LeCun, Camille Couprie

.

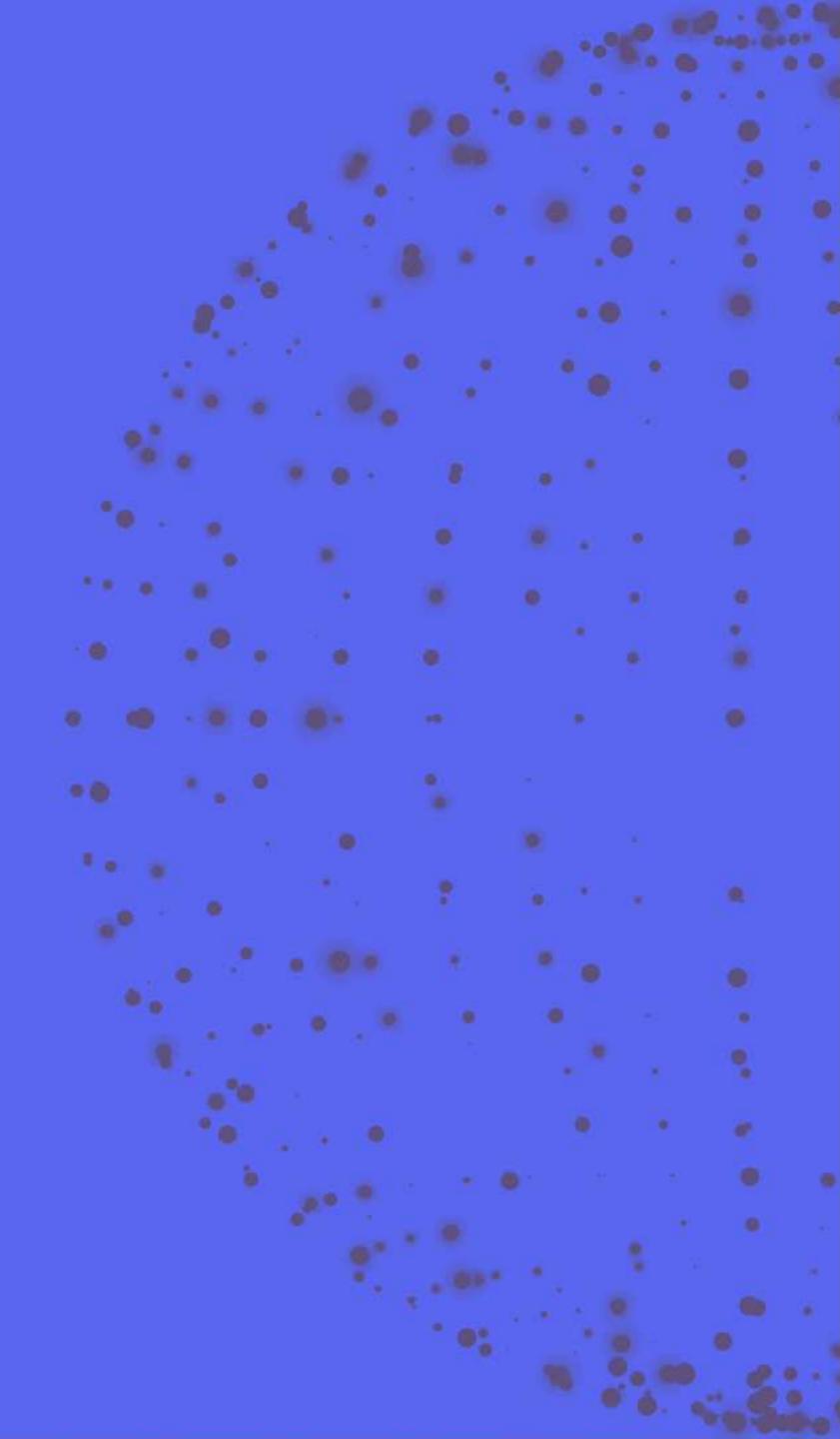


Source Image

Introduction

Shape and Texture Creativity

B Conditioning on Shapes



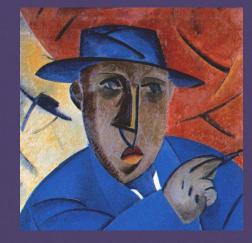
CREATION FROM RANDOM NUMBERS

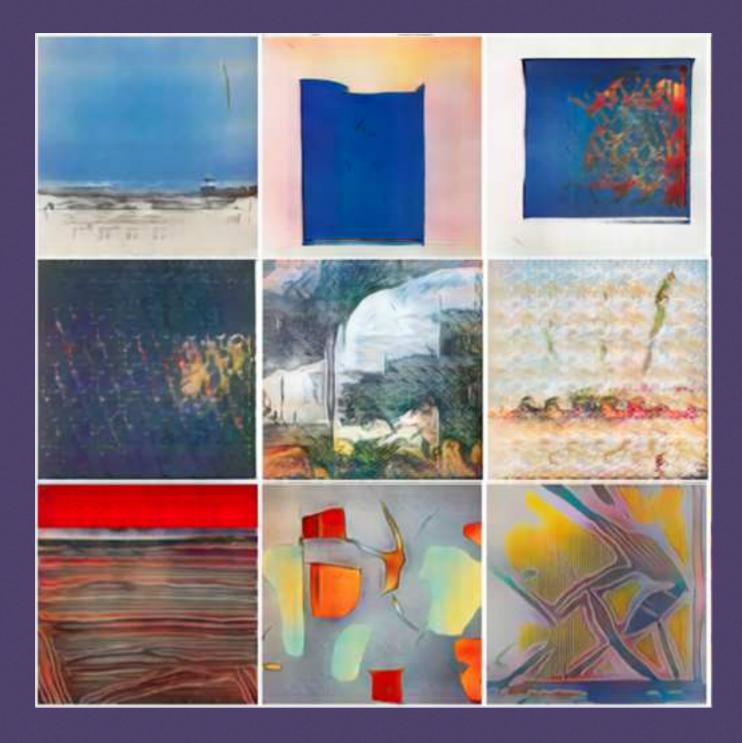
New style

High Renaissance

Abstract Art

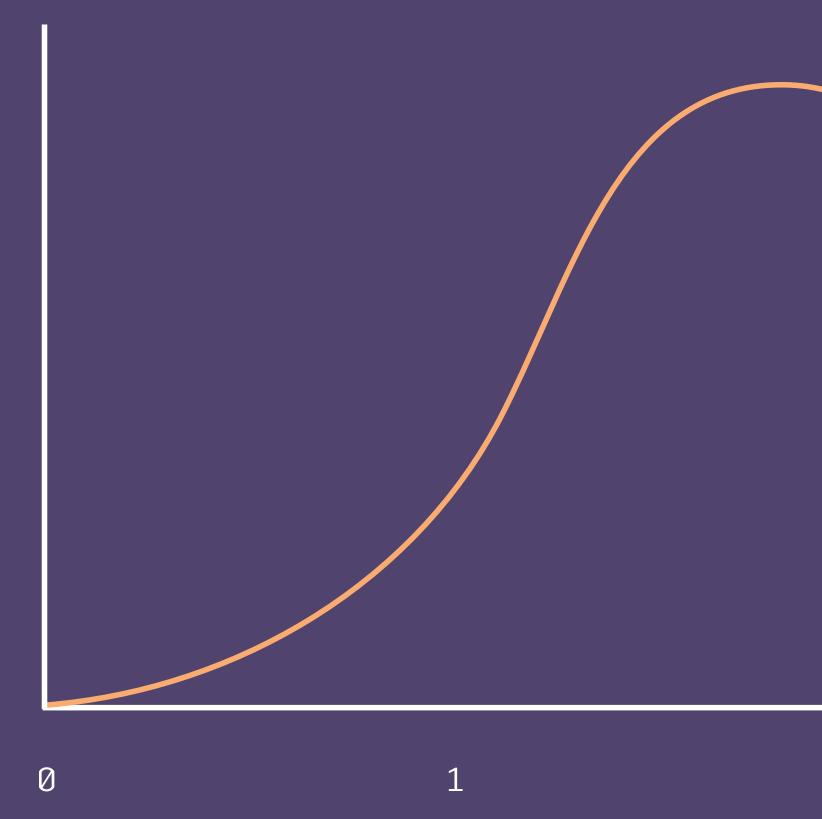
Cubism





Principle of least effort: Wundt curve

HEDONIC VALUE



3

4

2

When Al meets fashion...

Motivations for this project

FACEBOOK

- **FAIR: Advance state of the art in machine** • intelligence
- Unlocking ways for AI to enhance • creativity could enable new ways for people to express themselves creatively

FASHION BRANDS

- **Create unexpected products**
- **Exploit data library of past collections to** propose new products consistent with the brand DNA.
- **Acquire new expertise**

RELATED WORK 1

A GENERATIVE MODEL OF PEOPLE IN CLOTHING, CHRISTOPH LASSNER ET AL.

TOWARD BETTER RECONSTRUCTION OF STYLE IMAGES WITH GANS. ALEXANDER LORBERT ET AL.

RELATED WORK 2

BE YOUR OWN PRADA: FASHION SYNTHESIS WITH STRUCTURAL **COHERENCE. SHIZHAN ZHU ET AL.**

Text Entry 1: The woman is wearing in beige with long sleeves.

Text Entry 2: The lady was wearing a multicolored longsleeved coat.

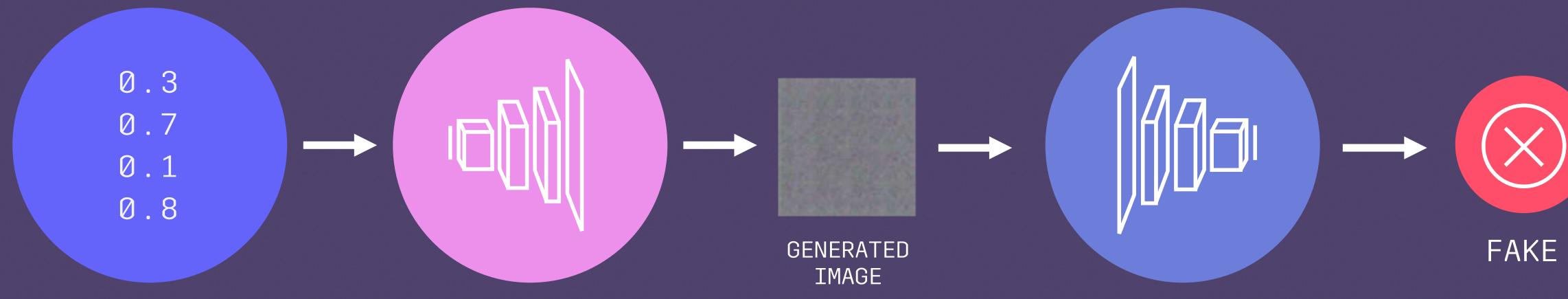
The Original Image

Text Entry 3: The lady is wearing a pink long-sleeved blouse.

Text Entry 4: The lady is wearing in white with short sleeves.

PIX2PIX: IMAGE-TO-IMAGE TRANSLATION. PHILLIP ISOLA ET AL.,

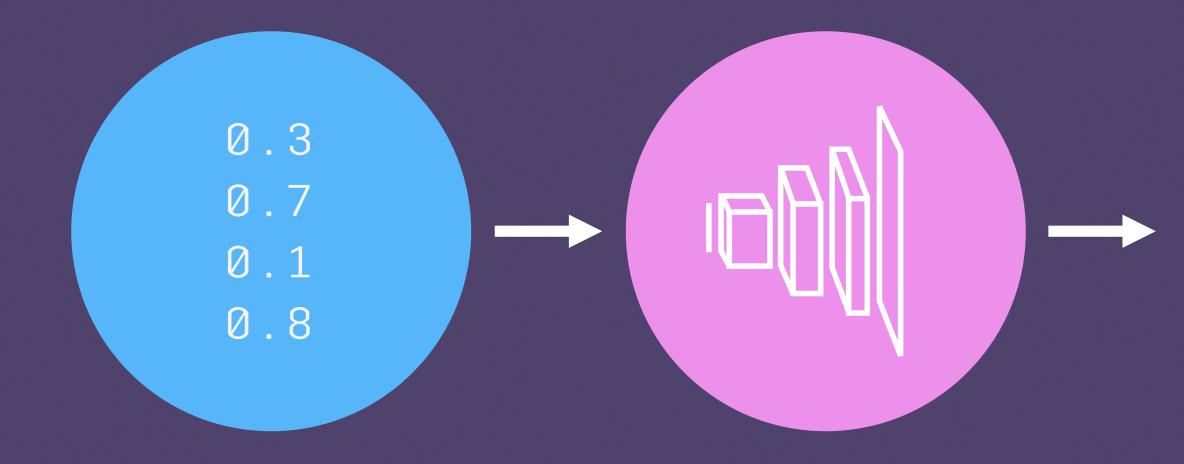
Generative Adversarial networks (GAN)



