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The Power of Convolutional Neural Networks

Convolutional Neural Networks (CNNs)
introduced in Image Processing, e.g. for image classification.

M. Dörfler Math Deep Learning



5/84

The Power of Convolutional Neural Networks

Convolutional Neural Networks (CNNs) introduced in
Image Processing, e.g. for image classification.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
Gradient-based learning applied to document recognition. .
Proceedings of the IEEE, 86(11), 2278 – 2324. (1998).

My Project: SALSA
(Semantic Annotation by Learned, Structured and
Adaptive signal representations) Goal of SALSA is to
bridge the semantic gap in music information research
(MIR) by using adaptive and structured signal
representations.
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The Power of Convolutional Neural Networks

CNNs seem to be able ”to do anything” - but at what cost?
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The Power of Convolutional Neural Networks

For complex problems (with ”semantic flavour”) need huge
architectures, thus a lot of data points. What can we do to
reduce amount of necessary data to learn?
In Image Processing usually learn directly from ”raw data”,
i.e., no pre-processing (feature engineering) takes place.
In Audio, ”end-to-end” learning is much less common -
instead, some kind of FFT-based time-frequency signal
representation is used as a pre-processing step; it will turn
the audio signal into an image ...

M. Dörfler Math Deep Learning



8/84

Convolutional Neural Networks in Audio
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(a) Standard Spectrogram of music
excerpt
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(b) CQ-Spectrogram of music excerpt

Which representation would a Neural Network learn?
Can end-to-end learning improve performance if sufficient
amount of data is available?
Can a representation which encodes known symmetries reduce
necessary network size?

M. Dörfler Math Deep Learning



9/84

Convolutional Neural Networks in Audio

Gabor Scattering of simple music signal: separating signal
characteristics
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Linear Regression - a simple example

Learning from data: look for a function f : X 7→ Y, which
describes with sufficient accuracy the ”nature of data”. ...
Learning means ”improving with experience” (Mitchell,
Machine Learning, 1997)

Two important examples:
1 Regression: X = Rd,Y = R
2 Classification: X = Rd,Y = {c1, . . . , cn}, cj ∈ R

look at the regression problem in more detail!!
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Linear Regression - a simple example

We can observe three central questions:
1 What is the nature of the function f we need to learn? →

Choice of model or hypothesis class H

2 Can I determine a close approximation of the ”best”
function fH from the available data points? → Sampling
problems.

3 How will the learned function f perform on unseen data?
→ generalization properties.
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Some Probability Theory

For mathematical description, need some elements from
probability theory...

1 In learning theory, assume that data are ”drawn according
to some (unknown) probability density(measure)”

ρ : X ×Y 7→ R

2 For any function f : X 7→ Y , define the ”true error”,
”expected risk”:

E(f) = Eρ(f) :=
∫
X×Y

(f(x)− y)2dρ(x, y)

Which function f minimizes E(f)?
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Some Probability Theory

For mathematical description, need some elements from
probability theory...

1 From ρ, derive marginal measures ρX, ρY and conditional
measures ρ(y|x), ρ(x|y).

2 Then for any random variable ϕ defined on X ×Y , we can
write:∫

X×Y
ϕ(x, y)dρ(x, y) =

∫
X

(∫
Y
ϕ(x, y)dρ(y|x)

)
dρX(x)

3 The regression function fρ, given by

fρ(x) :=
∫
Y
y dρ(y|x)

minimizes E(f)!
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Some Probability Theory

We show some facts...
1 The expected risk of fρ is given by the integral of its

quadratic loss; this is σ2
ρ, the ”condition number” of ρ.

2 For any function f : X 7→ Y we have

E(f) =
∫
X

(f(x)− fρ(x))2dρX(x) + σ2
ρ
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Some Probability Theory

Now consider sampling!
1 Let Zm = {(x1, y1), . . . , (xm, ym)} be a sampling set of

examples/data points, drawn independently according to ρ.
2 The empirical error (or risk) of f with respect to Zm is

defined as
EZ(f) = 1

m

m∑
i=1

(f(xi)− yi)2.

3 Defect Function or Generalization Error:
LZ(f) = E(f)− EZ(f).

M. Dörfler Math Deep Learning



17/84

Some Probability Theory

Now consider a model - in other words, a Hypothesis Space
H ⊆ C(X)!

