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For notions of global smoothness, the discrete p-Dirichlet
form of f is defined as

Sp(f) :=
1

p

X

i2V

kOifkp2 =
1

p

X

i2V

2

4
X

j2Ni

Wi,j [f(j)� f(i)]2

3

5

p
2

.

(5)

When p = 1, S1(f) is the total variation of the signal with
respect to the graph. When p = 2, we have
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S2(f) is known as the graph Laplacian quadratic form [17],
and the semi-norm kfkL is defined as

kfkL := kL 1
2 fk2 =

p
fTLf =

p
S2(f).

Note from (6) that the quadratic form S2(f) is equal to zero
if and only if f is constant across all vertices (which is why
kfkL is only a semi-norm), and, more generally, S2(f) is small
when the signal f has similar values at neighboring vertices
connected by an edge with a large weight; i.e., when it is
smooth.

Returning to the graph Laplacian eigenvalues and eigen-
vectors, the Courant-Fischer Theorem [35, Theorem 4.2.11]
tells us they can also be defined iteratively via the Rayleigh
quotient as

�0 = min
f2RN

kfk2=1

{fTLf} , (7)

and �` = min
f2RN

kfk2=1
f?span{u0,...,u`�1}

{fTLf} , ` = 1, 2, . . . , N � 1, (8)

where the eigenvector u` is the minimizer of the `th prob-
lem. From (6) and (7), we see again why u0 is constant
for connected graphs. Equation (8) explains why the graph
Laplacian eigenvectors associated with lower eigenvalues are
smoother, and provides another interpretation for why the
graph Laplacian spectrum carries a notion of frequency.

Example 1 in the box below demonstrates the importance of
incorporating the underlying graph structure when processing
signals on graphs.

F. Other Graph Matrices
The basis {u`}`=0,1,...,N�1 of graph Laplacian eigenvectors

is just one possible basis to use in the forward and inverse
graph Fourier transforms (3) and (4). A second popular option
is to normalize each weight Wi,j by a factor 1p

didj
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leads to the normalized graph Laplacian, which is defined as
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Example 1 (Importance of the underlying graph):
In the figure above, we plot the same signal f on
three different unweighted graphs with the same set
of vertices, but different edges. The top row shows the
signal in the vertex domains, and the bottom row shows
the signal in the respective graph spectral domains.

The smoothness and graph spectral content of the
signal both depend on the underlying graph structure.
In particular, the signal f is smoothest with respect
to the intrinsic structure of G1, and least smooth with
respect to the intrinsic structure of G3. This can be seen
(i) visually; (ii) through the Laplacian quadratic form,
as fTL1f = 0.14, fTL2f = 1.31, and fTL3f = 1.81;
and (iii) through the graph spectral representations,
where the signal has all of its energy in the low
frequencies in the graph spectral plot of f̂ on G1, and
more energy in the higher frequencies in the graph
spectral plot of f̂ on G3.

The eigenvalues {�̃`}`=0,1,...,N�1 of the normalized graph
Laplacian of a connected graph G satisfy

0 = �̃0 < �̃1  . . .  �̃max  2,

with �̃max = 2 if and only if G is bipartite; i.e., the set of
vertices V can be partitioned into two subsets V1 and V2 such
that every edge e 2 E connects one vertex in V1 and one vertex
in V2. We denote the normalized graph Laplacian eigenvectors
by {ũ`}`=0,1,...,N�1. As seen in Figure 3(b), the spectrum of
L̃ also carries a notion of frequency, with the eigenvectors
associated with higher eigenvalues generally having more zero
crossings. However, unlike u0, the normalized graph Laplacian
eigenvector ũ0 associated with the zero eigenvalue is not a
constant vector.

The normalized and non-normalized graph Laplacians are
both examples of generalized graph Laplacians [36, Section
1.6], also called discrete Schrödinger operators. A generalized
graph Laplacian of a graph G is any symmetric matrix whose
i, jth entry is negative if there is an edge connecting vertices
i and j, equal to zero if i 6= j and i is not connected to j, and
may be anything if i = j.