RANDOM NUMBERS

GENERATOR

ADVERSARIAL NETWORK

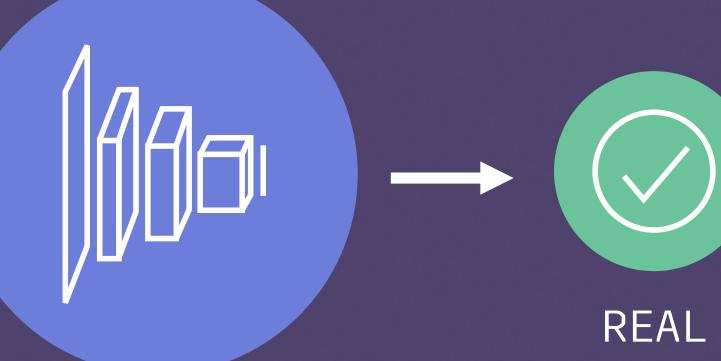


RANDOM NUMBERS

GENERATOR

REAL INPUT

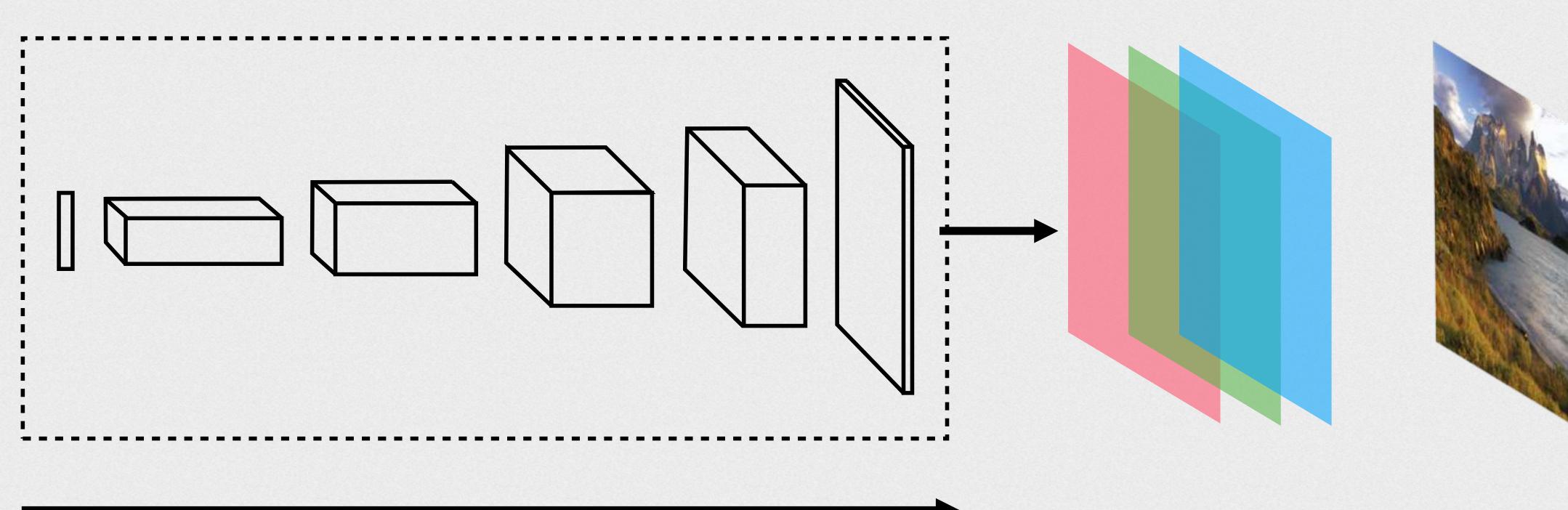
GENERATED IMAGE

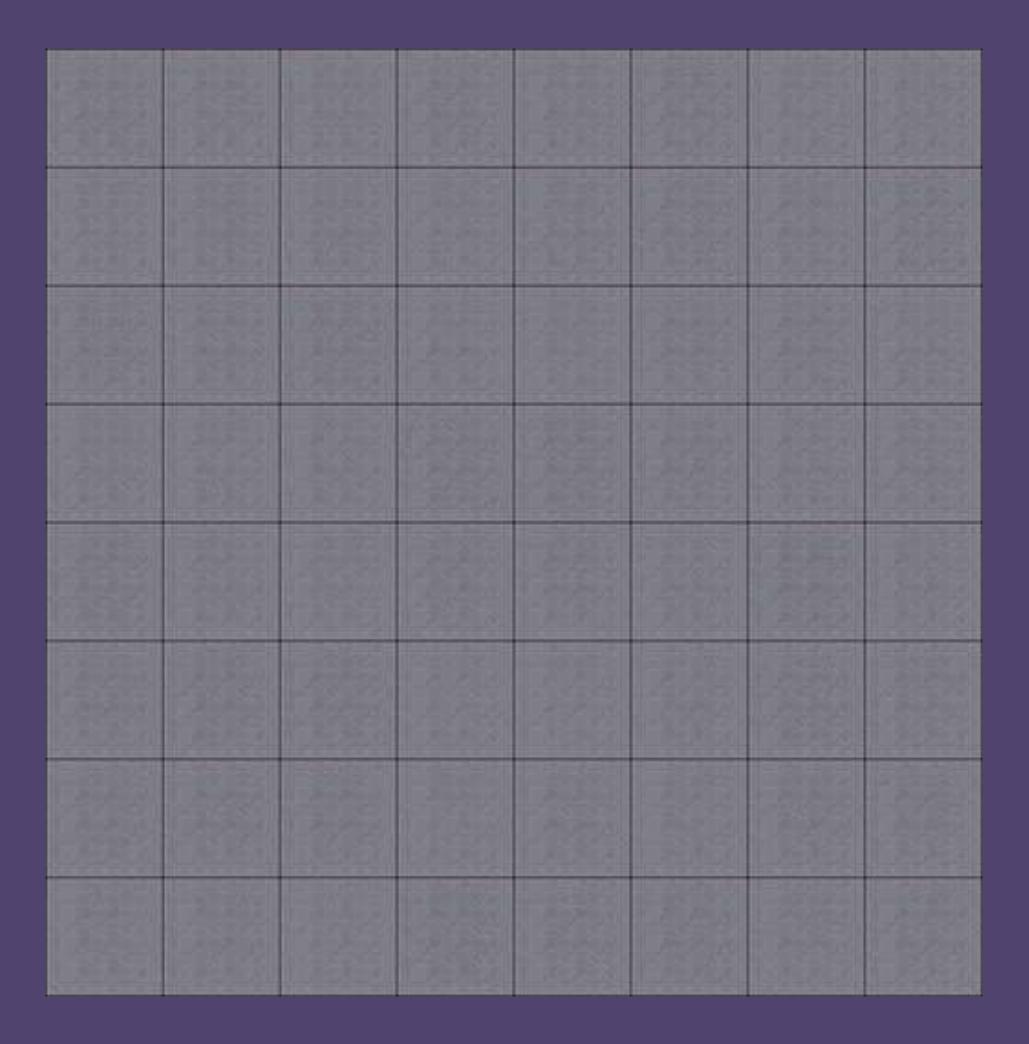


ADVERSARIAL NETWORK

Deep convolutional GANs

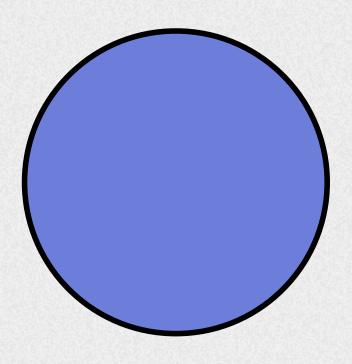
RADFORD ET AL : ICLR 2015

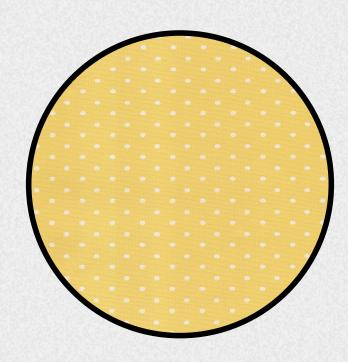




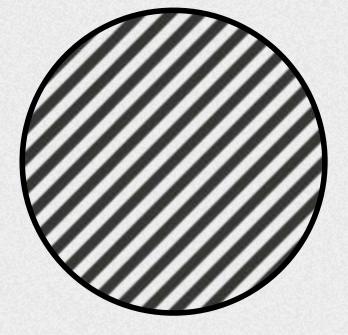
Training with pictures of about 2000 Clothing items

Shape and texture creativity





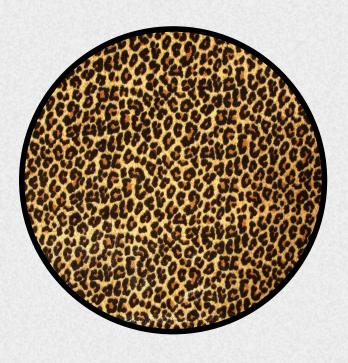
UNIFORM



FLORAL

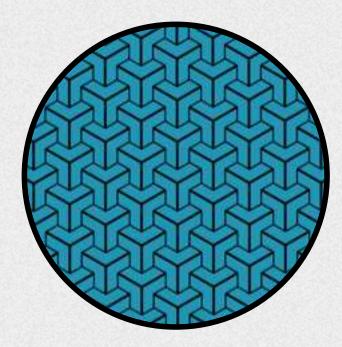
STRIPED

Texture classification



DOTTED

ANIMAL PRINT



GRAPHICAL

TILED

DRESS

PULLOVER

T-SHIRT

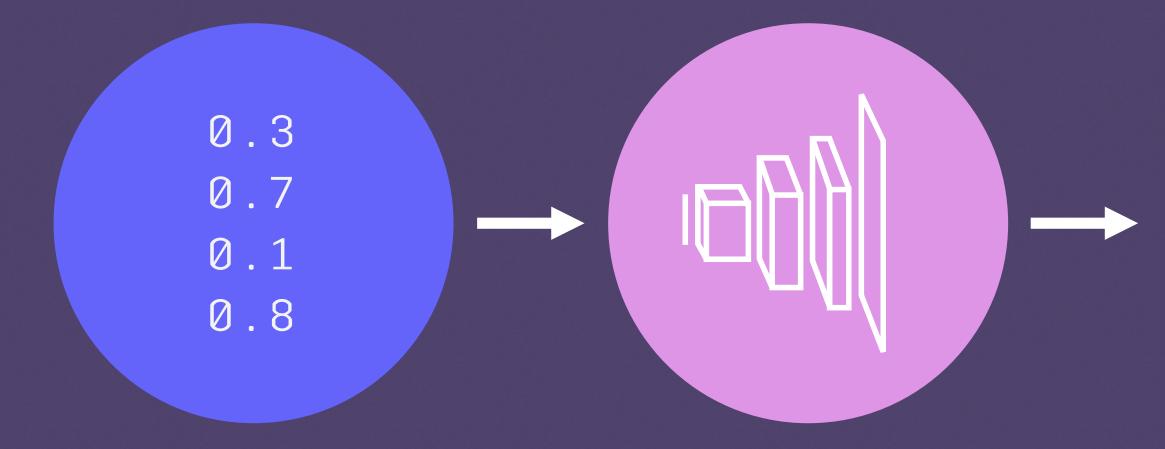
Shape classification

SKIRT

JACKET

COAT

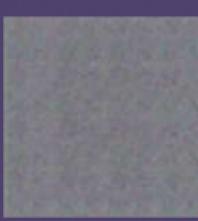
TOP



RANDOM NUMBERS

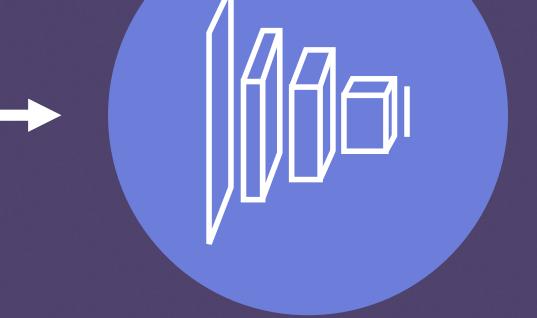
GENERATOR

REAL INPUT



GENERATED

IMAGE



SHAPE CLASS

0/1 (REAL/FAKE)

NETWORK

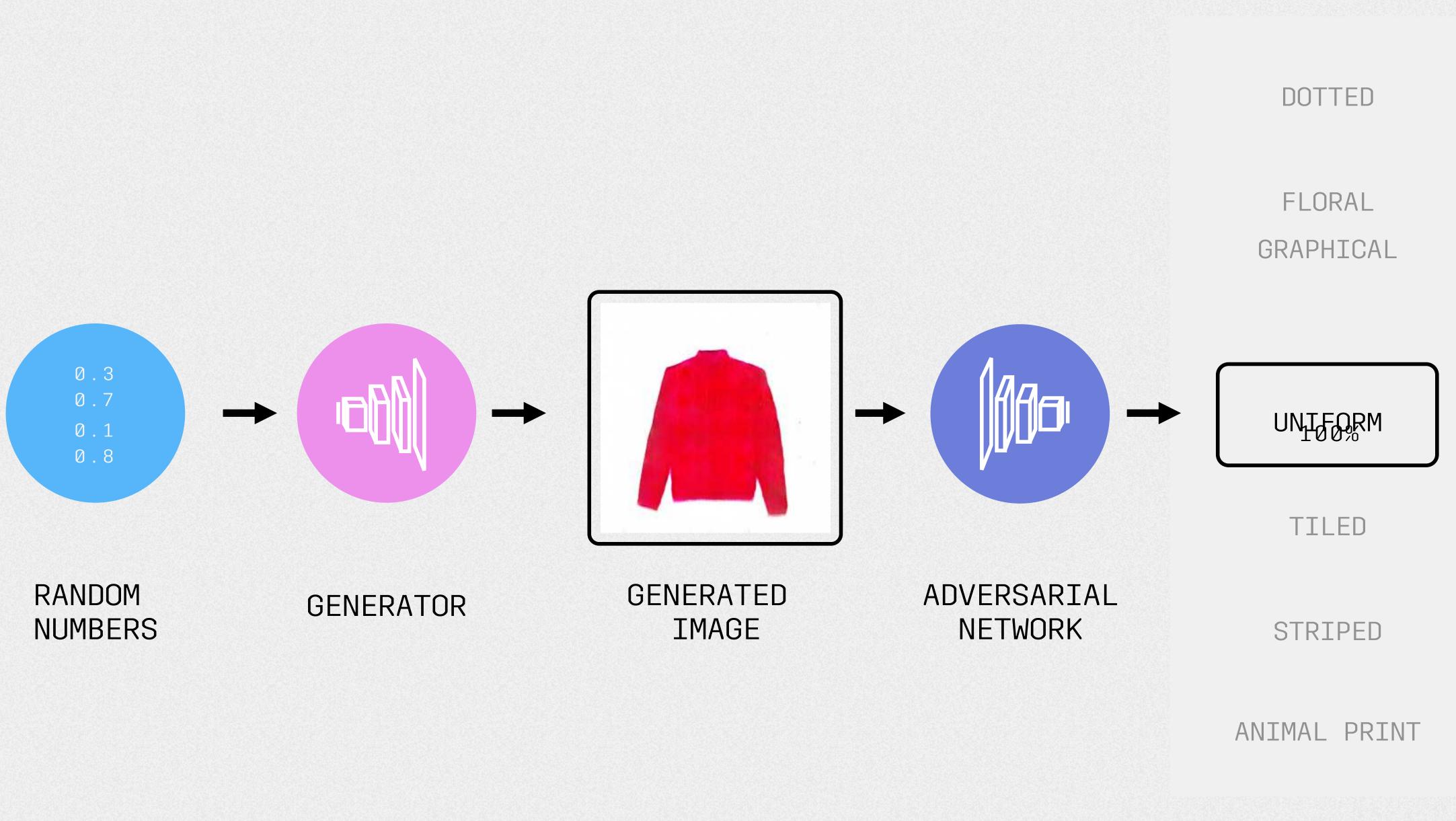
ASS (KE)