1 Optimal problem solution within H:

fH := argminf∈H E(f) = argminf∈H
∫
x
(f − fρ)2dρX

2 fH - target function
3 Empirical target function: fH,Z := argminf∈H EZ(f)
4 Error in H: EH(f) = E(f)− E(fH) ≥ 0, for f ∈ H.
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Some Probability Theory

Proposition
Let a Hypothesis class H and a sampling set Z be given and let
fH,Z be the minimizer of the empirical risk EZ. Then the
expected error of fH,Z is given by

E(fH,Z) = EH(fH,Z) + E(fH)

EH(fH,Z) . . . Sample Error
E(fH) . . . Approximation Error

Formalization of the BIAS-VARIANCE Trade-off!
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Some Probability Theory

Definition
Let a Hypothesis class H be given and equipped with a metric.
Then, for some ε > 0, the covering number N(H, ε) is given by
the minimal number l ∈ N, such that there exist l disks of
radius ε, which cover H.

Using covering numbers, we can now give bounds (in
probability) for the defect LZ(f) = E(f)− EZ(f) and the
sample error EH(fH,Z) = E(fZ)− E(fH).
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Challenges: understanding why CNNs perform so
well

Generalization is not well-understood in deep learning;
data structure (geometry) as well as invariances and
symmetries with respect to the learning task (semantic)
seem to play an important role.
”Mystery of generalization in deep learning”?
Similarly the design of architectures often based on
previous experience; what are we willing to pay and how do
we distribute the available weights between number of
layers (depth) and size of layers (width)?

In Lectures 4/5, we will see how these questions are related to
signal representations - in particular: how to balance adaptivity
vs. fixed parameters?
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Challenges: understanding why CNNs perform so
well

K.Kawaguchi, L.P.Kaelbling and Y.Bengio.
Generalization in deep learning.
arXiv:1710.05468, 2017.

suggest an approach to generalization results for deep learning,
which is more motivated by practical use..

Proposition
Let Rval be a validation data set and Fval a finite set of models,
proposed independently from Rval. Further, set
zf,i = E(f)− (f(xi)− yi)2. If E(z2

f,i) ≤ γ2 and |zf,i| ≤ C a.e.
∀(f, i), then ∀δ > 0 with probability at least 1− δ, have for all
f ∈ Fval:

E(f) ≤ ERval(f) +
2C log( |Fval|δ )

3mval
+
(

2γ2 log( |Fval|δ )
mval

)1/2
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Structure of (Convolutional ) Neural Networks

Most basic building block in a general neural network may be
written as

xn+1 = σ(Anxn + bn)

xn – data vector (array) in the n-th layer
An – linear operator
bn – vector of biases in the n-th layer
nonlinearity σ (applied component wise).

For convolutional layers of CNNs: An are block-Toeplitz.
General An: dense layers.
Parameters (weights) θ = (An, bn)Npn=1 are learned by gradient
descent algorithms.
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Structure of (Convolutional ) Neural Networks

Notation:
Wn = Anxn + bn (affine mapping)
d – input dimension
xn – number of layers
Nl – width of each layer (number of neurons in each layer)
The Network:

Φ(x0) = WLσ(WL−1σ(. . . (W2σ(W1(x0)))))

N(Φ) :=
∑L
l=1Nl –over-all number of neurons

W (Φ) :=
∑L
l=1 ‖Al‖0 + ‖bl‖0 –over-all number of weights

(”connectivity”)
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Universal Approximation by Neural Networks

Proposition (Cybenko, G. (1989), K.Hornik (1991))
Even shallow networks are universal approximators!
Let σ : R 7→ R be a non-polynomial, continuous function and
K ⊆ Rd. Then, for all ε > 0 and any continuous function f on
K, there exist N ∈ N, ci, bi ∈ R and wi ∈ Rd, such that for all
x ∈ K

|f(x)−
N∑
i=1

ciσ
(
wTi x+ bi

)
| < ε

Proof uses either Stone-Weierstrass Theorem (Hornik) or
Hahn-Banach Theorem (Cybenko).

So why use deep networks at all?

M. Dörfler Math Deep Learning
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Depth before width: Some Statements and
References
So why use deep networks at all?

”The number of linear regions grows exponentially with depth
of a neural network”

Montufar, G., Pascanu, R., Cho, K. and Bengio, Y.
On the Number of Linear Regions of Deep Neural Networks.
Advances in Neural Information Processing Systems 27, 2014
papers.nips.cc/paper/5422-on-the-number-of-linear-regions-of-deep-neural-networks.pdf

”There are deep neural networks of size n that can only be
approximated by shallow networks whose size is exponential in
n.”

Telgarsky, M.
Benefits of depth in neural networks.
Conference on Learning Theory (COLT), (2016), 1517-1539.
https://arxiv.org/abs/1509.08101
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Depth before width: Some Statements and
References
So why use deep networks at all?

”The complexity necessary to achieve a certain accuracy is
expontially smaller when using deep nets for approximating
compositional functions”

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B. and Liao,Q.
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A
review
International Journal of Automation and Computing, 2017, 14/5

Caveat: here the statement only holds, if the deep NN has the
same ”compositional” structure as the function to be
approximated.
However, the result emphasizes importance of locality, as e.g.
featured by convolutional NNs!
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Depth before width: Some Statements and
References
So why use deep networks at all?