A third popular matrix that is often used in dimensionality-
reduction techniques for signals on graphs is the random walk
matrix P := D�1W. Each entry Pi,j describes the probability
of going from vertex i to vertex j in one step of a Markov
random walk on the graph G. For connected, aperiodic graphs,
each row of Pt converges to the stationary distribution of

Recall, a signal is smooth with respect to the intrinsic structure of its
underlying graph

Similarly, the graph spectral content also depends on the underlying graph
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Borel functional calculus for symmetric matrices

Functional calculus
�4

Symmetric matrices admit a (Borel) functional calculus

Use spectral theorem on powers, get to polynomials
From polynomial to continuous functions by Stone-Weierstrass
Then Riesz-Markov (non-trivial !)

It will be useful to manipulate functions of the Laplacian

polynomials

f(L), f : R 7! R
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Example: Diffusion on Graphs
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Consider the following « heat » diffusion model
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Example: Diffusion on Graphs
�6

examples of heat kernel on graph

f0(j) = �k(j)

f(i) =
X
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e�t�` f̂0(`)u`(i)
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Simple De-Noising Example
�7

Suppose a smooth signal f on a graph
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Simple De-Noising Example
�8

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

De-Noising by Regularization
argmin

f
kf � yk22 s.t. f tLf  M



Simple De-Noising Example
�8

Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
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Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑
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∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

De-Noising by Regularization
argmin

f
kf � yk22 s.t. f tLf  M
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for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to
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2
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is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
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(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)
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From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
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∗
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ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
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ℓ
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Finally, taking the inverse graph Fourier transform of (18), we
have
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ℓ

]
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∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

Graph Fourier

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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Filtering:

2

function that assigns a non-negative weight to each edge. An
equivalent representation is G = {V, E ,W}, where W is a
N ⇥N weighted adjacency matrix with non-negative entries

Wij =

(
w(e), if e 2 E connect vertices i and j

0, if no edge connects vertices i and j
.

In unweighted graphs, the entries of the adjacency matrix W

are ones and zeros, with a one corresponding to an edge
between two vertices and a zero corresponding to no edge.
The degree matrix D is a diagonal matrix with an i

th diagonal
element Dii = di =

P
j2Ni

Wij , where Ni is the set of
vertex i’s neighbors in G. Its maximum element is dmax :=
maxi2V{di}. We denote the combinatorial graph Laplacian
by L := D � W, the normalized graph Laplacian by L̃ :=
D

� 1
2LD� 1

2 , and their respective eigenvalue and eigenvector
pairs by {(�`,u`)}`=0,1,...,N�1 and {(�̃`, ũ`)}`=0,1,...,N�1.
Then U and Ũ are the matrices whose columns are equal to the
eigenvectors of L and L̃, respectively. We assume without loss
of generality that the eigenvalues are monotonically ordered
so that 0 = �0 < �1  �2  . . .  �N�1, and we
denote the maximum eigenvalues and associated eigenvectors
by �max = �N�1 and umax = uN�1. �max is simple if
�N�1 > �N�2.

B. Graph Spectral Filtering
A graph signal is a function f : V ! R that associates a

real value to each vertex of the graph. Equivalently, we can
view a graph signal as a vector f 2 RN .

In frequency filtering, we represent signals as linear com-
binations of a set of signals and amplify or attenuate the
contributions of different components. In classical signal pro-
cessing, the set of component signals are usually the complex
exponentials, which carry a notion of frequency and give rise
to the Fourier transform. In graph signal processing, it is most
common to choose the graph Fourier expansion basis to be
the eigenvectors of the combinatorial or normalized graph
Laplacian operators. This is because the spectra of these graph
Laplacians also carry a notion of frequency (see, e.g., [2,
Figure 3]), and their eigenvectors are the graph analogs to
the complex exponentials, which are the eigenfunctions of the
classical Laplacian operator.

More precisely, the graph Fourier transform with the com-
binatorial graph Laplacian eigenvectors as a basis is

f̂(�`) := hf ,u`i =
NX

i=1

f(i)u⇤
` (i), (1)

and a graph spectral filter, which we also refer to as a kernel, is
a real-valued mapping ĥ(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

f̂out(�`) = f̂in(�`)ĥ(�`), (2)

or, equivalently, taking an inverse graph Fourier transform,

fout(i) =
N�1X

`=0

f̂in(�`)ĥ(�`)u`(i). (3)

We can also write the filter in matrix form as fout = Hfin,
where H is a matrix function [14]

H = ĥ(L) = U[ĥ(⇤)]U⇤
, (4)

where ĥ(⇤) is a diagonal matrix with the elements of the
diagonal equal to {ĥ(�`)}`=0,1,...,N�1. We can also use the
normalized graph Laplacian eigenvectors as the graph Fourier
basis, and simply replace L, �`, and u` by L̃, �̃`, and ũ` in
(1)-(4). A discussion of the benefits and drawbacks of each of
these choices for the graph Fourier basis is included in [2].

