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Probabilistic graphical models

• Graphical models are used in various domains:
– Machine learning and artificial intelligence
– Computational biology
– Statistical signal and image processing
– Communication and information theory
– Statistical physics…..

• Based on correspondences between graph theory and 
probability theory

• Important but difficult problems:
– Computing likelihoods, marginal distributions, modes
– Estimating model parameters and structure from noisy data
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Probabilistic Graphical Models

• Role of the graphs: 
graphical representations of probability distributions

– Visualize the structure of a model
– Insights into the model properties (eg conditional independence)

– Design and motivate new models
– Design graph based algorithms for inference
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Probability Theory

• Sum rule

• Product rule

• From these we have Bayes’ theorem

– with normalization

All probabilistic inference and learning manipulations amount to
repeated application of these 2 equations
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Outline of the talk

•Directed graphs: Bayesian Networks

•Conditional independence and Markov properties

•Undirected graphs: Markov Random Fields

•Inference and learning

•Some illustrations



Directed graphs

Bayesian Networks
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Directed Graphs: Decomposition

• Consider an arbitrary joint distribution

• By successive application of the product rule

x

z

y



Probabilistic Graphical Models   8Florence Forbes

General Case

• Arbitrary joint distribution, 

• Successive application of the product rule

• Can be represented by a fully connected graph (links to 
all lower-numbered nodes)

Information is in the absence of links

P (x1, . . . , xn)

P (x1, . . . , xn) = P (x1)P (x2|x1) . . . P (xn|x1 . . . xn−1)
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General relationship

• Factorization property

Where          denotes the parents of 

• Missing link imply conditional independencies

P (x1, . . . xn) =
n∏

k=1

P (xk|pak)

pak xk



Graph Terminology

• Directed graph G: set of nodes 
and directed edges

• Acyclic graph: no loop in the graph

• Parents of a node X: 
Y such that Y � X in G

• Descendent of a node X: 
Y that can be reached from X 
following directed edges
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Directed Acyclic Graphs: Bayesian Networks

• The graph can be used to impose constraints on the
random vector                          (ie. on the distribution P):

No directed cycles

x2

x1

x4
x5

x6

x7

x3

P (x1)P (x2)P (x3)
P (x4|x1, x2, x3)
P (x5|x1, x3)
P (x6|x4)
P (x7|x4, x5)

(x1, . . . , x7)



Bayesian Network

• A couple            so that 

p ∼ L(G)

(p,G)

p(x1, . . . , xn) =
∏

k

p(xk|paGk )
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Hidden variables

• Variables may be hidden (latent) or visible (observed)

• Latent variables may have a specific interpretation, or 
may be introduced to permit a richer class of distribution

hidden

visible
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Example 1: Mixtures of Gaussians

• Linear super-position of K Gaussians

• Normalization and positivity require

• illustration: mixture of 3 Gaussians

P (y) =
K∑

k=1

πkN (y|µk, σ2k)
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Latent Variable Viewpoint

• Discrete latent variable                          describing which 
component generated data point 

• Conditional distribution of observed variable

• Prior distribution of latent variable

• Marginalizing over the latent variable we obtain

P (y|X = k) = N (y|µk, σ
2
k)

y
x ∈ {1, . . .K}

x

yP (X = k) = πk

P (y) =
K∑

k=1

πkN (y|µk, σ
2
k)
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Example 2: State Space Models

• Hidden Markov chain
• Kalman filter

• Frequently wish to solve the problem of computing

P (xt|y1, . . . , yn)
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Causality

• Directed graphs can express causal relationships

• Often we observe child variables and wish to infer the 
posterior distribution of parent variables

• Example:

• Note: inferring causal structure from data is subtle



Conditional independence 
and Markov properties
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Conditional independence

• X independent of Y given Z if for all values of z,

• Notation:

• Equivalently

• Conditional independence crucial in practical applications 
since we can rarely work with a general joint distribution

P (x|y, z) = P (x|z)

X ⊥ Y |Z

P (x, y|z) = P (x|y, z)P (y|z)

= P (x|z)P (y|z)



Difference between dependence and conditional dependence

• Traffic jams and snowmen are correlated

• But conditionally on snow falls, the size of the traffic jams and the 
number of snowmen are independent

The concept of conditional dependence is more suited than
dependence to capture « direct » dependencies between variables
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Markov properties

• Can we determine the conditional independence 
properties of a distribution directly from its graph?