”All affine representation systems are (effectively) representable
by neural networks.”

Bölcskei, H., Grohs, P., Kutyniok, G. and Petersen, P.
Optimal approximation with sparsely connected deep neural networks.
arXiv preprint arXiv:1705.01714, 2017.

Uses a different, information theoretic definition of complexity
of a function class (based on work by D. Donoho):
Let d ∈ N and C ⊂ L2(Ω) a function class. For ε > 0 the
minimax code length of C is

L(ε,C) := min{` ∈ N : ∃(E,D) : sup
f∈C
‖D(E(f))− f‖L2(Ω) ≤ ε}

Furthermore, γ∗(C) := inf{γ ∈ R : L(ε,C) = O(ε−γ)} describes
the asymptotic behaviour of optimal encoder - decoder pairs.

M. Dörfler Math Deep Learning
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Depth before width: Some Statements and
References

For some known C there exists a specific optimal dictionary
that achieves the optimal tradeoff between sparsity
(..codelength!) and approximation error ...
Examples: Textures ↔ Gabor frames (JPEG), point
singularities ↔ wavelets (JPEG2000), line/hyperplane
singularities ↔ ridgelets, curved/hypersurface
singularities↔(α-)curvelets.
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Depth before width: Some Statements and
References
So why use deep networks at all?

”Let Ω ⊆ Rd be open and connected and let f ∈ C3(Ω) be not
affine-linear. Then, for a NN Φ with L layers, there is a
constant Cf > 0 such that for every p ∈ [1,∞]:

‖f − Φ‖p ≥ Cf ·max{(N(Φ)− 1)−2L, (W (Φ) + d)−2L}.”

Petersen, P. and Voigtlaender, F.,
Optimal approximation of piecewise smooth functions using deep ReLU neural networks.
arXiv preprints, arxiv.org/abs/1709.05289, 2017..

M. Dörfler Math Deep Learning
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Data Structure?

What about the structure of the data?
Geometric information in data vs. semantic information in
learning problem.
Features: Design or Learning?
Convolutional layers as feature generating layers...
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Structure of Convolutional Neural Networks

The following building blocks define a CNN:
Convolution:

S ∗ w(m,n) :=
∑
m′

∑
n′

S(m′, n′)w(m−m′, n− n′)

Pooling: PK,Lp : RM×N 7→ R
M
K
×N
L

(PK,Lp S0)(m,n) = ‖vm,nS0
‖p, m = 1, . . . , M

K
, n = 1, . . . , N

L
,

vm,nS0
= S0[(m−1) ·K+ 1, . . . ,m ·K; (n−1) ·L+ 1, . . . , n ·L]

A nonlinearity σ : R 7→ R, whose action is always to be
understood component-wise.
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Structure of Convolutional Neural Networks

Sn ∈ RMn×Nn×Kn : Input array to convolutional layer N
Kn is the number of feature maps In layer n.
Output of convolutional layer n+ 1 with convolutional kernels
wn+1 ∈ RKn+1×Kn×Mn×Nn :

Sn+1(kn+1)=PAn,Bn
∞ σ

[(
Kn∑
kn=1

Sn(kn) ∗ wn+1(kn+1, kn)
)

+ bkn+1 ⊗ 1
]

1: all-ones array of size Mn ×Nn
bkn+1 ∈ RKn+1

Sn+1(kn+1) ∈ RMn/An×Nn/Bn for kn+1 = 1, . . . ,Kn+1.

M. Dörfler Math Deep Learning
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Invariance, Symmetry and Stability

Features are supposed to make life for learners easier ...
Let a family of invertible operators
A = {Ag : X 7→X, g ∈ G} be given. A function
f : X 7→ Y is locally invariant to A, if

∀x ∈X, ∃Cx > 0 s.t. ∀g with |g| < Cx : f(Ag(x)) = f(x).

Deformation stability: ‖Φ(Ag(x))− Φ(x)‖ ≤ C|g|‖x‖.
(Locally linearizable!)
In general, call a mapping Φ : RL 7→ RM1×...×Md a feature
extractor if Φ(f) maps raw (audio) data to ”more
structured” representation (e.g. in the sense of encoding
known invariances).

M. Dörfler Math Deep Learning
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Invariance, Symmetry and Stability

A feature extractor Φ = (Φk)dk=1 : RL 7→ RM1×...×Md aims
at a decomposition f(x) = f0(Φ(x)) with f0 (much) simpler
than f !
Φ separates f linearly, if f(x) is sufficiently closely
approximated by

f̃(x) = 〈Φ(x), w〉 =
d∑

k=1
wk · Φk(x).