C. Alternative Filtering Methods for Graph Signals
We briefly mention two alternative graph filtering methods:
1) We can filter a graph signal directly in the vertex

domain by writing the output at a given vertex i as a
linear combination of the input signal components in
a neighborhood of i. Graph spectral filtering with an
order K polynomial kernel can be viewed as filtering
in the vertex domain with the component of the output
at vertex i written as a linear combination of the input
signal components in a K-hop neighborhood of i (see
[2] for more details)

2) Other choices of filtering bases can be used in place
of L in (4). For example, in [15], Sandryhaila and
Moura examine filters that are polynomial functions of
the adjacency matrix, rather than functions of graph
Laplacians

III. GRAPH DOWNSAMPLING

Two key components of multiscale transforms for discrete-
time signals are downsampling and upsampling.1 To down-
sample a discrete-time sample by a factor of two, we remove
every other component of the signal, usually keeping the
even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V1 to keep. The complement Vc

1 := V\V1 =
{v 2 V : v /2 V1} is the set of vertices that D removes from
V . Ideally, we would like the graph downsampling operator D
to have the following properties:
(D1) It removes approximately half of the vertices of the

graph (or, equivalently, approximately half of the com-
ponents of a signal on the vertices of the graph); i.e.,
|D(G)| = |V1| ⇡ |V|

2
(D2) It removes vertices that are not connected with edges of

high weight, and keeps vertices that are not connected

1We focus here on downsampling, as we are only interested in upsampling
previously downsampled graphs. As long as we track the positions of the
removed components of the signal, it is straightforward to upsample by
inserting zeros back into those components of the signal.

2
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a real-valued mapping ĥ(·) on the spectrum of graph Laplacian
eigenvalues. Just as in classical signal processing, the effect
of the filter is multiplication in the Fourier domain:

f̂out(�`) = f̂in(�`)ĥ(�`), (2)
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even components by convention. To extend many ideas from
classical signal processing to the graph setting, we need to
define a notion of downsampling for signals on graphs. Yet,
it is not at all obvious what it means to remove every other
component of a signal f 2 RN defined on the vertices of
a graph. In this section, we outline desired properties of a
downsampling operator for graphs, and then go on to suggest
one particular downsampling method.

Let D : G = {V, E ,W} ! 2V be a graph downsampling
operator that maps a weighted, undirected graph to a subset
of vertices V1 to keep. The complement Vc

1 := V\V1 =
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(D2) It removes vertices that are not connected with edges of
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Algorithm 1 Distributed Computation of Φ̃f

Inputs at Node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at Node n:

{(
Φ̃f

)

(j−1)N+n

}

j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn

2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn

4: Compute and store

(
T 1(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,mfm − 2fn

5: for k = 2, . . . ,M do

6: Transmit
(
T k−1(L)f

)
n

to all neighbors Nn

7: Receive
(
T k−1(L)f

)
m

from all neighbors Nn

8: Compute and store

(
T k(L)f

)
n

=
∑

m∈Nn∪n

2

α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−

(
T k−2(L)f

)
n

9: end for

10: Output for j ∈ {1, 2, . . . , η}:

(
Φ̃f

)

(j−1)N+n
=

1

2
cj,0fn +

M∑

k=1

cj,k

(
T k(L)f

)
n

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that

(
Φ̃∗a

)

n
=

η∑

j=1

(
1

2
cj,0aj +

M∑

k=1

cj,kT k(L)aj

)

n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are

required for every node n to compute
(
Φ̃∗a

)

n
.