• YES: “d-separation”, one subtleties due to the presence 
of head-to-head nodes, explaining away effect

Head-to-head node
A common effect

Tail-to-tail
A common cause

Head-to-tail
An indirect effect
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Example 1: Tail-to-head node

• Joint distribution

• An observed c blocks the path from a to b

P (a, b, c) = P (a)P (c|a)P (b|c)

P (a, b|c) = P (a|c)P (b|c) =⇒ a ⊥ b|c (c observed)

a 
⊥ b (c not observed)
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Example 2: Tail-to-tail node

• Joint distribution

• An observed c blocks the path from a to b

P (a, b, c) = P (c)P (a|c)P (b|c)

a 
⊥ b (c not observed)

P (a, b|c) = P (a|c)P (b|c) =⇒ a ⊥ b|c (c observed)
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Example 3: “Explaining Away” (V-structure)

Illustration: pixel colour in an image

An observed I unblocks the path from S to L

image colour

surface
colour

lighting
colour



Illustration: « Am I out of fuel? »
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B = Battery (0=flat, 1=fully charged) 
F = Fuel Tank (0=empty, 1=full) 
G = Fuel Gauge Reading (0=empty, 
1=full) 

and hence



Illustration: « Am I out of fuel? »
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The probability of an empty tank increased by observing G = 0. 



Illustration: « Am I out of fuel? »
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- The probability of an empty tank is reduced by observing B = 0. This is referred to 
as “explaining away”. 
- B and F are negatively correlated conditioned on G despite being independent



Probabilistic Graphical Models   28Florence Forbes

d-separation: Consider 3 groups of nodes A, B, C

To determine whether is true, consider all possible 
paths from any node in A to any node in B

• true if all paths from A to B are blocked by C

• Any such path is blocked if there is a 
node X which is head-to-tail or tail-to-tail
with respect to the path and X is in C
Or

if the node is head-to-head
and neither the node nor any
of its descendants is in C

AAAA ⊥⊥⊥⊥ BBBB||||CCCC

AAAA ⊥⊥⊥⊥ BBBB||||CCCC

A

B



Undirected graphs

Markov Random Fields
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Undirected graphical models

• The second major class of graphical models

• Graphs specify factorizations of distributions and sets of 
conditional independence relations (Markov properties)

• Markov Random Fields or Markov network
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Cliques and maximal cliques

• A clique C is a subset of vertices all joined by edges

• Cliques: (1), (2), ….(12), (23)…..
• Maximal cliques: (123), (345), (456), (47)

1

2

4

3
7

6

5

w

zy

x

A

B
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Undirected Graphs: Factorization

• Provided                 then joint distribution is product of 
non-negative functions over the cliques of the graph

• where               are the clique potentials, and Z is a 
normalization constant

XC = {Xi, i ∈ C}X = {Xi, i ∈ V }
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Undirected graphs: conditional independencies

• Conditional independence given by graph separation
xxxx independent of yyyy given zzzz
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Conditional independencies: Markov properties

Terminology: Markov blanket or Markov Boundary
of a node       is the set of nodes          such that

or equivalently

xi

P (xi|x−i) = P (xi|xN(i))

Xi ⊥ X−i∪N(i)|XN(i)

N(i)

N(i)

i
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Markov blankets on the graph

• Directed case: Parents, Children, Co-parents
• Undirected case: Neighbors
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Markov property:  for X (p) wrt G

• Graph G=(V,E)

• random vector
•

• is Markov wrt G
if       and       are conditionally independent given            
whenever C separates A and B

• Specifying conditional independencies using the 
neighborhood N(i) is enough (V finite)

XA = {Xi, i ∈ A}

X = {Xi, i ∈ V }

X

XA XB XC



Undirected graphs: Markov Networks

The law of the random variable  
is a graphical model according to the non-directed graph G 

if for all i : 
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Connection with directed acyclic graphs

The Moral graph gets the parents married

The moral graph Gm associated to a directed acyclic graph G is obtained by:

– Setting an edge between each parent of each nodes
– Replacing arrows by edges

We have:
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Hammersley-Clifford theorem

In practice (computation), we use the connection between 
conditional independencies (Markov properties) and 
factorization property

• Boltzmann-Gibbs representation

• P is a positive MRF (satisfies Markov properties) is 
equivalent to P is a Gibbs distribution

• Energy function

Ψc(xc) = exp(−E(xc))

E(x) =
∑

c

Ec(xc)