Examples, playground.tensorflow
Features for Audio Data??
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Definition (Frame)
A sequence {gj : j ∈ J} ⊆ H is called a frame if there exist
A,B > 0 such that ∀f ∈ H

A‖f‖2 ≤
∑
j∈J
|〈f, gj〉|2 ≤ B‖f‖2.

A,B: frame bounds.

Definition (Gabor frame)
G(g, α, β) = {MβjTαkg : j, k ∈ Z}.
Tαkg(t) = g(t− αk) and Mβjg(t) = g(t) · e2πiβj .

M. Dörfler Math Deep Learning
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Definition (Frame)
A sequence {gj : j ∈ J} ⊆ H is called a frame if there exist
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A,B: frame bounds.

Definition (Gabor frame)
G(g, α, β) = {MβjTαkg : j, k ∈ Z}.
Tαkg(t) = g(t− αk) and Mβjg(t) = g(t) · e2πiβj .

M. Dörfler Math Deep Learning



38/84

Spectrogram and Gabor Frames

STFT of f with respect to a time-localized window g (e.g.
Gaussian):

Vgf(b, k) = F(f · Tbg)(k)

Spectrogram: S0(lb0, kν0) = |Vgf(lb0, kν0)|2 = |〈f, gk,l〉|2 if we
use elements of a Gabor frame

G(g, α, β) = {gj,k = MβjTαkg : j, k ∈ Z}

In practice, linear sampling in frequency leads to S0 ∈ RM×N
with N time-samples and M frequency channels with M � N ,
most energy accumulated in lower frequency channels.
Alternatives?

M. Dörfler Math Deep Learning
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Spectrogram and Gabor Frames

For non-stationary Gabor frames, windows with adaptive
bandwidth replace modulated versions of a fixed window g:

{hν,l = Tlbνhν : l ∈ Z, ν ∈ I}

Time-shift parameters bν may be chosen separately for each
band in some index set I.

N. Holighaus, M. Dörfler, G. A. Velasco, and T. Grill, “A framework for invertible,
real-time constant-Q transforms,” IEEE Trans. Audio Speech Lang. Process., vol. 21,
no. 4, pp. 775 –785, 2013.

Often use bν = b0 for all channels, thus Sa of size M ×N
containing the coefficients of f with respect to the
non-stationary Gabor frame, i.e.

Sa(l, k) = |〈f, Tlhν〉|2.

Now M = |I| can be chosen such that M ≈ N .

M. Dörfler Math Deep Learning
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Feature Extractor and Mel Spectrogram

Spectrogram expresses essential signal properties much
more clearly, or sparsely, than raw audio data.
In general, call a mapping Φ : RL 7→ RM1×...×Md a feature
extractor if Φ(f) maps raw (audio) data to ”more
structured” representation (e.g. in the sense of encoding
known invariances).

Example (Mel spectrogram)
The mel spectrogram is derived from S0 by taking weighted
averages over frequency channels defined by the mel-scale:

MSg(f)(l, ν) =
∑
k

S0(l, k) · Λν(k).

S. S. Stevens, “A scale for the measurement of the psychological magnitude pitch,”
Acoustical Society of America Journal, vol. 8, 1937.

M. Dörfler Math Deep Learning



41/84

Gabor Scattering and Invariance of audio signals

We show, that 1st layer in Gabor scattering is invariant to
(smooth) amplitude modulations, while the 2nd layer is
invariant to frequency variations.

R.Bammer, MD, “Gabor frames and deep scattering networks in audio processing ,”
preprint, https://arxiv.org/abs/1706.08818, 2017

M. Dörfler Math Deep Learning
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Definitions:

Triplet Sequence Ω =
(
(Ψ`, σ`, S`)

)
`∈N :

Ψ` := {gλ`}λ`∈Λ` with gλ` = Mβ`jTα`kg`, λ` = (α`k, β`j), is
a Gabor frame indexed by a lattice Λ` = α`Z× β`Z.
A pointwise non-linearity function σ` : C→ C,
Lipschitz-continuous, i.e. ‖σ`f − σ`h‖2 ≤ L`‖f − h‖2 for all
f, h ∈ L2(R).
Here: modulus function with Lipschitz constant L` = 1.
Pooling factor S` > 0, which leads to dimensionality
reduction.
Here: covered by choosing specific lattices Λ` in each layer,
i.e. S` = α`.

M. Dörfler Math Deep Learning
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Definition (Gabor Scattering `−th Layer Element)
Let Ω =

(
(Ψ`, σ`,Λ`)

)
`∈N be a triplet-sequence. Then the `-th

layer of the Gabor scattering transform is defined as the output
of the operator U` : β`Z×H`−1 → H` :

f` := U`[β`j]f`−1(k) := σ`(〈f`−1,Mβ`jTα`kg`〉H`−1),

where f`−1 is the output-vector of the previous layer. Here
H0 = L2(R) and H` = `2(Z) ∀` > 0.