C. Distributed Computation of Φ̃∗Φ̃f and Φ̃Φ̃∗a

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1

2

[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [17] for a similar calculation)

(
Φ̃∗Φ̃f

)

n
=

(
1

2
d0f +

2M∑

k=1

dkT k(L)f

)

n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner

using 4M |E| messages of length 1, with each node n finishing

with knowledge of
(
Φ̃∗Φ̃f

)

n
. Similarly, there exist coeffi-

cients d′j,i,k such that

(
Φ̃Φ̃∗a

)

(j−1)N+n
=

η∑

i=1

(
1

2
d′j,i,0ai +

2M∑

k=1

d′j,i,kT k(L)ai

)

n

.

Thus, Φ̃Φ̃∗a can be computed in a distributed manner with
4M |E| messages, each a vector of length η.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty,
where, for a fixed t, (Hty)(n) :=

∑N−1
ℓ=0 e−tλℓ ŷ(ℓ)χℓ(n). Ht

clearly satisfies our definition of a graph Fourier multiplier
operator (with η = 1). In the context of a centralized image
smoothing application, [13] discusses the heat kernel, Ht, and
its relationship to classical Gaussian filtering in detail. Similar
to the example at the end of Section III-A, the main idea is
that the multiplier e−tλℓ acts as a low-pass filter that attenuates
the higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
∥f − y∥2

2 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1

2

∑

n∈V

∑

m∼n

am,n [f(m) − f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λℓ) = τ

τ+2λr
ℓ

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(ℓ) + τ
2

(
f̂∗(ℓ) − ŷ(ℓ)

)
= 0, (16)

∀ℓ ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχℓ = λℓχℓ), we have:

L̂rf∗(ℓ) = χ∗
ℓLrf∗ = (Lrχℓ)

∗ f∗ = λr
ℓχ

∗
ℓf∗ = λr

ℓ f̂∗(ℓ). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(ℓ) =
τ

τ + 2λr
ℓ

ŷ(ℓ), ∀ℓ ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑

ℓ=0

f̂∗(ℓ)χℓ(n) =
N−1∑

ℓ=0

[
τ

τ + 2λr
ℓ

]
ŷ(ℓ)χℓ(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y in a distributed manner via the Chebyshev polynomial
approximation of Section IV-A. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph

1This filter g(λℓ) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
The background colors represent the values of the smooth signal f0.
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Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
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such a network and signal f0 are shown in Figure 2, and the
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Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
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operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph
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Fig. 2. A network of 500 sensors places randomly in the [0, 1]× [0, 1] plane.
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is far less smooth with some large differences across neighboring nodes.

and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach
to distributed binary classification is to let yn be the labels (-1
or 1) of those nodes who know their labels, and 0 otherwise.
Then the nodes compute R̃y in a distributed manner via
Algorithm 1, and each node n sets it label to 1 if (R̃y)n ≥ 0
and -1 otherwise. We believe our approach to distributedly
applying graph Fourier multipliers can also be used for more
general distributed classification and semi-supervised learning
problems, but we leave this for future work.
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A Graph Filter is an operator acting on graph signals

It is represented by a function of the Laplacian: g(L) 2 RN⇥N

fout = g(L)fin

Via functional calculus or an explicit calculation: dfout(�`) = g(�`)cfin(�`)

A graph filter reshapes frequency content

Graph Filters

This operation is often called “convolution over graphs”
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Polynomial Localization
�12

Given a spectral kernel g, construct the family of features:

Are these features localized ?

Polynomial Kernels are K-Localized

cpK(�`) =
KX

k=0

ak�
k
` if d(i, n) > K, then (TipK)(n) = 0

�n[m] =
X

`

g(�`)u`[m]u`[n]�n[m] =
�
Tng

�
[m]
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Polynomial Localization
�13

Suppose the GFT of the kernel is smooth enough (K+1 different.)
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Polynomial Localization - Extended
�14
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f is (K+1)-times differentiable:
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p
N inf

dpKin

(
sup
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|ĝ(�)� dpKin(�)|

)
=

p
N inf

dpKin
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✓
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Let

Regular Kernels are Localized
If the kernel is d(i, n)-times di↵erentiable:
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Remark on Implementation
�15

Not necessary to compute spectral decomposition

Polynomial approximation :

ex: Chebyshev, minimax

Then wavelet operator expressed with powers of Laplacian:

And use sparsity of Laplacian in an iterative way

ĝ(tx) '
K�1X

k=0

ak(t)pk(x)

g(tL) '
K�1X

k=0

ak(t)Lk



W̃f (t, j) =
�
p(L)f#

⇥
j
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2
cn,0f

# +
Mn⇤
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cn,kT k(L)f#
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j