P (x) = 1
Z
exp(−E(x))
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Example: pairwise Markov Random Fields

• Cliques: pairs, singletons

• Famous ones:
– Ising model: binary variables on a graph G with pairwise

interactions

– Potts model: K-ary variables

Interaction parameters+ external field parameters

E(x) =
∑

i

{Ψi(xi) +
1
2

∑

j∈N(i)

Ψij(xi, xj)}

P (x; θ) = 1
Z
exp(

∑

i

θixi +
∑

i∼j

θijxixj)
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Example: graph representation of a Pairwise MRF

• Typical application: image region labelling

yi

xi
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Illustration: image segmentation

site/vertex    : pixel,

: observed grey level,
: label/0 or 1/ binary variable

i

xi

yi
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Challenging computational problems

• Frequently, it is of interest to compute various quantities 
associated with an undirected graphical model:
– The log normalization constant log Z
– Local marginal distributions (p(xi)) or other local statistics
– Modes and most probable configurations

• Often grow rapidly with graph size and max clique size

• Example: Computing the normalization constant for binary random 
variables

Complexity scales exponentially as

Z =
∑

x∈{0,1}n

∏

c∈C

ψc(xc)

2n



Inference and learning
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Inference in Graphical models

• Exploit the graphical structure to find efficient algorithm 
for inference and to make the structure of these 
algorithms clear (eg propagation of local messages
around the graph)

• Exact inference
• Approximate inference
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Inference

• Simple example: Bayes’ theorem

x

y

x

y
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Message Passing: compute marginals

• Example

• Find marginal for a particular node

– for M-state nodes, cost is 
– exponential in length of chain
– but, we can exploit the graphical structure

(conditional independencies)

x1 x2 xL-1 xL
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Message Passing

• Joint distribution

• Exchange sums and products:   ab+ ac = a(b+c)

before xi

after xi
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Message Passing

• Express as product of messages

• Recursive evaluation of messages: Linear in L

• Find Z by normalizing 

xi-1 xi

m xa( )i m xb( )i

xi+1
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Belief Propagation

• Extension to general tree-structured graphs
• At each node:

– form product of incoming messages and local evidence
– marginalize to give outgoing message
– one message in each direction across every link

• Fails if there are loops

xi
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Junction Tree Algorithm

• An efficient exact algorithm for a general graph
– applies to both directed and undirected graphs
– compile original graph into a tree of cliques
– then perform message passing on this tree

• Problem: 
– cost is exponential in size of largest clique
– many vision models have intractably large cliques
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Loopy Belief Propagation

• Apply belief propagation directly to general graph
– possible because message passing rules are local
– need to keep iterating
– might not converge

• State-of-the-art performance in some applications
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Max-product Algorithm: most probable x

• Goal: find

– define

– then

• Message passing algorithm with “sum” replaced by “max”
• Example: 

– Viterbi algorithm for HMMs
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Inference and learning

In general: Hidden or latent  X (underlying scene) and 
Observed Y (image)

• Inference: computing P(x|y) (“posterior”)
• Learning: computing P(y) (likelihood) usually   

(      :  parameter estimation based on ML)

Likelihood of the data y

Maximum (log) likelihood

Pθ(y)
θ

L(θ) = Pθ(y)

θML = argmaxθ logL(θ)
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Example: classification with context

• The labeling problem

⋆ n objects/individuals (i ∈ V = {1, . . . , n})
⋆ K labels (k ∈ A = {1, . . . ,K})
⋆ n ∗ . . . observations (y = (y1, y2, . . .))

assign a label to each object consistently with y:
x : V →A

x = (x1, . . . , xn ∈ An)

(assignement, colouring (graph), configuration (random fields)
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Contextual constraints: distance, similarity, compatibility, etc.

– Image analysis, segmentation, etc.
– Biometrics: spatially related observations
– Documents analysis: hyperlinks between documents

No context Too much context Good compromise
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Connection Cost/Energy and probability

Total cost:

• Goal: find x  that maximizes E
• Discrete optimization, NP-hard, find approximations, satisfying 

assignments

Optimal configuration for Pairwise MRF with energy E

⋆ assignment cost
c(i, k) [likelihood of k at site i] or cy(i, k) [data term]

⋆ Neighborhood cost:
i and j nearby ⇒ xi and xj similar/compatible
→ graph G = (V,E): if (i, j) ∈ E

→ cost wij × dij(xi, xj) [Ψij(xi, xj)]