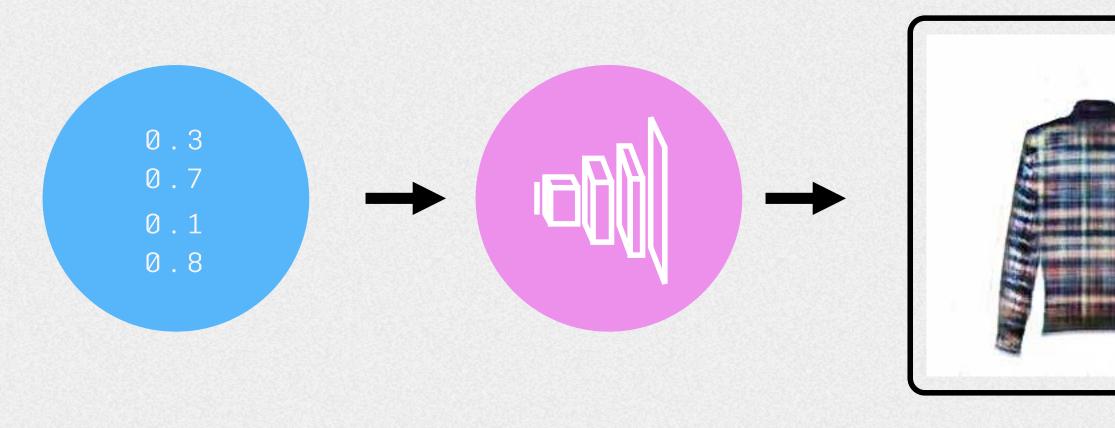
TEXTURE CLASS

Before

After

A holistic creativity Criterion TO DEVIATE FROM EXISTING SHAPES AND TEXTURES





RANDOM NUMBERS

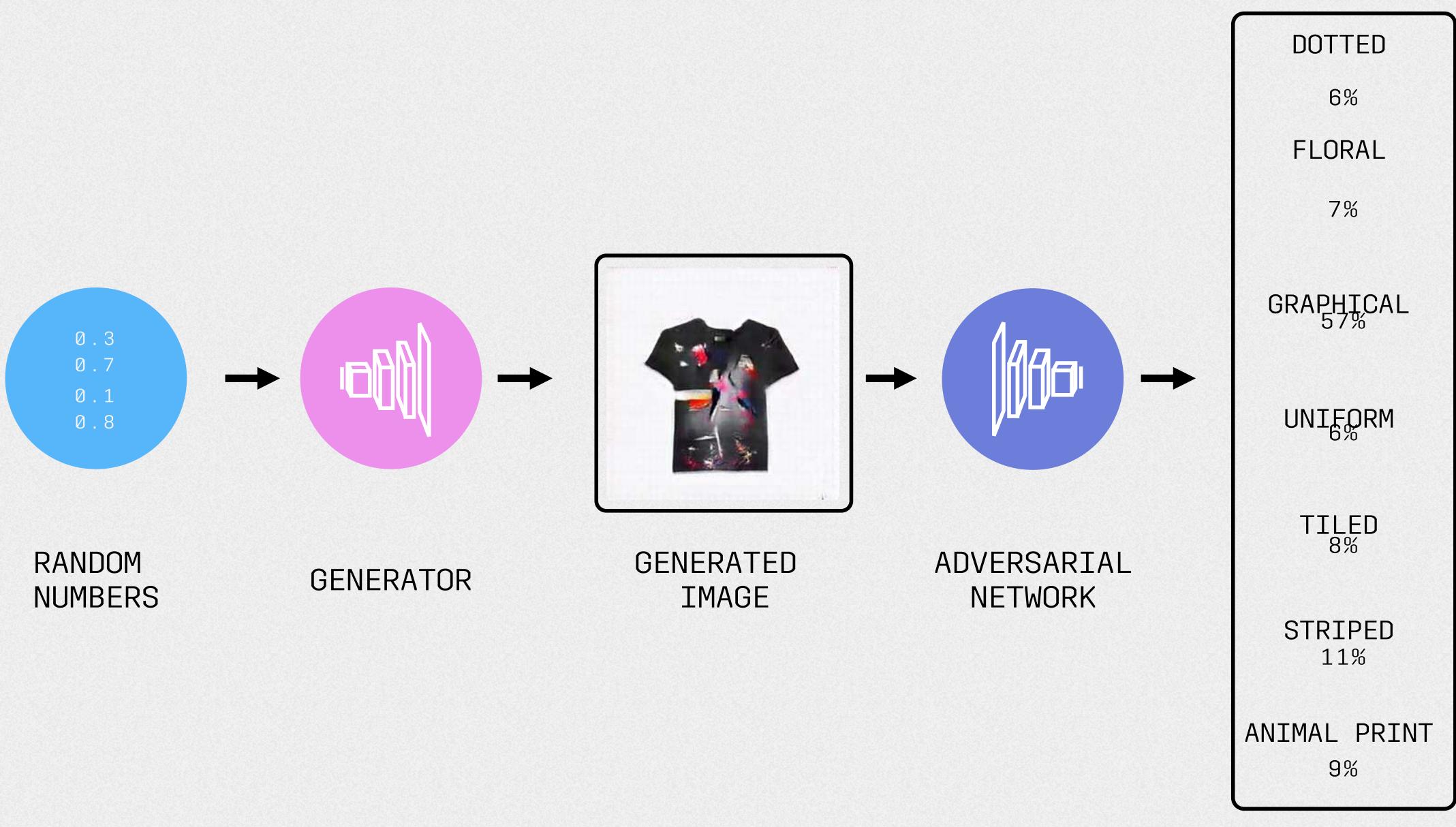
GENERATOR

DOTTED FLORAL GRAPHICAL UNIFORM fia TILED 100% STRIPED

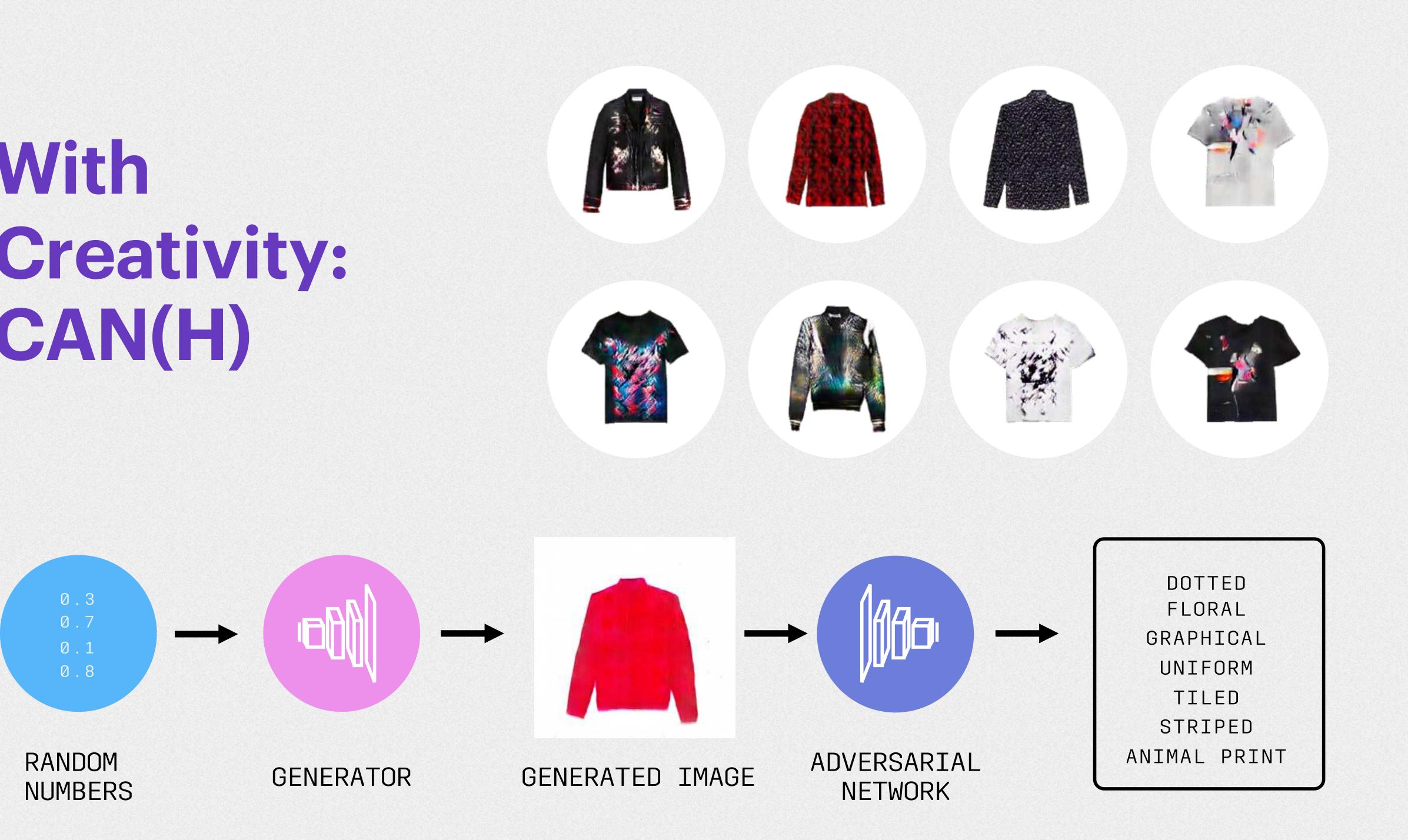
GENERATED IMAGE

ADVERSARIAL NETWORK

ANIMAL PRINT



With **Creativity:** CAN(H)



Optimization objectives

Generator's loss

- $\min_{\theta_G} \mathcal{L}_G \operatorname{real}_{\theta_G}$
- Discriminator's loss

 $\min_{\theta_D} \mathcal{L}_D \text{ real}/$

 auxiliary classifier discriminator:

 $\mathcal{L}_D = \lambda_{D_r} \mathcal{L}_{D \text{ real/fake}} + \lambda_{D_b} \mathcal{L}_{D \text{ classif}}$

• Additional loss for the generator:

 $\mathcal{L}_G = \lambda_{G_r} \mathcal{L}_G \operatorname{real/fake} + \lambda_{G_e} \mathcal{L}_G \operatorname{creativity}$

$$d_{i/\text{fake}} = \min_{ heta_G} \sum_{z_i \in \mathbb{R}^n} \log(1 - D(G(z_i)))$$
 $d_{i/\text{fake}} = \min_{ heta_D} \sum_{x_i \in \mathcal{D}z_i \in \mathbb{R}^n} -\log D(x_i) - \log(1 - D(G(z_i))).$

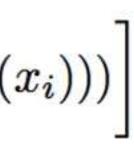
Binary cross entropy loss : $\mathcal{L}_{\mathrm{CAN}}$

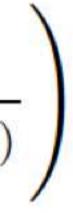
Multi-class cross entropy loss:

CAN and CAN(H) losses

$$= -\sum_{k=1}^{K} \left[\frac{1}{K} \log(\sigma(D_{b,k}(x_i))) + (1 - \frac{1}{K}) \log(1 - \sigma(D_{b,k}(x_i))) + (1 - \frac{1}{K}) \log(1 - \sigma(D_{b,k}(x_i))) \right] \right]$$

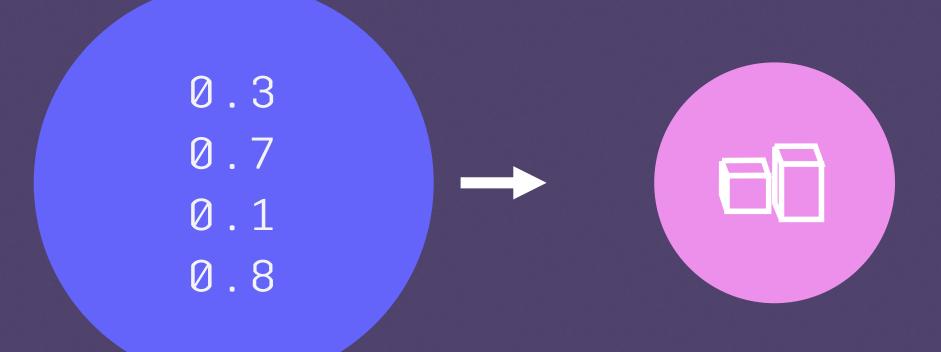
$$\mathcal{L}_{\text{CAN(H)}} = -\sum_{x_i \in \mathcal{D}} \frac{1}{K} \log \operatorname{softmax}(D_b(x_i))$$
$$= -\sum_{x_i \in \mathcal{D}} \frac{1}{K} \log \left(\frac{e^{D_{b,\hat{c}_i}(x_i)}}{\sum_{k=1}^{K} e^{D_{b,k}(x_i)}} \right)$$