…

M. Dörfler Math Deep Learning
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Path extension:
q := (q1, ..., q`) ∈ β1Z× ...× β`Z =: B`, ` ∈ N and obtain

U [q]f = U [(q1, ..., q`)]f := U`[q`] · · · U1[q1]f.

M. Dörfler Math Deep Learning
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Output-generating atom:
φ`−1 := gλ∗

`
, λ∗` ∈ Λ`.

M. Dörfler Math Deep Learning
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Definition (Feature Extractor)
Let Ω =

(
(Ψ`, σ`,Λ`)

)
`∈N be a triplet-sequence and φ` the

output generating atom for each layer. Then the feature
extractor ΦΩ : L2(R)→ (`2(Z))Q is defined as

ΦΩ(f) :=
∞⋃
`=0
{(U [q]f) ∗ φ`}q∈B`1 .

Q :=
⋃∞
`=0 B

` and the space (`2(Z))Q of sets
s := {sq}q∈Q , sq ∈ `2(Z) for all q ∈ Q.

T. Wiatowski and H. Bölcskei
A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction.
CoRR, abs/1512.06293, (2015).

S. Mallat.
Group Invariant Scattering.
Communications on Pure and Applied Mathematics, 65(10):1331–1398, (2012).

T. Wiatowski and H. Bölcskei
Deep Convolutional Neural Networks Based on Semi-Discrete Frames.
Proc. of IEEE International Symposium on Information Theory (ISIT), Hong Kong,
China:1212–1216, (2015).
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Signal Model
Class of tones:
T = {

∑N
n=1An(t)e2πinξ0t|An ∈ C∞c (R)}.

An(t)... envelope for each harmonic
ξ0... fundamental frequency, N ... number of harmonics
Want to understand invariances and deformation stability
induced by the Scattering Network!
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Invariance of first layer:

Proposition
Let f(t) ∈ T with ‖An‖∞ ≤ 1, ‖A′n‖∞ <∞ ∀n ∈ {1, ..., N},
g1 : |ĝ1(ω)| ≤ Cĝ1(1 + |ω|s)−1 for some s > 1 and
‖tg1(t)‖1 = Cg1 <∞. Fix j, n0 and let n0 = argmin

n
|βj − ξ0n|.

Then

U1[β1j](f)(k) = |〈f,Mβ1jTα1kg1〉| = An0(α1k)|ĝ1(β1j − n0ξ0)|+E1(k)

with

E1(k) ≤ Cg1

N∑
n=1
‖A′n ·Tkχ[−α1;α1]‖∞+2Cĝ1

∑
n>0

(
1 + |ξ0|s|n−

1
2 |
s

)−1
.

Note: need slowly varying amplitude; worse separation for low
frequencies.
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Output:

Let φ1 ∈ Ψ2, then the output of the first layer is

U1[β1j]f ∗ φ1(k) = |ĝ1(β1j − n0ξ)|(An0 ∗ φ1)(k) + ε1(k),

where

ε1(k) ≤ C ′g1 ·
N∑
n=1
‖A′n·Tkχ[−α1;α1]‖∞+C ′ĝ1

∑
n>0

(
1+|ξ0|s|n−

1
2 |
s)−1

.

for slowly varying amplitude An → contribution near the
frequencies of the tone’s harmonics.
φ1 low pass filter and in dependence of pooling factor α1 →
temporal fine-structure is averaged out.

⇒ first layer is invariant w.r.t. envelope changes.
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Invariance of second layer:

Corollary

Let f(t) ∈ T,
∑
k 6=0 |Ân0(.− k

α1
)| ≤ εα1 and

|ĝ2(h)| ≤ Cĝ2(1 + |h|s)−1. Then the elements of the second layer
can be expressed as

U2[β2h]U1[β1j]f(m) =|ĝ1(β1j − ξ0n0)||
〈
M−β2hAn0 , Tα2mg2

〉
|

+E2(m),

where

E2(m) ≤ εα1Cĝ2 |ĝ1(β1j − ξ0n0)|
∑
r

(
1 + |β2h− r|s

)−1 + ‖E1‖∞.
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Output:

Let φ2 ∈ Ψ3 then the second layer output is

U2[β2h]U1[β1j]f ∗φ2(m)=|ĝ1(β1j − ξ0n0)||
〈
M−β2hAn0 , Tα2mg2

〉
|∗φ2

+ε2(m)