T k(L)f =
2
a1

(L� a2I)
�
T k�1(L)f

⇥
� T k�2(L)f

Remark on Implementation
�16

sup norm control (minimax or Chebyshev)

O(
J�

n=1

Mn|E|)

Computational cost dominated by matrix-vector multiply with 
(sparse) Laplacian matrix  

Note: “same” algorithm for adjoint !Complexity:

Shifted Chebyshev polynomial
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Figure 6: Norms of translated normalized heat kernels with ⌧ = 2. (a) A normalized heat kernel f̂(`) = Ce�2�` on the sensor
network graph shown in (b). (b)-(f) The value at each vertex i represents kTifk2. The edges of the graphs in (b) and (c) are
weighted by a thresholded Gaussian kernel weighting function based on the physical distance between nodes (10), whereas the
edges of the graphs in (e)-(f) all have weights equal to one. In all cases, the norms of the translated windows are not too close

to zero, and the larger norms tend to be located at the “boundary” vertices in the graph. The lower bound |f̂(0)| and upper
bound

p
Nµkfk2 of Lemma 1 are (b) [0.27,21.38]; (c) [0.20,29.22]; (d) [0.07,42.88]; (e) [0.62,4.26]; (f) [0.36,3.25].

and with the definitions (25) and (30) of the generalized translation and the polynomial kernel, we have

(TipK) (n) =
p
N

N�1X

`=0

cpK(`)�⇤
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ak�
k
`�

⇤
` (i)�`(n)
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p
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KX

k=0

ak(Lk)i,n = 0.

More generally, as seen in Figure 5, if we translate a smooth kernel to a given center vertex i, the
magnitude of the translated kernel at another vertex n decays as the distance between i and n increases. In
the following theorem, we provide one estimate of this localization by combining the strict localization of
polynomial kernels with a classical result on the minimax polynomial approximation error.

Theorem 1: Let ĝ : [0,�max] ! R be a kernel, define din := dG(i, n), and define the minimax polynomial

approximation error

Bĝ(K) := inf
cpK

(
sup

�2[0,�max]
|ĝ(�)� cpK(�)|

)
,

10

∥Tig∥2
2 = ∑

ℓ

(g(λℓ))2 |uℓ[i] |2



Spectral Graph Wavelets
�18

Remember good old Euclidean case:

We will adopt this operator view
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Operator-valued function via continuous Borel functional calculus
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Spectral Graph Wavelets
! Generalized translation 

‣Classical setting: 

‣Graph setting: 

! Generalized dilation:
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Spectral Graph Theory Generalized Operators Transforms Scalable Algorithms and Distributed Processing

Example: Image Denoising by Low-Pass Graph Filtering

f (n) // GFT // f̂ (�`) // ĝ // ĝ(�`)f̂ (�`) // IGFT // �f (n)

Semi-Local Graph Tikhonov Regularization

argmin
f

�
kf � yk22 + �fTLf

 

=) ĝ(�`) =
1

1 + ��`
λ

ĝ(λ) = 1
1+10λ

ĝ(λ)

7

Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f0 + ⌘, where ⌘ is uncorrelated additive
Gaussian noise, and wish to recover f0. To enforce a priori information that the clean signal f0 is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed � > 0, solve the optimization
problem

argmin
f

�
kf � yk22 + �fTLf

 
. (16)

The first-order optimality conditions of the convex objective function in (??) show that (see, e.g., [?], [?, Section III-A],
[?, Proposition 1]) the optimal reconstruction is given by

f⇤(i) =
N�1X

`=0


1

1 + ��`

�
ŷ(�`)u`(i), (17)

or, equivalently, f = ĥ(L)y, where ĥ(�) := 1
1+�� can be viewed as a low-pass filter.

As an example, in the figure below, we take the 512 x 512 cameraman image as f0 and corrupt it with additive
Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take ✓ = 0.1 and  = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.

Gaussian-Filtered Gaussian-Filtered
Original Image Noisy Image (Std. Dev. = 1.5) (Std. Dev. = 3.5) Graph-Filtered

comprising any path connecting i and j) is greater than k [?,
Lemma 5.2]. Therefore, we can write (??) exactly as in (??),
with the constants defined as

bi,j :=
KX

k=dG(i,j)

ak
�
Lk

�
i,j

.