Conditioning on shapes

SHAPE INPUT



RANDOM NUMBERS

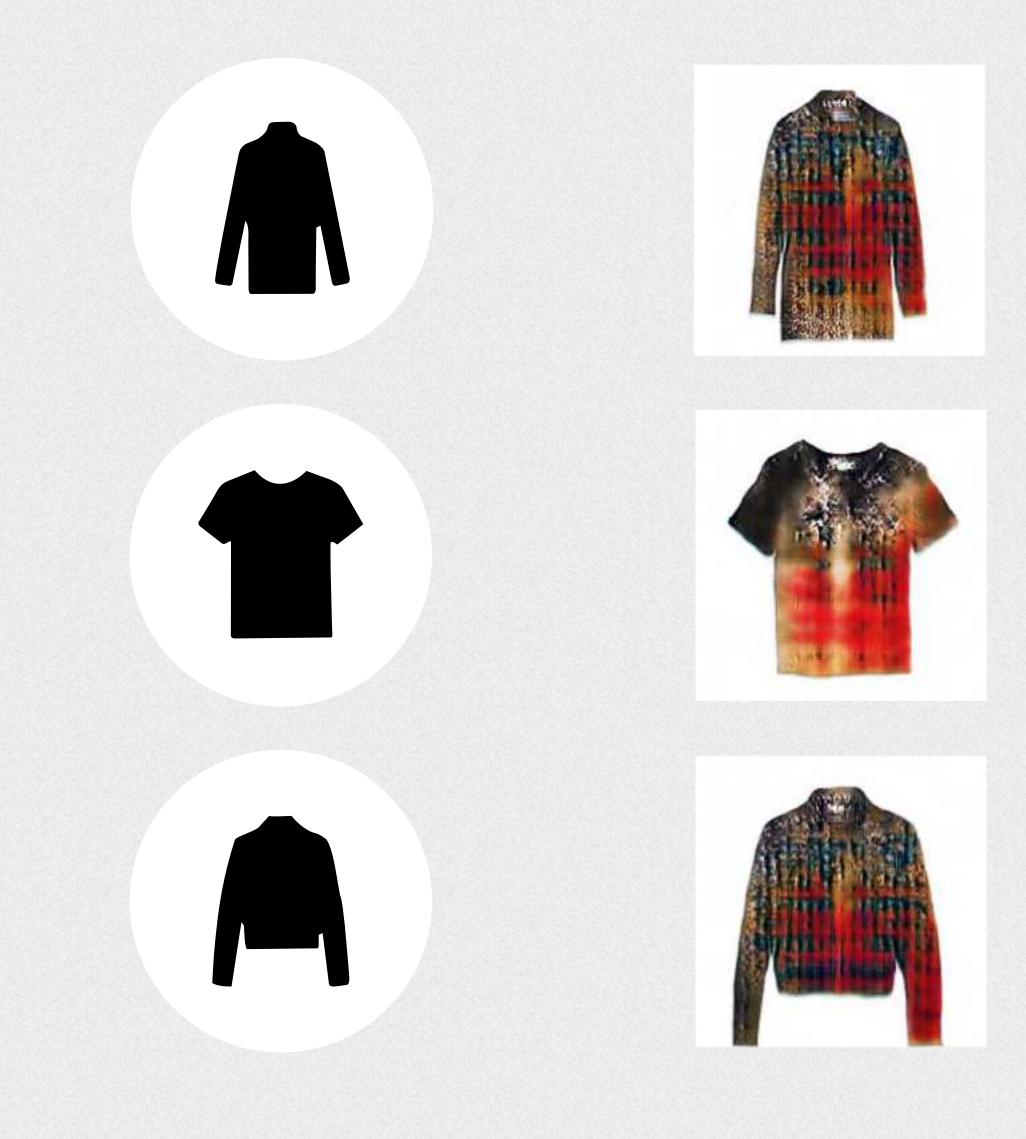


GENERATOR

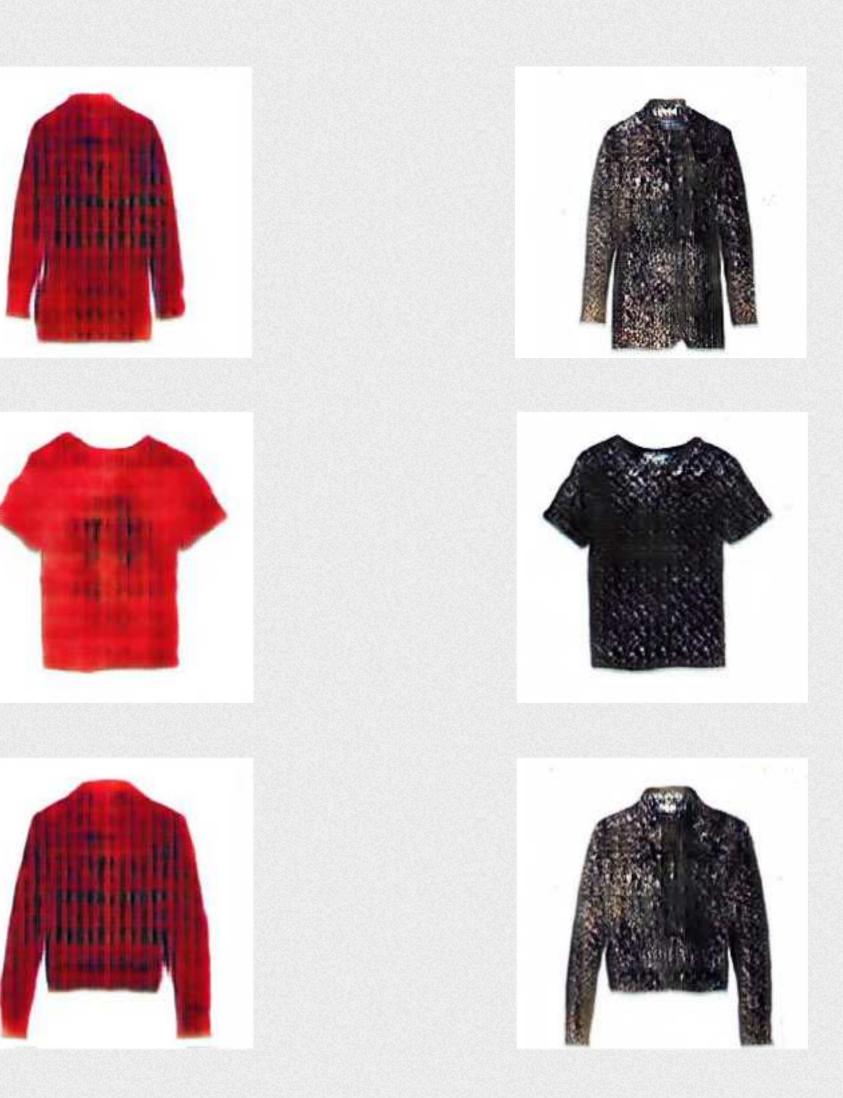
STYLED IMAGE

Style GAN results

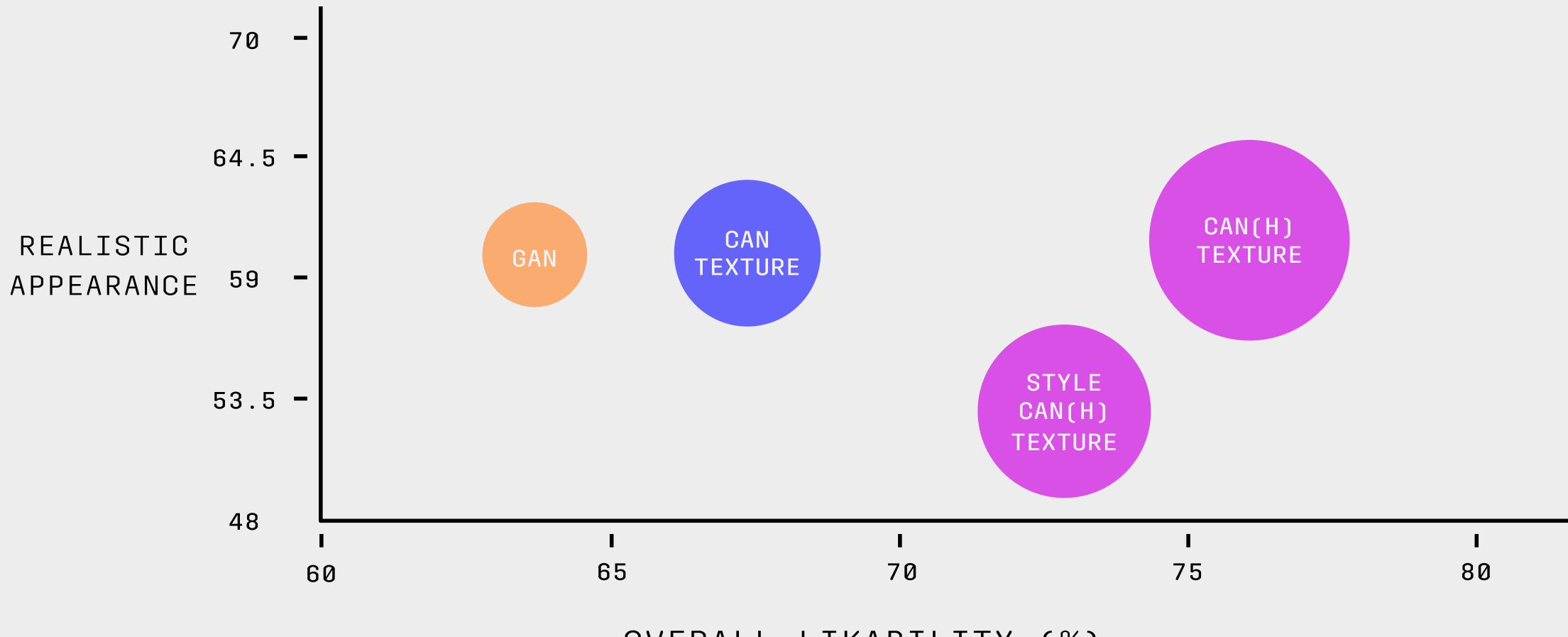
0.3 0.7 0.5 0.8



0.1 0.7 0.1 0.3 0.3 0.2 0.1 0.8



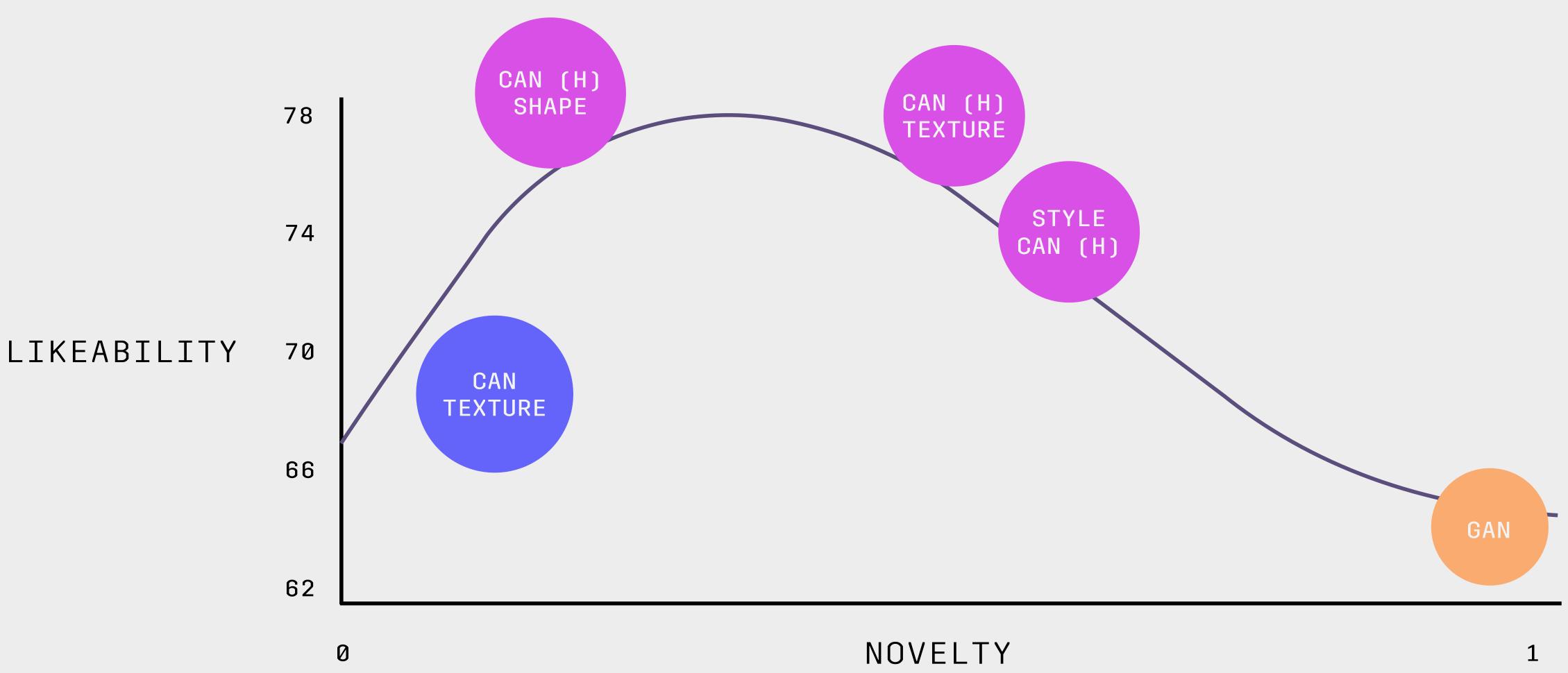
Human Evaluation Study



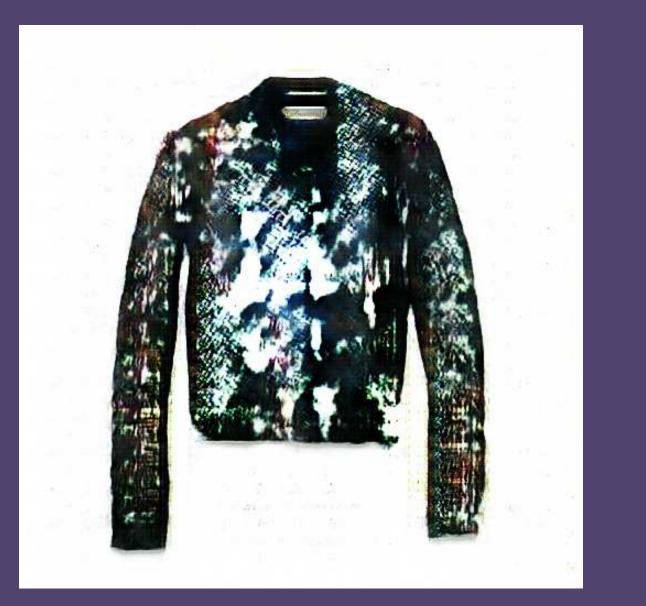
CAN: GAN WITH CREATIVITY LOSS, (H) STANDS FOR THE USE OF A HOLISTIC LOSS.