ε2(m) ≤ εα1C
′
ĝ2 |ĝ1(β1j−ξ0n0)|

∑
r

(
1+|β2h−r|s

)−1+‖E1‖∞‖φ2‖1.

applying φ2 → removes fine temporal structure.
⇒ second layer is invariant w.r.t. pitch and reveals information
contained in the envelopes An.
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Different envelopes:
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Pitch invariance (1st part):
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Pitch invariance (2nd part):
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Same example with modulated envelope:
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Two tones close to each other (1st part):
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Two tones close to each other causing beats (2nd part):
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Frequency modulation:

homepage.univie.ac.at/monika.doerfler/
GaborScattering.html

M. Dörfler Math Deep Learning
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Deformation stability

Stable w.r.t.:
envelope changes Fτ (f)(t) =

∑N
n=1An(t+ τ(t))e2πinξ0t.

frequency modulation Fτ (f)(t) =
∑N
n=1An(t)e2πi(nξ0t+τn(t)).

⇒ Stability is obtained by using the decoupling technique:
contractivity of feature extractor:
‖ΦΩ(f)− ΦΩ(h)‖2 ≤ ‖f − h‖2.
error bound of signal class: ‖f − Fτ (f)‖, w.r.t. a small
deformation τ.

P. Grohs, T. Wiatowski and H. Bölcskei
Deep convolutional neural networks on cartoon functions.
IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain,
July 10-15, 2016:1163–1167, (2016).
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Proposition (Envelope changes)
Let f(t) ∈ T and |A′n(t)| ≤ Cn(1 + |t|s)−1, for constants
Cn > 0, n = 1, ..., N and s > 1. Moreover let ‖τ‖∞ � 1. Then

‖f − Fτ (f)‖2 ≤ D‖τ‖∞
N∑
n=1

Cn,

for D > 0 depending only on ‖τ‖∞.

Proposition (Frequency modulation)
Let f(t) ∈ T and assume ‖An‖∞ < 1

n . Moreover let

‖τn‖∞ <
arccos(1− ε

2
2 )

2π . Then

‖f − Fτ (f)‖2 ≤ ε
N∑
n=1

1
n
.
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R. Bammer and M. Dörfler
Invariance and Stability of Gabor Scattering for Music Signals.
Proc. of Sampling Theory and Aplication (Sampta) in Tallinn,
Estonia, (2017).

R. Bammer and M. Dörfler, “Gabor frames and deep scattering
networks in audio processing ,” preprint,
https://arxiv.org/abs/1706.08818, 2017

Ongoing work: using Gabor Scattering coefficients as input to
various classification methods in comparison to standard
features, such as Mel-coefficients.. (coming soon).
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1 Lecture 1: Introduction and Motivation
The Power of Convolutional Neural Networks
What is learning in a mathematical sense? - a simple
example

2 Lecture 2: Elements of Mathematical Learning Theory
Approximation Error and Sample Error
Generalization

3 Lecture 3: Approximation by (Deep) Neural Networks and
the Idea of Locality in CNNs

Approximation Results for Shallow and Deep Networks
CNNs: Extracting Local Information

4 Lecture 4: Features - Invariance, Symmetry and Stability
Features for Audio: (Mel-)Spectrogram and Scattering
Transforms

5 Lecture 5: Adaptivity - what do we know, what must we
learn?
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Equivalence of feature-network pairs

CNN N defined by
input dimension,
number of convolutional layers Dc,
number of dense layers Dd,
number and size of convolutional kernels in each
convolutional layer,
type of non-linearity and pooling in each layer.

θ ∈ Rp ...parameter vector comprising all the weights occurring
in the network; N(θ)... concrete realisation.
Data set: D = {(fi, ci) ∈ RL × R, i ∈ I}.

M. Dörfler Math Deep Learning
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Equivalence of feature-network pairs

Since designed feature extractors may often lead to useful
invariances, we need to consider both feature extractor and
network architecture.

Definition (CNN equivalence)
Given two feature-network pairs (Φj ,Nj), j = 1, 2, we say that
(Φ1,N1) is subordinate to (Φ2,N2) with respect to a data set D,
if for all θ1 ∈ Rp1 there exists a θ2 ∈ Rp2 such that

N1(θ1)(Φ1(fi)) = ci ⇒ N2(θ2)(Φ2(fi)) = ci ∀(fi, ci) ∈ D.

(Φ1,N1) and (Φ2,N2) are equivalent with respect to D if they
are subordinate to each other.

M. Dörfler Math Deep Learning
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The Mel-spectrogram and adaptive filter banks
Anden and Mallat showed that the mel-spectrogram can be
approximated by time-averaging the absolute values-squared of
a wavelet transform.

J. Andén and S. Mallat, “Deep scattering spectrum,”
IEEE Transactions on Signal Processing
vol. 62, no. 16, pp. 4114–4128 (2014)

Can this be made precise? What is the consequence for
representation design?