So when the frequency filter is an order K polynomial,
the frequency filtered signal at vertex i, fout(i), is a linear
combination of the components of the input signal at vertices
within a K-hop local neighborhood of vertex i. This property
can be quite useful when relating the smoothness of a filtering

kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t�⌧). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors
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Example 2 (Tikhonov regularization): We observe a noisy graph signal y = f0 + ⌘, where ⌘ is uncorrelated additive
Gaussian noise, and wish to recover f0. To enforce a priori information that the clean signal f0 is smooth with respect to
the underlying graph, we include a regularization term of the form fTLf , and, for a fixed � > 0, solve the optimization
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Gaussian noise with mean zero and standard deviation 0.1 to get a noisy signal y. We then apply two different filtering
methods to denoise the signal. In the first method, we apply a symmetric two-dimensional Gaussian low-pass filter of
size 72 x 72 with two different standard deviations: 1.5 and 3.5. In the second method, we form a semi-local graph on
the pixels by connecting each pixel to its horizontal, vertical, and diagonal neighbors, and setting the Gaussian weights
(??) between two neighboring pixels according to the similarity of the noisy image values at those two pixels; i.e., the
edges of the semi-local graph are independent of the noisy image, but the distances in (??) are simply the differences
between the neighboring pixel values in the noisy image. For the Gaussian weights in (??), we take ✓ = 0.1 and  = 0.
We then perform the low-pass graph filtering (??) to reconstruct the image. This method is a variant of the graph-based
anisotropic diffusion image smoothing method of [?].

In all image displays, we threshold the values to the [0,1] interval. The bottom row of images is comprised of
zoomed-in versions of the top row of images. Comparing the results of the two filtering methods, we see that in order to
smooth sufficiently in smoother areas of the image, the classical Gaussian filter also smooths across the image edges.
The graph spectral filtering method does not smooth as much across the image edges, as the geometric structure of the
image is encoded in the graph Laplacian via the noisy image.
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kernel to the localization of filtered signals in the vertex
domain.

B. Convolution

We cannot directly generalize the definition (??) of a
convolution product to the graph setting, because of the term
h(t�⌧). However, one way to define a generalized convolution
product for signals on graphs is to replace the complex
exponentials in (??) with the graph Laplacian eigenvectors
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as solutions, relations between these discrete graph spectral 
filters and filters arising out of continuous partial differential 
equations, and applications such as graph-based image pro-
cessing, mesh smoothing, and statistical learning. In 
“Example 2 (Tikhonov Regularization),” we show one particu-
lar image denoising application of (15) with .p 2=

FILTERING IN THE VERTEX DOMAIN
To filter a signal in the vertex domain, we simply write the 
output ( )f iout  at vertex i as a linear combination of the compo-
nents of the input signal at vertices within a K -hop local 
neighborhood of vertex i
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for some constants { } .b , , Vi j i j!  Equation (16) just says that 
filtering in the vertex domain is a localized linear transform.

We now briefly relate filtering in the graph spectral domain 
(frequency filtering) to filtering in the vertex domain. When the fre-
quency filter in (12) is an order K polynomial ( )h ak

K
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for some constants { } ,a , ,k k K0 1f=  we can also interpret the filtering 
equation (12) in the vertex domain. From (13), we have
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EXAMPLE 2 (TIKHONOV REGULARIZATION)
We observe a noisy graph signal ,y f0 h= +  where h is uncorre-
lated additive Gaussian noise, and we wish to recover .f0  To 
enforce a priori information that the clean signal f0 is smooth 
with respect to the underlying graph, we include a regularization 
term of the form ,f fLT  and, for a fixed ,02c  solve the optimiza-
tion problem

 .f y f fLargmin
f

2
2 T< < c- +" ,  (S1)

The first-order optimality conditions of the convex objective func-
tion in (S1) show that (see, e.g., [4], [29, Sec. III-A], and [40, Prop. 1]) 
the optimal reconstruction is given by
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,
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/ t; E  (S2)

or, equivalently, ( ) ,f Lh y= t  where ( ) : /h 1 1m cm= +t ^ h can be 
viewed as a low-pass filter.