OVERALL LIKABILITY (%)

Creative Models are Most Popular



JUDGED BY HUMANS AND MEASURED AS A DISTANCE TO SIMILAR TRAINING IMAGES



"interesting" Shapes

Takeaways

Creativity Criterion Lead to More Popular Results

Modeled Multiple Design Elements: Shape and Texture

Introduced Creative Image Modeling for a Non-Abstract Artistic Task

Factorization of Elements of Designs

What's next

Improve Stability of Generative Networks

Evaluation Remains an Open Research Problem

Higher Resolution

Sbai, Elhoseiny, Bordes, LeCun, Couprie: **``DeSIGN: Design Inspiration from Generative Networks''**

http://arxiv.org/abs/1804.00921

DesIGN: Design Inspiration from Generative Networks

Othman Sbai^{1,2} Mohamed Elhoseiny¹ Antoine Bordes¹ Yann LeCun^{1,3} Camille Couprie¹

- ¹ Facebook AI Research
- ² École des Ponts, UPE

³ New York University

Abstract

Can an algorithm create original and compelling fashion designs to serve as an inspirational assistant? To help answer this question, we design and investigate different image generation models associated with different loss functions to boost creativity in fashion generation. The dimensions of our explorations include: (i) different Generative Adversarial Networks architectures that start from noise vectors to generate fashion items, (ii) a new loss function that encourages creativity, and (iii) a generation process following the key elements of fashion design (disentangling shape and texture makers). A key challenge of this study is the evaluation of generated designs and the retrieval of best ones, hence we put together an evaluation protocol associating automatic metrics and human experimental studies that we hope will help ease future research. We show that our proposed creativity loss yields better overall appreciation than the one employed in Creative Adversarial Networks. In the end, about 61% of our images are thought to be created by human designers rather than by a computer while also being considered original per our human subject experiments, and our proposed loss scores the highest compared to existing losses in both novelty and likability.

1. Introduction

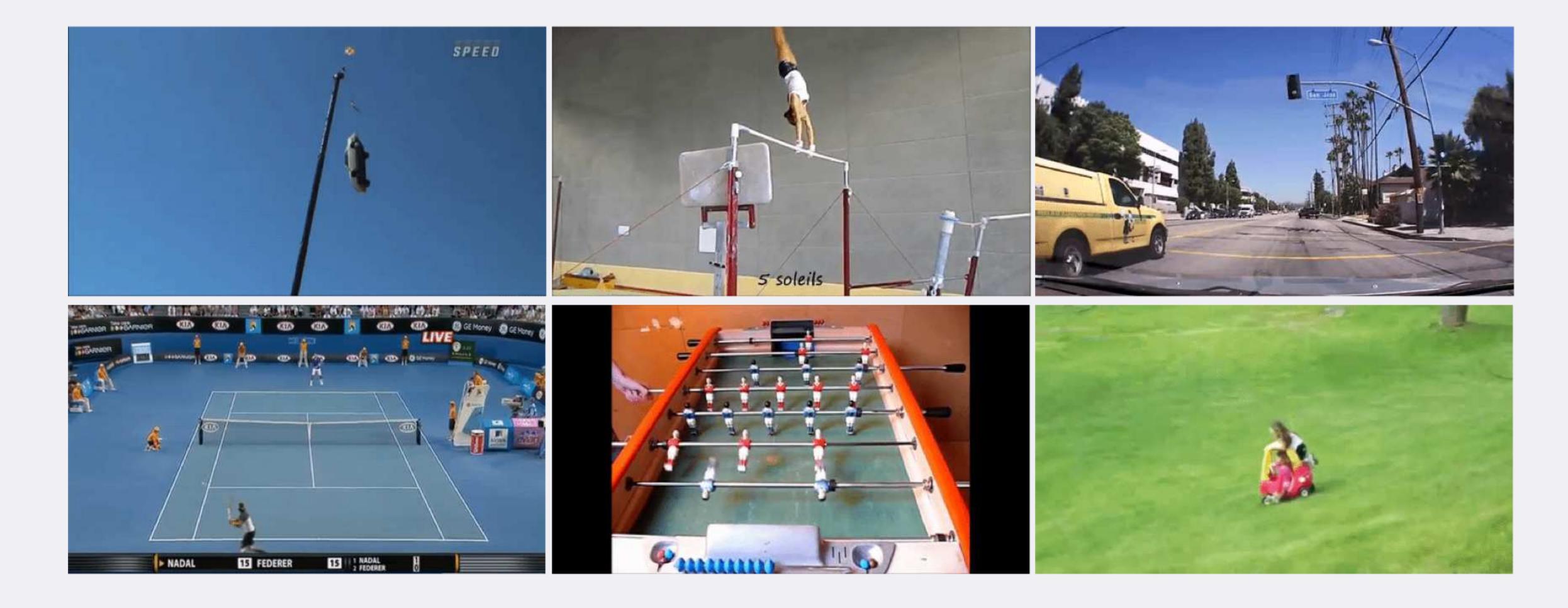
Artificial Intelligence (AI) research has been making huge progress in the machine's capability of human level understanding across the spectrum of perception, reasoning and planning [14, 1, 28]. Another key yet still relatively understudied direction is creativity where the goal is for machines to generate original items with realistic, aesthetic and/or thoughtful attributes, usually in artistic contexts. We can indeed imagine AI to serve as inspiration for humans in the creative process and also to act as a sort of creative

Figure 1: Training generative adversarial models with appropriate losses leads to realistic and creative 512 × 512 fashion images.

assistant able to help with more mundane tasks, especially in the digital domain. Previous work has explored writing pop songs [3], imitating the styles of great painters [9, 7] or doodling sketches [12] for instance. However, it is not clear how creative such attempts can be considered since most of them mainly tend to mimic training samples without expressing much originality.

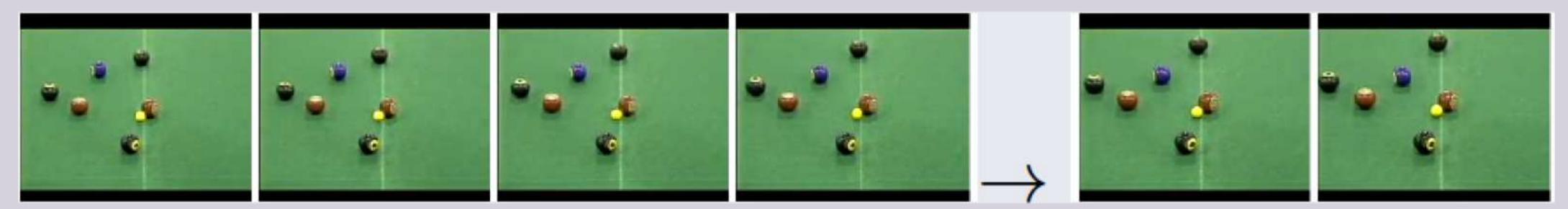
Creativity is a subjective notion that is hard to define and evaluate, and even harder for an artificial system to optimize for. Colin Martindale put down a psychology based theory that explains human creativity in art [22] by connecting creativity or acceptability of an art piece to novelty with "the principle of least effort". As originality increases, people like the work more and more until it becomes too novel and too far from standards to be understood. When this happens, people do not find the work appealing anymore because a lack of understanding and of realism leads to a lack of appreciation. This behavior can be illustrated by the Wundt curve that correlates the arousal potential (i.e. novelty) to hedonic responses (e.g. likability of the work)

Future video prediction With Pauline Luc, Michael Mathieu, Natalia Neverova, Yann LeCun and Jakob Verbeek (INRIA)



Motivation

MOTIVATION



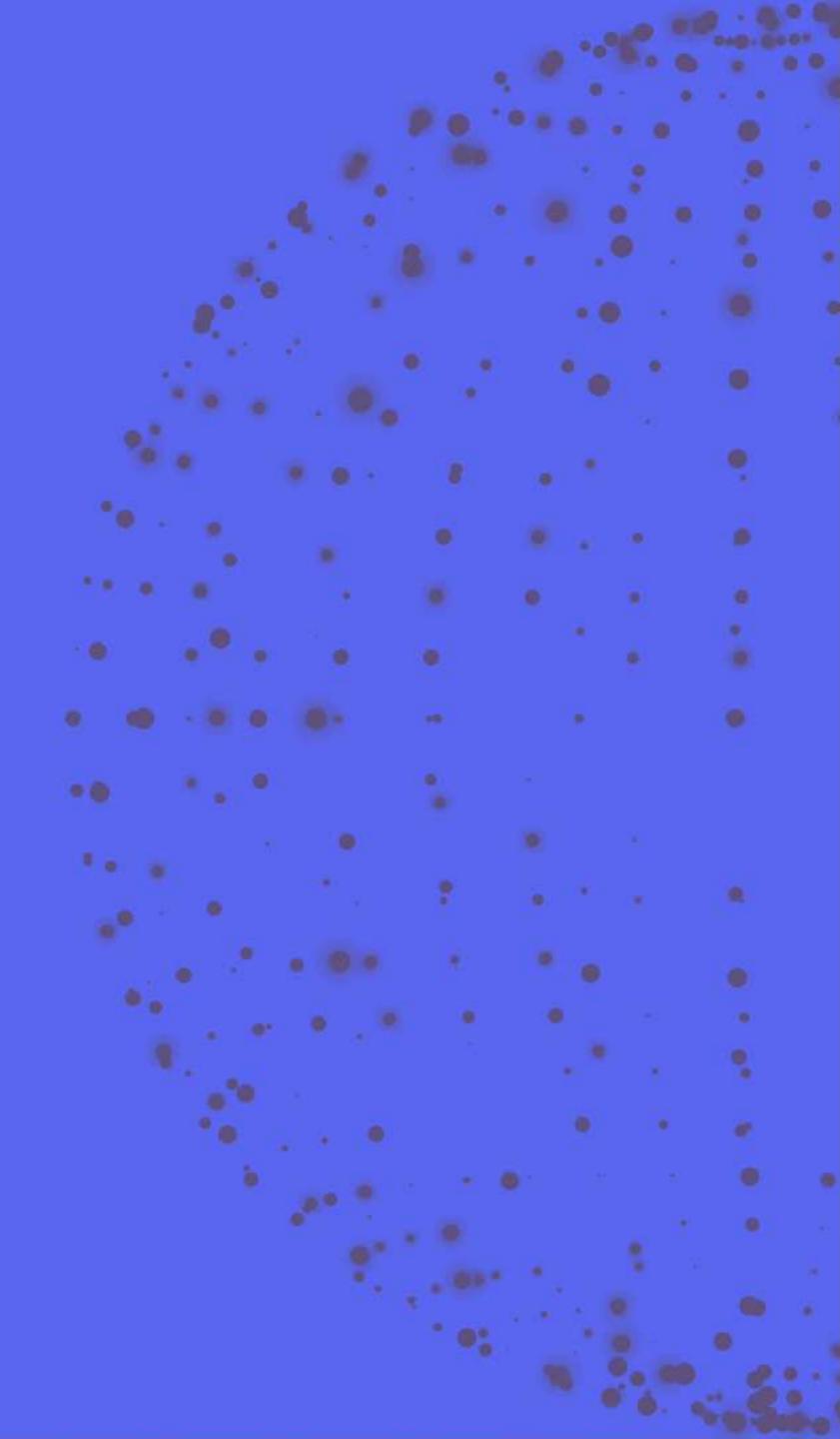
- Building internal representations that model the image evolution accurately, its content and dynamics.
- We postulate that the better the predictions of such system are, the better the feature representation should be.
- Representations learned through prediction of future sequences have been shown to lead to improvements in weakly supervised and even fully supervised tasks (e.g. [Srivastava et al. ICML'15])

Future image prediction

Future semantic segmentation prediction

3 Future instance prediction

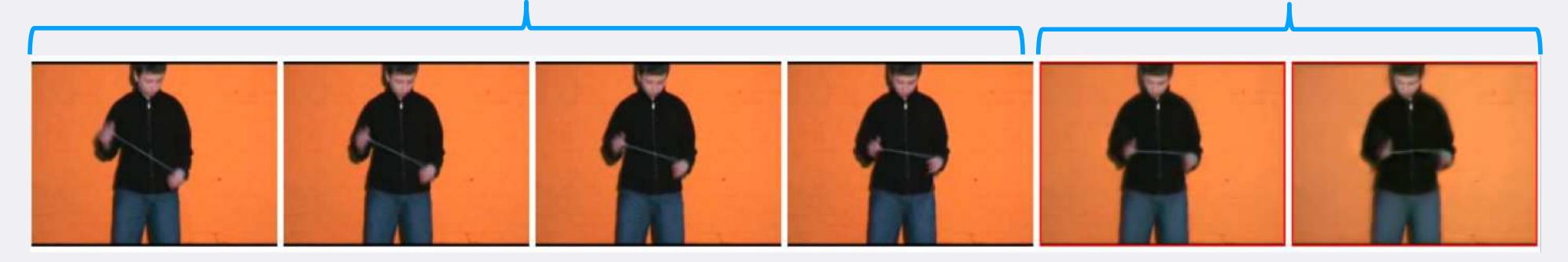
Joint future instance and semantic segmentation prediction