Compute filtered version of f with respect to filter bank hν
(generating non-stationary Gabor frame {Tlhν}, ν ∈ I, k ∈ Z )
and apply subsequent time-averaging using a time-averaging
function $ν :

FBhν (f)(b, ν) =
∑
l

|(f ∗ hν)(αl)|2 ·$ν(αl − b).

Recall:

MSg(f)(b, ν) =
∑
k

|F(f · Tbg)(βk)|2 · Λν(βk).

M. Dörfler Math Deep Learning
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Equivalence of feature-network pairs

Proposition
For all ν ∈ I, let g, hν ,Λν , $ν be given. Let MSg(f) and
FBhν (f) be computed on a lattice αZ× βZ and set

Mν(x) =
∑
l

T l
β
F−1(Λν)(x) and Mν

F (ξ) =
∑
k

T k
α
F($ν)(ξ).

Then the following estimate holds for all (b, ν) ∈ αZ× I:

|MSg(f)(b, ν)− FBhν (f)(b, ν)| ≤ ‖Vgg ·Mν − Vhνhν ·Mν
F ‖2‖f‖22

In particular, if

Vhνkhνk(x, ξ) ·F($νk)(ξ) = Vgg(x, ξ)·F−1(Λνk)(x),

then MSg(f)(l, νk) can be obtained by time-averaging the filtered
signal’s absolute value squared on the full lattice Z (α = 1).

M. Dörfler Math Deep Learning
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Equivalence of feature-network pairs
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Equivalence of feature-network pairs
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Equivalence of feature-network pairs

Vgg
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Figure: Spreading functions of operators defining different feature
extractors.
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Equivalence of feature-network pairs

Theorem

Consider N1 as a convolutional network with Dc convolutional
layers.
Consider N2, analogue to N1, except for an additional
convolutional layer, consisting of a finite number of
convolutional kernels with sufficient length in time-direction and
length 1 in frequency direction, preceding the Dc convolutional
layers.
Then (MSg,N1) is subordinate to (Sa,N2) if the windows g, hν
and the mel-filters Λν are chosen such that MSg = FBhν .

M. Dörfler, T. Grill et al. “Basic Filters for Convolutional Neural Networks Applied to
Music: Training or Design?’ To appear in Neural Computation and Applications,
https://arxiv.org/abs/1709.02291, 2018.
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Example: Performance on Singing Voice
Detection

Singing voice detection: binary problem of presence or absence
of human voice in music

Let’s listen to and watch some examples!

http://ofai.at/˜jan.schlueter/pubs/2016_ismir/
alexanderross/index.html

The architecture has a total number of 1.41 million weights
(91% for the dense layers).

M. Dörfler Math Deep Learning
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Challenges: understanding why CNNs perform so
well

How is it possible, that networks defined by more than a million
of weights and trained on significantly fewer data points still
generalize well?
Two central challenges:

Generalization: performance on unseen data points drawn
from same distribution.
Architectures: predefined number of layers (depth), both
convolutional and dense, and size of layers (width).

Keywords: Drop-out, Validation, Features
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Experimental Setup:
1 Size reduction possible since we expect useful invariances

captured by features
2 Four convolutional layers, two 3× 3 convolutions (32 and

16 kernels), 3× 3 non-overlapping max-pooling, two more
3× 3 convolutions (32 and 16 kernels), 3× 3 pooling.

3 Two variants for dense layer (Classification stage):
‘small-two’: two dense layers of 64 and 16 units (total
number of weights 94337, 85% classification stage).
‘small-one’: one dense layer of 32 units (total number of
weights is 53857, 73% classification stage).

4 Final dense layer is a single sigmoidal output unit.
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Figure: Time-frequency representations for the problem of singing
voice detection. Spectrogram(upper left), STFT-based mel
spectrogram (bottom left), filter bank computed (top right), and filter
bank with time-averaging (bottom right).
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Equivalence of feature-network pairs - empirical
results

ST
FT

(s
m

al
l-t

w
o)

Fi
lte

rb
an

k
ap

pr
ox

im
at

io
n

(s
m

al
l-t

w
o)

Fi
lte

rb
an

k
na

iv
e

(s
m

al
l-t

w
o)

ST
FT

(s
m

al
l-o

ne
)

ST
FT

 a
da

pt
iv

e
(s

m
al

l-o
ne

)

Fi
lte

rb
an

k
ap

pr
ox

im
at

io
n

(s
m

al
l-o

ne
, s

tr
id

e=
3)

Fi
lte

rb
an

k
ap

pr
ox

im
at

io
n

(s
m

al
l-o

ne
)

Fi
lte

rb
an

k
na

iv
e

(s
m

al
l-o

ne
)

Fi
lte

rb
an

k
fix

ed
-w

id
th

(s
m

al
l-o

ne
)

Fi
lte

rb
an

k
va

ria
bl

e-
w

id
th

(s
m

al
l-o

ne
)

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

0.0750

0.0775

0.0800

AO
C

AOC
mean(AOC)

M. Dörfler Math Deep Learning



76/84

Equivalence of feature-network pairs

What is the influence of choice of analysis window?