E(x) =
∑

i∈S

c(i, xi) +
∑

(i,j)∈E

wijdij(xi, xj)

x : V −→ A
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Energy and MAP rule

• Corresponding graphical model: Pairwise MRF

• Maximum A Posteriori (MAP) principle:

yi

xi

x̂ = arg max
x∈An

P (x|y)

E(x) =
∑

i

{Ψi(xi) +
1
2

∑

j∈N(i)

Ψij(xi, xj)}



Probabilistic Graphical Models   59Florence Forbes

Hidden MRF: accounting for observations

• Observations, eg. Measures

• Hidden data, eg. Labels,     discrete MRF

• Data term,  

Conditional MRF (posterior):

E(x): Regularizing term (prior, context)
E(y | x): Data term 

MAP solution

Y = {Yi, i ∈ S}
X P (x) = 1

Z
exp(−E(x))

P (y|x) = exp(−E(y|x))

Ey(x) = E(x) + E(y|x)

P (x|y) = 1
Zy

exp(−Ey(x))

x̂ = arg min
x∈Ln

Ey(x)
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Approximate solutions

• Deterministic approaches: relaxation, variational methods 
(mean field, etc.)

• Stochastic approaches: Gibbs sampling, simulation 
methods (MC)

• Classification approaches: hard clustering, ICM, K-means
• Parameter estimation approaches: soft clustering, EM



Approximate Inference
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For general graphical models (not tree-structured)

All basic computations are intractable, combinatorial for 
large G

Likelihood and partition function

Marginals and conditionals

Modes



Approximate Inference
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• Stochastic (Sampling)

• Metropolis-Hastings, Gibbs, (Markov Chain) Monte Carlo, etc
• Computationally expensive, but is “exact” (in the limit)

• Deterministic (Optimization)

• Mean Field (MF), Loopy Belief Propagation (LBP)
• Variational Bayes (VB), Expectation Propagation (EP)
• Computationally cheaper, but is not exact (gives bounds)



Taxonomy of inference methods

Probabilistic Graphical Models   63Florence Forbes

Inference

Loopy BP
EP

DeterministicStochastic
Gibbs
M-H, MCMC
SA

ApproximateExact
JunctionTree
Beilef Prop

Variational
Mean Field
ICM



General View of Variational Inference

• Consider arbitrary distribution        over the latent variables
• The following decomposition always holds

where
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Decomposition

Maximizing over         would give the true posterior 
distribution – but this is intractable by definition
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Factorized Approximation

• Goal: choose a family of distributions which are:
– sufficiently flexible to give good posterior approximation
– sufficiently simple to remain tractable

• Here we consider factorized distributions

• No further assumptions are required!
• Optimal solution for one factor, keeping the remained fixed

• Coupled solutions so initialize then cyclically update
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Factorized approximation

In practice, we compute
ommiting terms that does not depend on 

and hope to recognize a standard distribution …. or normalize

Ex. Hidden Markov Field

ommiting terms that does not depend on 
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Example: Discrete Hidden MRF
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Illustration: Ising model, binary MRF
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Fixed point equation or iterative updating

Remark:



Iterated Conditional Modes (ICM) for HMRF

[Besag 70s]

For each j in turn

A modal version of variational mean field
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Gibbs sampler for HMRF

[Geman & Geman 80s]

A stochastic version of ICM or a simulated version of variational Mean Field

For each j in turn
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(Ising)



Sampling vs Variational approximations
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1) MCMC (eg Gibbs sampler)

• Theoretical properties
• High computational cost
• Complicated convergence monitoring
• Model selection & general noise model: not straightforward

2) Variational (eg VEM)

• Fast and flexible
• Lack of theoretical properties
• Global covariance structure cannot be estimated
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Example 1: MRI Brain scan segmentation
Assign each voxel to a class (label)  (among K classes)    [Forbes et al 2011]

� Cortex 3D reconstruction 

Tissue segmentation (WM, GM, CSF)

Structure segmentation

�Useful for : 
� Distinguishing Cortex GM from
Nuclei GM 
� volumetric studies
� …
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Graphical model representation
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Cooperative segmentation of tissues and structures

observations

No anatomical 
information

Cooperative method
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Example 2: texture recognition     [Blanchet & Forbes 2008]

• Learning step: model estimation

• Interest points                                       neighborhood graph

• Test step: classification

i

j
k
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Example 2: texture recognition
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Thank you for your attention

yi

xi

yi

xi

T H E

DNE