1) Predicting next frames in videos

MICHAEL MATHIEU, CAMILLE COUPRIE, YANN LECUN, ICLR16

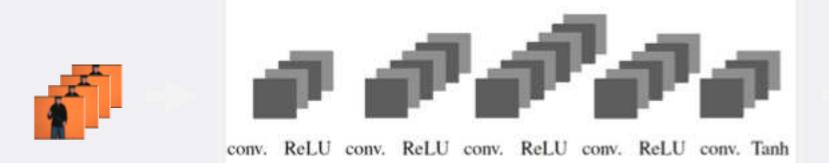
4 INPUT IMAGES



OUR 2 PREDICTIONS

Our contributions

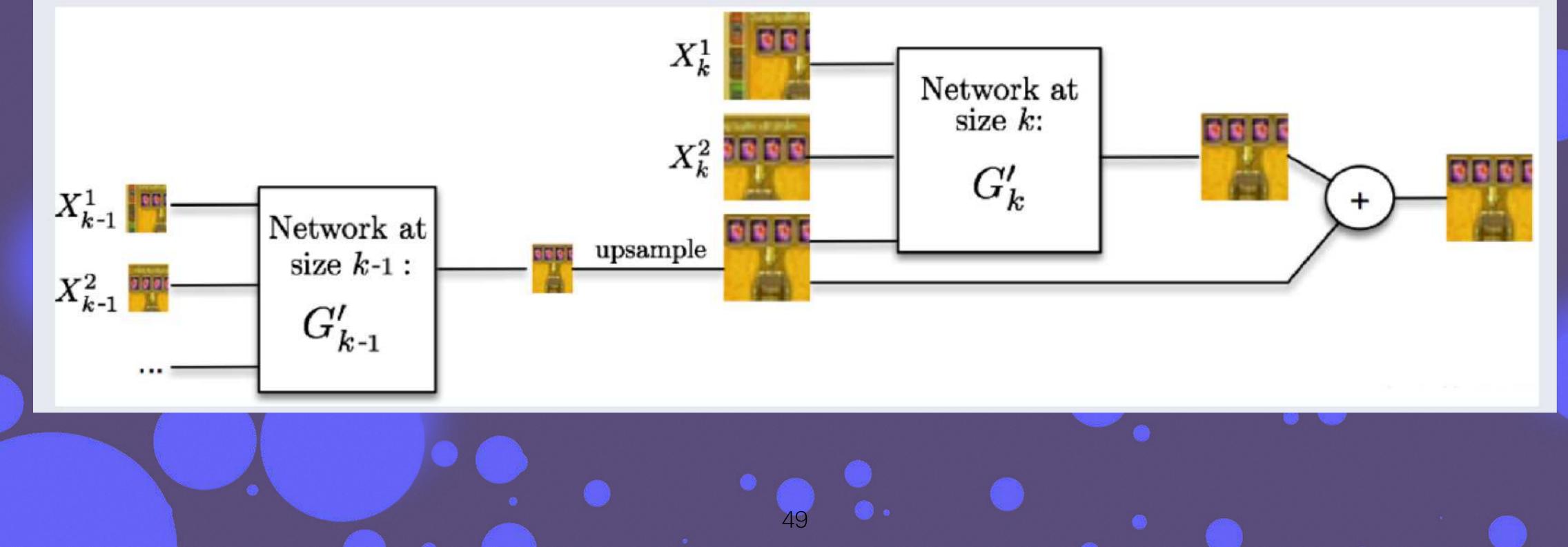
• Result with a simple convolutional network trained minimizing an I2 loss



•OUR RESULT USING •A MULTISCALE ARCHITECTURE •AN IMAGE GRADIENT DIFFERENT LOSS •USE ADVERSARIAL TRAINING [GOODFELLOW ET AL'14]

MULTISCALE ARCHITECTURE

 $\hat{Y}_k = G_k(X) = u_k(\hat{Y}_{k/2}) + G'_k(X_k, u_k(\hat{Y}_{k/2})).$



ADVERSARIAL TRAINING

Two models are trained simultaneously : the generative model and a discriminative model that estimates the probability that the predicted frame belongs to a real video sequence. **Training D:** Perform a SGD step to minimize

$$\mathcal{L}_D(X,Y) = \sum_{k=1}^{N_{ ext{scales}}} \left(\mathcal{L}_{BCE}(D_k) \right)$$

where \mathcal{L}_{BCE} is the binary cross-entropy loss. **Training G:** Perform a SGD step to minimize

$$\mathcal{L}_{G}(X,Y) = \sum_{k=1}^{N_{ ext{scales}}} \left(\lambda_{D} \mathcal{L}_{BCB} \right)$$

 $P_k(X_k, Y_k), 1) + \mathcal{L}_{BCE}(D_k(X_k, G_k(X)), 0))$

 $E(D_k(X_k, G_k(X_k)), 1) + \lambda_G L_G(\hat{Y}_k, Y_k))$

GRADIENT DIFFERENCE LOSS

Another way to avoid blurry predictions is to minimize the local pixel:

$$GDL(Y, \hat{Y}) = \sum_{i,j} \left| |Y_{i,j} - Y_{i-1,j}| - |\hat{Y}_{i,j} - \hat{Y}_{i-1,j}| \right|^{\alpha} + \left| |Y_{i,j-1} - Y_{i,j}| - |\hat{Y}_{i,j-1} - \hat{Y}_{i,j}| \right|^{\alpha},$$

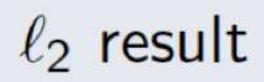
where α is an integer greater or equal to 1.

image gradient of the true frame Y and the prediction \hat{Y} at every

RESULTS ON THE UCF101 DATASET

Input frames



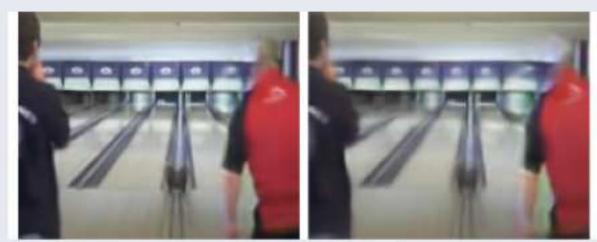


Adversarial result

Ground truth

$\ell_1 \text{ result}$

$\mathsf{GDL}\ \ell_1\ \mathsf{result}$

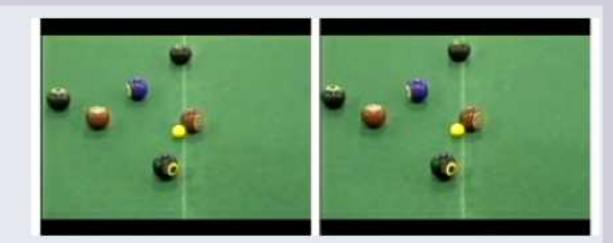


Adversarial+GDL result

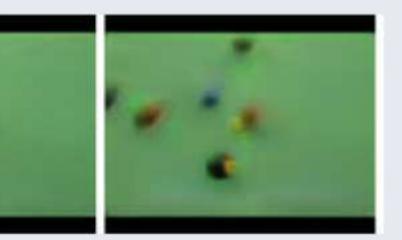
RESULTS ON THE UCF101 DATASET

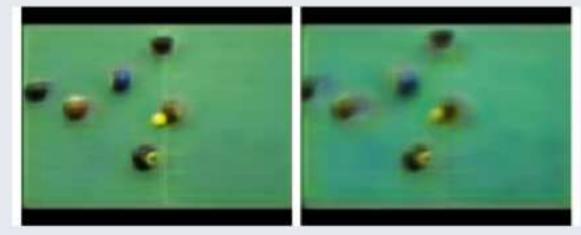
Input frames

Adversarial result



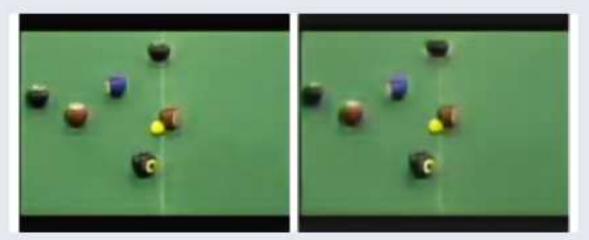
Ground truth





ℓ_1 result

$\mathsf{GDL}\ \ell_1\ \mathsf{result}$



Adversarial+GDL result

COMPARISONS WITH BASELINES

Ranzato et al. result PSNR = 20.1 (17.8), SSIM = 0.72 (0.65) Prediction using a constant optical flow PSNR = 24.7 (20.6), SSIM = 0.84 (0.72)

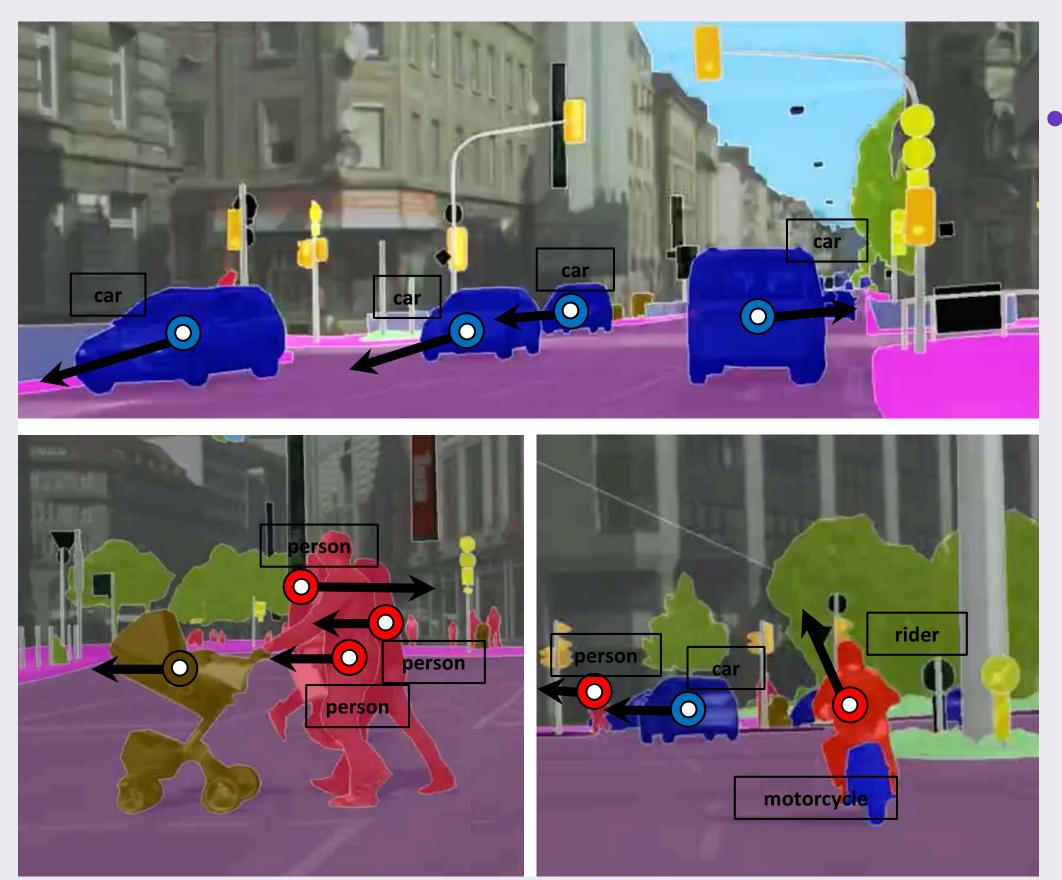
Adv GDL ℓ_1 result PSNR = 24.6 (20.5), SSIM = 0.81 (0.69)

Towards longer term predictions

- Pred quid
 prev
- Idea
 sem

- Predictions in the RGB space
 - quickly become blury despites
 - previous attempts
- Idea: predict in the space of
 - semantic segmentation

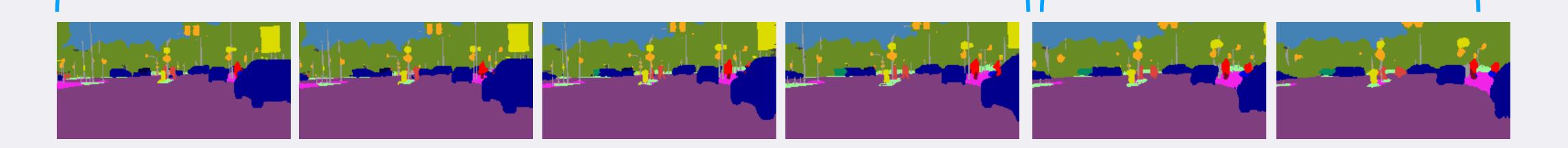
2) Predicting Deeper into the Future of **Semantic Segmentation**



- P. LUC, N. NEVEROVA, C. COUPRIE, J. VERBEEK, Y. LECUN, ICCV'17
 - Use a state-of-the-art semantic
 - segmentation network to obtain densely
 - segmented input / target sequences, e.g.
 - Dilation10, [Yu et al.'16].
 - Specifically, use the softmax pre-
 - activations, i.e. the (continuous) outputs
 - of the last convolutional layer, before the softmax

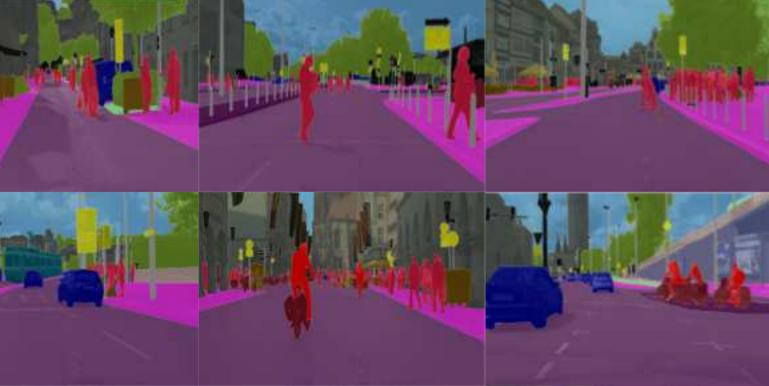
Setting and dataset presentation

4 INPUT IMAGES

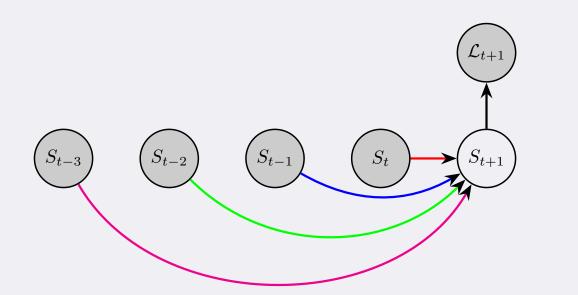


CITYSCAPES DATASET [CORDTS ET AL.'16]