Proposition
Let Sg0(l, k) = |〈f, gk,l〉|2 and let analysis windows g and h be
given. If convolutional kernels wg and wh are chosen such that

Fs(wg) · Vgg = Fs(wh) · Vhh,

then Sg0 ∗ wg = Sh0 ∗ wh.

Fs · · · symplectic Fourier transform.
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Equivalence of feature-network pairs

IDEA of Proof:
Write two-dimensional convolution as Gabor multiplier:
Sg0 ∗ wg(λ) = 〈Gg,mλf, f〉, where λ = (l, k) and

mλ(l′, k′) = wg(l − l′, k − k′) =: w̃λg (l′, k′)

Resulting operators can be written by means of their
spreading functions:

ηGg,m(x, ξ) = Fs(m)(x, ξ)Vgg(x, ξ),

〈Gg,mλf, f〉 =
∫
z
Fs(w̃λg )(z)e−2πi(lξ−kx)Vgg(z)Vff(z)dz

M. Dörfler Math Deep Learning
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Equivalence of feature-network pairs

Figure: Synthetic signal consisting of several damped notes: convolution
leads to similar results from previously different spectrograms.

M. Dörfler Math Deep Learning



79/84

Equivalence of feature-network pairs

Theorem
Consider two convolutional neural networks Nj, j = 1, 2 with
Dc convolutional layers and the same number of convolutional
kernels wk0

k1
for j = 1, 2.

For two windows g, h, the size of wk0
k1

for j = 1, 2 can be chosen
such that (Sg0 ,N1) and (Sh0 ,N2) are equivalent (under
appropriate support conditions on g and h).
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Invariance

Recall: CNNs can learn ”almost anything”
Recent example on music signals (Oriol Nieto, Pandora,
private communication): deep CNN learns semantic music
content with more than 98% accuracy (!?).
However..
Pandora owns 1.5 millions of manually annotated music
tracks.
for training data of up to 500.000 hours of music, learning
on raw audio cannot beat learning on pre-processed data.

...so it can be helpful to provide known invariance by means of
an appropriate feature extractor!

M. Dörfler Math Deep Learning
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Invariance

Proposition
Let (Φ1,N1) be subordinate to (Φ2,N2) with respect to D and let
A(D) denote an augmented data-set.
If N1(Φ1(A(x))) = N1(Φ1(x)) for all x ∈ D, and Φ2 is
invariant to A, then (Φ1,N1) is also subordinate to (Φ2,N2)
with respect to A(D).

Example: Let (Id,N1) be subordinate to (S0,N2) with respect
to D; let M(D) denote the augmented data-set achieved by
multiplication with a phase factor. If N1 is invariant to M , then
(Id,N1) is also subordinate to (S0,N2) with respect to M(D).

S. Mallat.
Understanding deep convolutional networks.
Philos Trans A Math Phys Eng Sci., 374(2065), 2016.

J. Sokolic et al
Generalization Error of Invariant Classifiers
Preprint, 2017
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Invariance

Sokolic, Giryes, Sapiro and Rodrigues recently defined the
notion of an invariant learning algorithm as follows.

Definition
A learning algorithm T is invariant with respect to an
augmentation A, if for any learned model f it holds that
f(A(x)) = f(x) for all x ∈ D.

J. Sokolic et al
Generalization Error of Invariant Classifiers
Preprint, 2017

It can then be shown that the generalization error reduces by a
factor proportional to N(D)/N(A(D)) (Recall that N(D), the
covering number of D characterizes the complexity of D, in this
case the signal class.
Here: invariant feature extractor leads naturally to invariant
learning algorithm and thus reduces the generalization gap!
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Conclusions - Perspectives

CNNs learn signal representations similar to standard
representations such as mel-spectrogram; there can be
small, but significant performance differences in
dependence on structure of input representation.
Allowing for mild variants of adaptivity can lead to small
but significant performance improvement; full adaptivity
(”true end-to-end learning”) requires huge amount of data.
Invariance of feature extractors may lead to smaller
generalization gap and sampling error.
Equivalence of feature/network pairs will be studied
including deeper layers and taking signal class properties
into account; this will provide estimates for generalization
error and give guidelines for architecture choice.
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Thanks for your attention!
Questions? Remarks?
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