As an example, in Figure S2, we take the 512 512#  cameraman 
image as f0 and corrupt it with additive Gaussian noise with mean 
zero and standard deviation 0.1 to get a noisy signal y. We then 
apply two different filtering methods to denoise the signal. In the 
first method, we apply a symmetric two-dimensional Gaussian 

low-pass filter of size 2 27 7#  with two different standard devia-
tions: 1.5 and 3.5. In the second method, we form a semilocal 
graph on the pixels by connecting each pixel to its horizontal, ver-
tical, and diagonal neighbors, and setting the Gaussian weights (1) 
between two neighboring pixels according to the similarity of the 
noisy image values at those two pixels; i.e., the edges of the 
semilocal graph are independent of the noisy image, but the dis-
tances in (1) are the differences between the neighboring pixel 
values in the noisy image. For the Gaussian weights in (1), we take 

.0 1i =  and .0l =  We then perform the low-pass graph filtering 
(S2) with 10c =  to reconstruct the image. This method is a variant 
of the graph-based anisotropic diffusion image smoothing 
method of [11].

In all image displays in Figure S2, we threshold the values to 
the [0,1] interval. The images in (b) comprise zoomed-in versions 
of the images in (a). Comparing the results of the two filtering 
methods, we see that to smooth sufficiently in smoother areas 
of the image, the classical Gaussian filter also smooths across the 
image edges. The graph spectral filtering method does not 
smooth as much across the image edges, as the geometric struc-
ture of the image is encoded in the graph Laplacian via the 
noisy image.

Original Image Noisy Image
Gaussian Filtered
(Std. Dev. = 1.5)

Gaussian Filtered
(Std. Dev. = 3.5) Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.
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Each point has a desired class label            (suppose binary)

x1, x2, ..., xn 2 Rd

|S| = l < n

Application: Learning over Graphs
�24

Let X be an array of data points

yk 2 Y

At training you have the labels of a subset S of X

GOAL: predict remaining labels

Rationale: minimize empirical risk on your training data such that
- your model is predictive 
- your model is simple, does not overfit 
- your model is “stable” (depends continuously on your training set) 
- ... 

Getting data is easy but labeled data is a scarce resource 



kXt� � yk2
2

yk = � · xk + b

� = (XXt)�1Xy

� = (XXt + ↵I)�1XykXt� � yk2
2 + ↵k�k2

2

Linear Regression Learning
�25

Ex: Linear regression

Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression
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Linear Regression Learning
�25

Ex: Linear regression

Empirical Risk:

if not enough observations, regularize (Tikhonov):

Ridge Regression

How can unlabelled data be used ?
Questions: 

More general linear model with a dictionary of features ?

dictionary depends on data points simplifies/stabilizes selected model

arg min
�
ky �M�X�k2

2 + ↵S(�)



Learning on  Graphs
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How can unlabelled data be used ?

Assumption:  
target function is not globally smooth but it is locally smooth over regions of 
data space that have some geometrical structure

Use graph to model this structure



kXt
S� � yk2

2 + ↵k�k2
2 + ��tXLXt�

Learning on/with Graphs
�27

Example (Belkin, Niyogi)

Affinity between data points represented by edge weights 
(affinity matrix W)

measure of smoothness:

Revisit ridge regression:

Solution is smooth in graph “geometry” (all data)
Regression part on labelled data

krfk22 =
X

i,j2X

Wij(f(xi)� f(xj))
2

= f tLf



�X

arg min
�
ky �M�X�k2

2 + ↵S(�)

Learning on with Graphs
�28

More general linear model with a dictionary of features ?

dictionary of features on the complete data set (data dependent)

M   restricts to labeled data points (mask)

Empirical Risk
Model Selection penalty, sparsity ? 
Smoothness on graph ?

Important Note: our dictionary will be data dependent but its construction 
is not part of the above optimization 
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Unsupervised Learning: RPCA on Graphs
! We have already encountered Spectral Clustering 
! We can also use graphs to approximately model low-

rank matrices in some circumstances:
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Application: A Recommender System
�32

Lc

Lr

X[movie, user] = movie rating
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Application: A Recommender System
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Lc

Lr

X[movie, user] = movie rating

argmin
X

kA⌦ � (X�M)k+ �rtr
�
XLrX

t
�
+ �c

�
trXtLcX

�
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