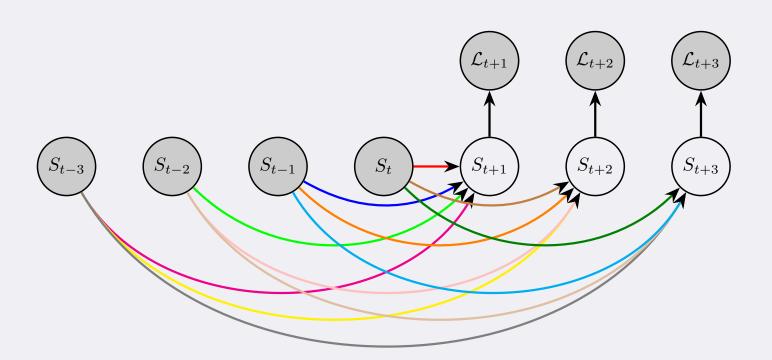
OUR 2 PREDICTIONS

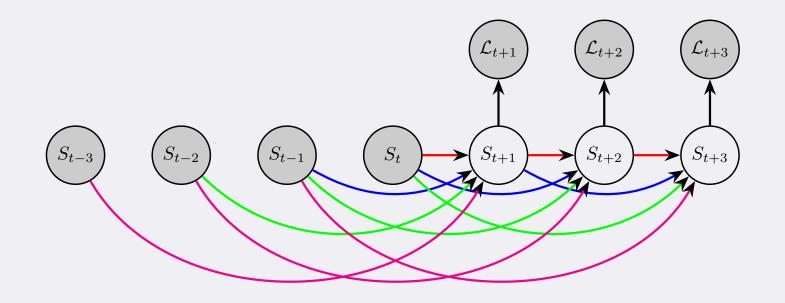


Approach – predicting deeper into the future



Single time-step





AUTOREGRESSIVE MODEL

SAME COLOR = SHARED WEIGHTS

AUTOREGRESSIVE MODE IS ONLY POSSIBLE FOR X2X, S2S, XS2XS

BATCH MODEL

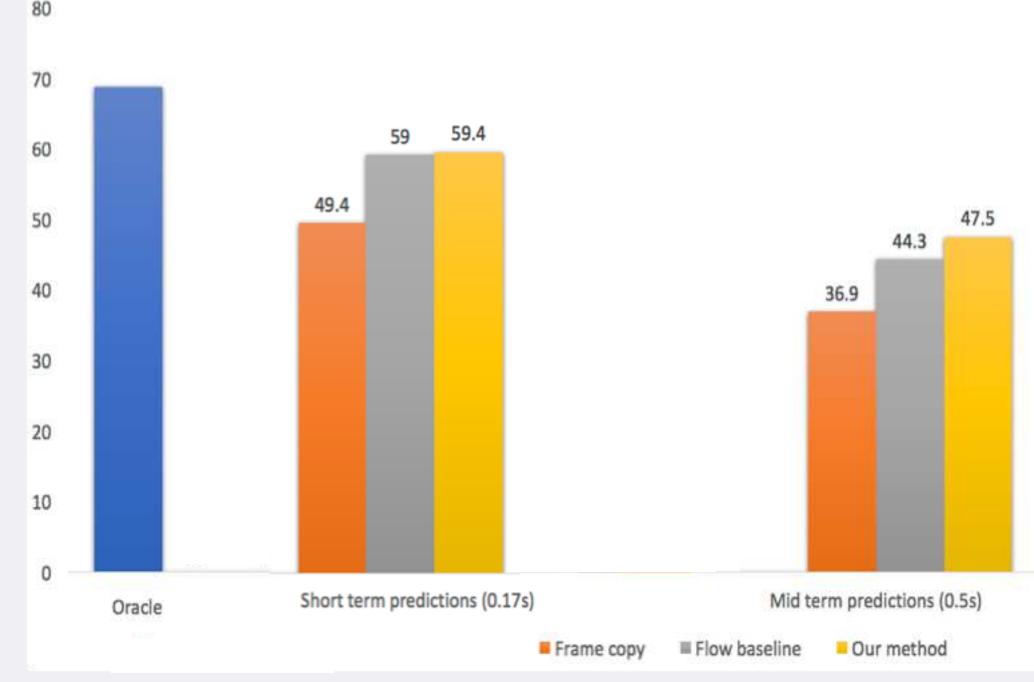
AUTOREGRESSIVE MODEL IS EITHER :

USED FOR INFERENCE WITHOUT ADDITIONAL TRAINING (W.R.T. TO SINGLE TIME STEP MODEL) AR

FINE-TUNED USING BPTT AR FINE-TUNE

BASELINES: •COPY THE LAST INPUT FRAME TO THE OUTPUT •ESTIMATE FLOW BETWEEN THE TWO LAST INPUTS, AND **PROJECT THE LAST INPUT** FORWARD USING THE FLOW

PERFORMANCE MEASURE (MEAN IOU) OF OUR APPROACH AND BASELINES



Showed experimentally that it is a better setting:

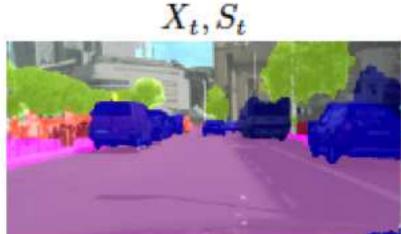
RGB	•	Autoregressive	<	Batch
Semantic segmentation	•	Autoregressive	>	Batch
C		59		

Mid term segmentation predictions (0.5 s)

FLOW BASELINE

OUR AUTOREGRESSIVE FINE-TUNE RESULT

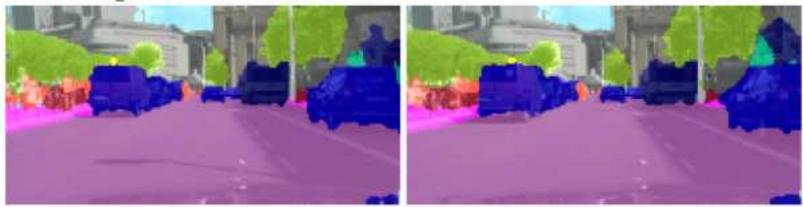
LAST INPUT GROUND TRUTH



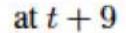
Batch predictions at t + 3

at t+9

 X_{t+9}, GT



Autoregressive pred. at t + 3



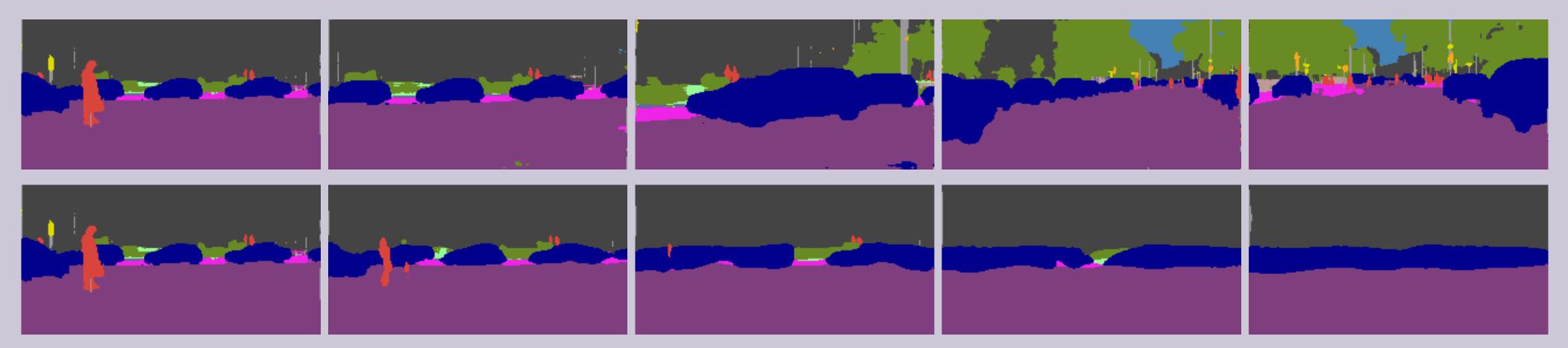
AR fine-tune pred. at t + 3

Mid term segmentation predictions (0.5 s)

FLOW BASELINE

OUR AUTOREGRESSIVE FINE-TUNE RESULT

Long term prediction (10 s) & going further



corresponding predictions of the autoregressive S2S model trained with fine-tuning (bottom row).

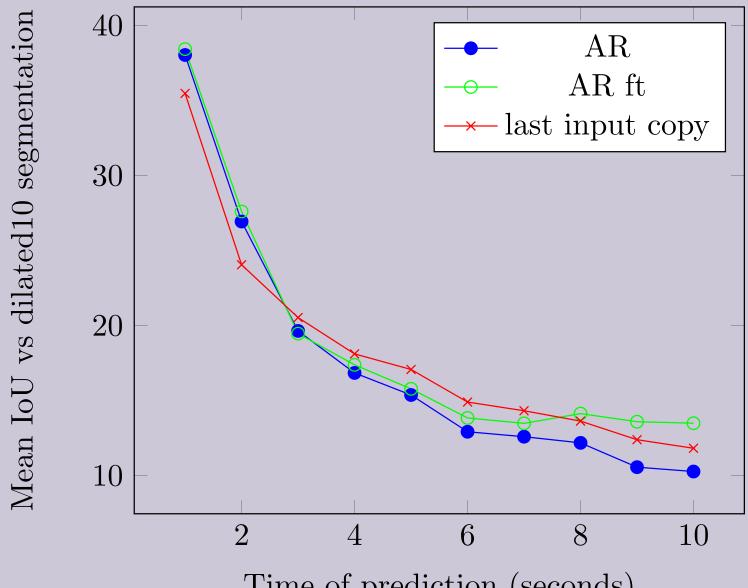
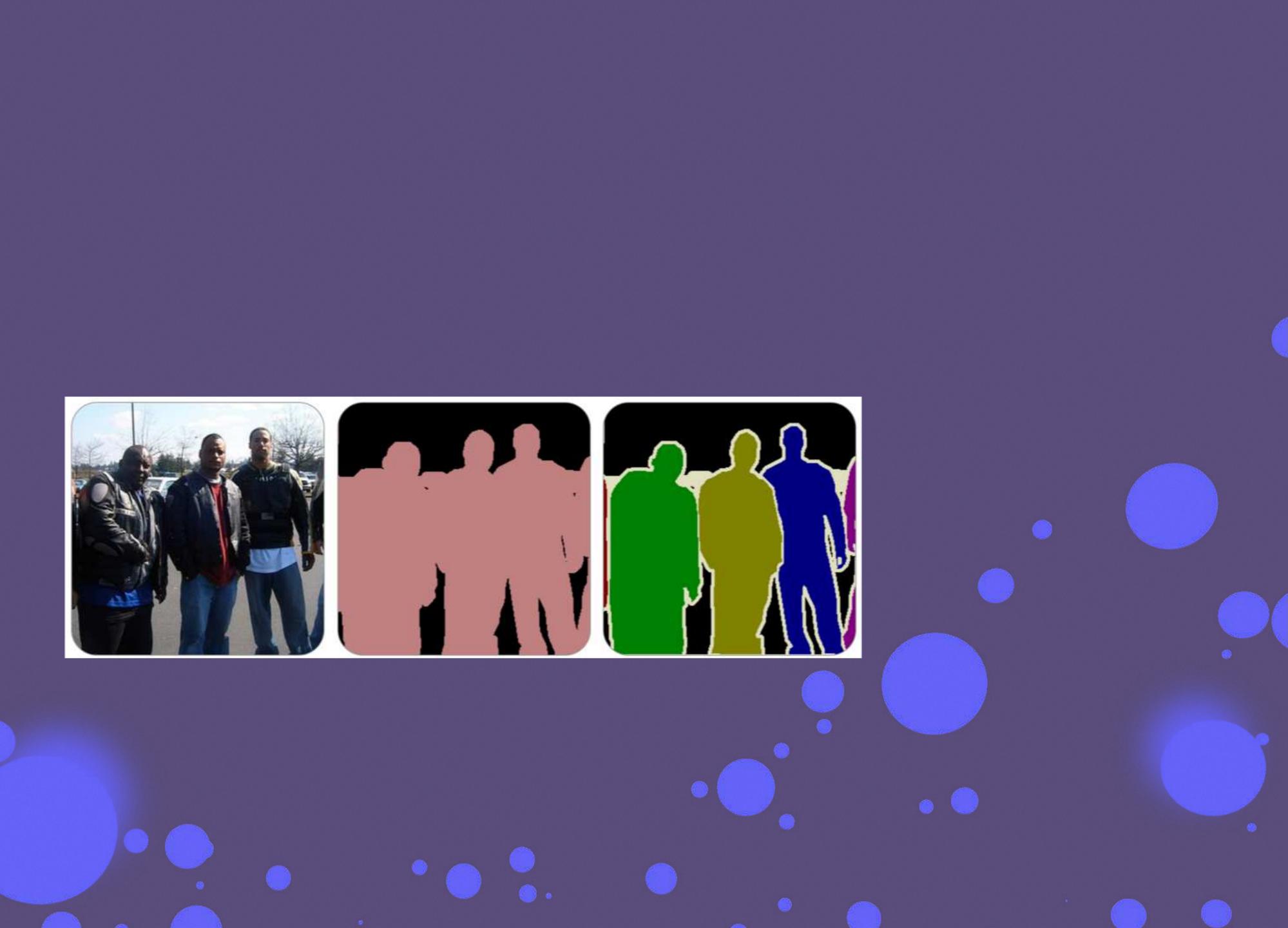


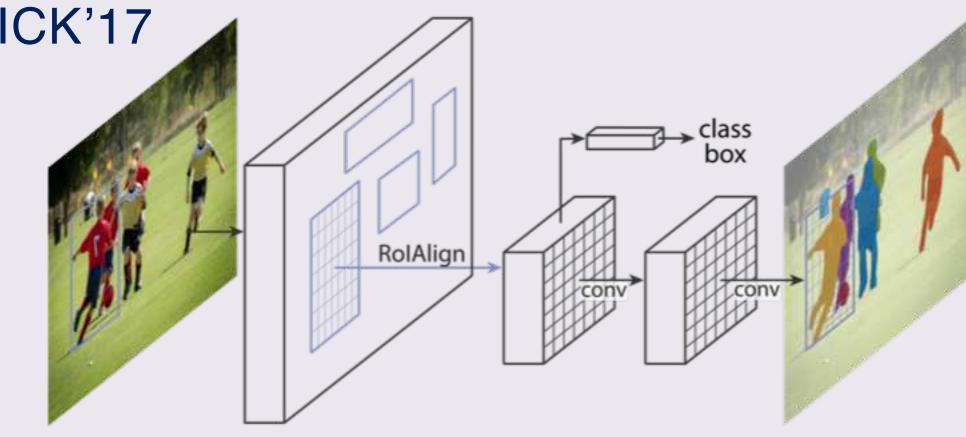
Figure 6: Last input segmentation, and ground truth segmentations at 1, 4, 7, and 10 seconds into the future (top row), and

Time of prediction (seconds)



Instance level segmentation: Mask RCNN K. HE G. GKIOXARI P. DOLLAR R. GIRSHICK'17

 Extends Faster RCNN [Ren et al.'15] by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition



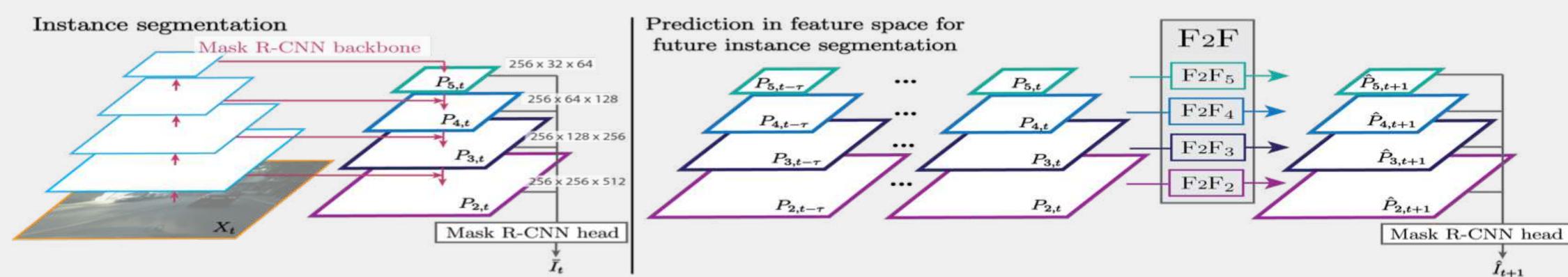
Instance level segmentation: Mask RCNN K. HE G. GKIOXARI P. DOLLAR R. GIRSHICK'17



3) Predicting Future Instance Segmentations by Forecasting Convolutional Features

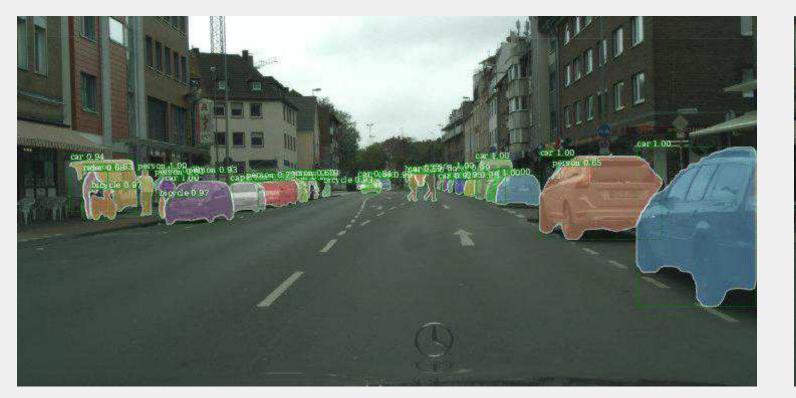
P. LUC, C. COUPRIE, Y. LECUN, J. VERBEEK, ARXIV 2018

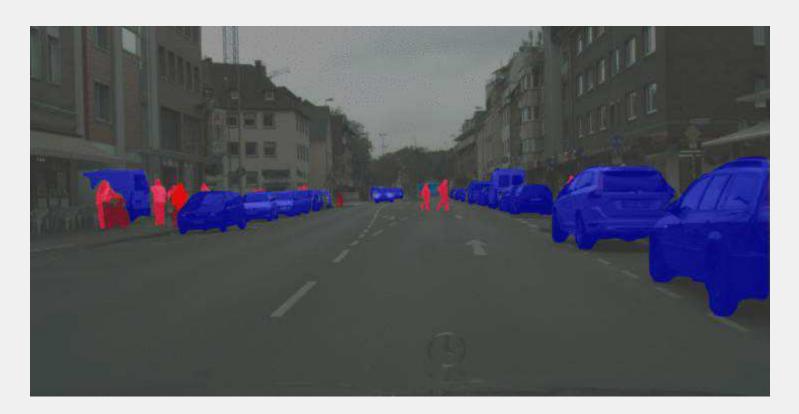
LUC, NEVEROVA ET AL. ICCV17

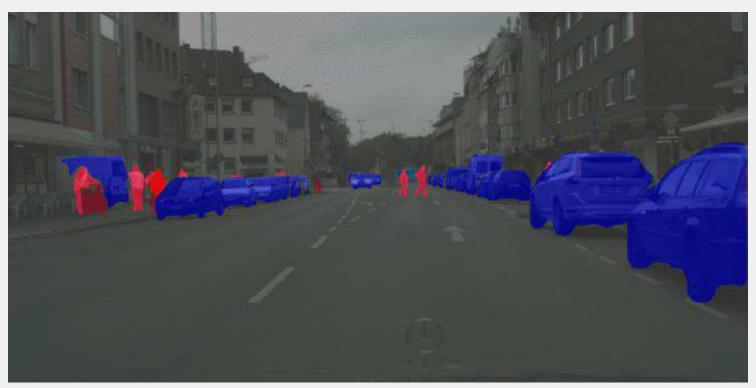


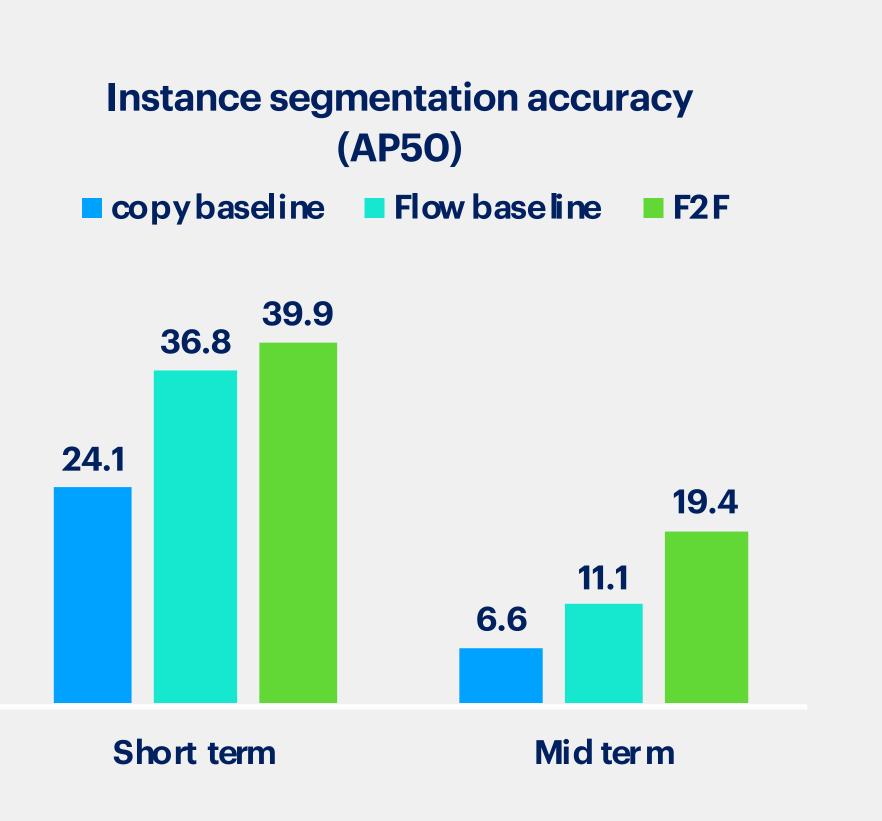
NEW ECCV SUBMISSION: F2F PREDICTIONS

OPTICAL FLOW BASELINE OUR F2F RESULTS

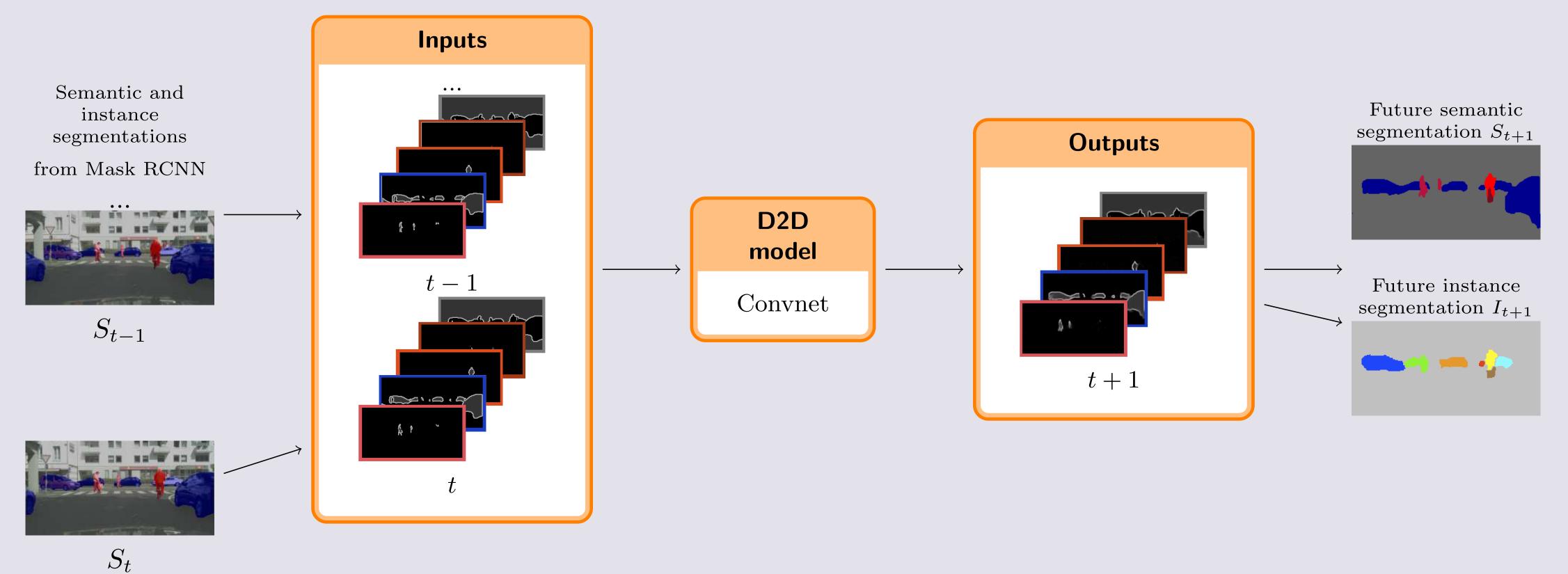






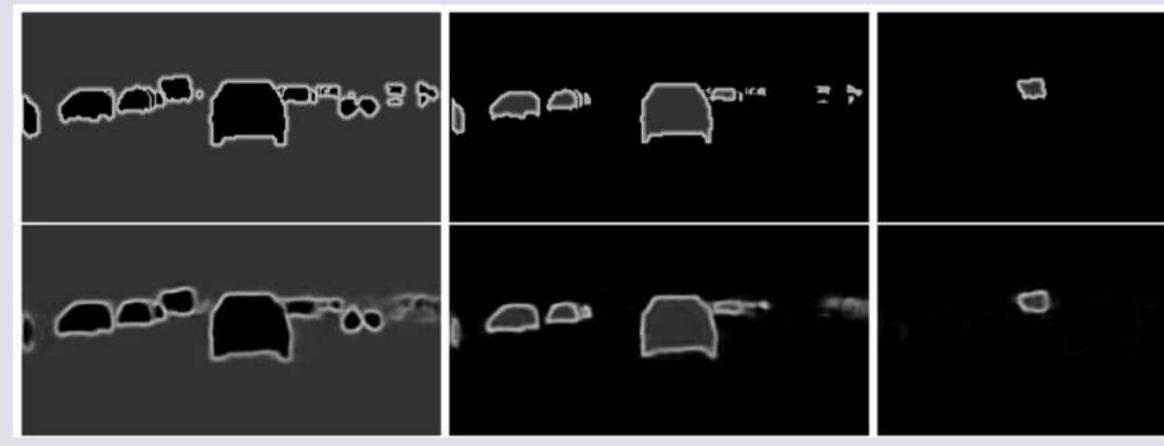


4) Joint semantic and instance segmentation

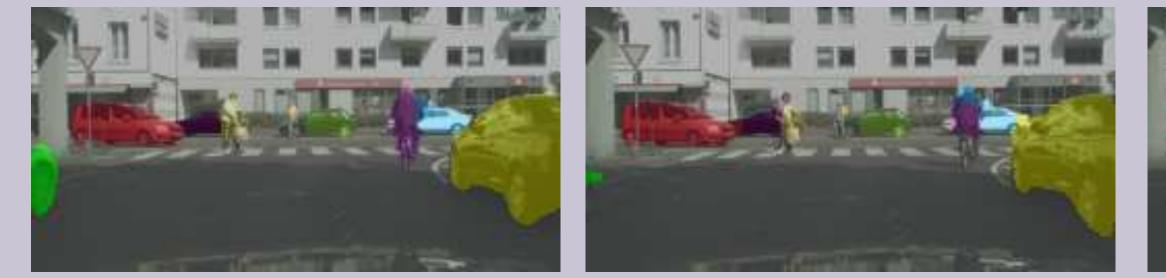


Overview of our approach

- 1) Computation of distance map based representations r(t), r(t-1), ...
- 2) Training a convnet to predict future representations r(t+1)
- 3) Object centroids extraction and linear extrapolation
- 4) Computing instance segmentations using centroids as seeds, and map of maxima of r(t+1) as weights



5) Computing the semantic segmentation map as the argmax of r(t+1)



Results

4) Joint semantic and instance segmentation

	Mask R-CNN Feature	Optical Flow	Distance based representation
Mid term sem. segm (IoU)	41.2	41.4	43.0
Mid term inst. segm (NO-AP50)	16.1	9.5	10.2
Tracking included	no	yes	yes
Training time	6 days	-	1 day
Network size	65M	-	0.8 M
Training hyperparam. to tune	8	-	2
Inference time	some sec.	2 min	some sec.
Post processing	threshold	hole filling, thres.	optimization

Conclusions

Introduced generic approaches for video prediction

Many problems remain, e.g. handling occlusions

Non deterministic models

Thank You.

