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Generalization: variational approach

Stationary case: J(x) =
1

2
‖x− xb‖2

b︸ ︷︷ ︸
background term Jb

+
1

2
‖H(x)− y‖2

o︸ ︷︷ ︸
observation term Jo

Time dependent case:

J(x0) =
1

2
‖x0 − xb0‖2

b +
1

2

N∑
i=0

‖Hi (x(ti ))− y(ti )‖2
o

=
1

2
‖x0 − xb‖2

b +
1

2

N∑
i=0

‖Hi (M0→ti (x0))− y(ti )‖2
o
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Generalization: statistical approach

Let Xb = x + εb and Y = Hx + εo

Hypotheses:

E(εb) = 0 unbiased background

E(εo) = 0 unbiased measurement devices

Cov(εb, εo) = 0 independent background and observation errors

Cov(εb) = B et Cov(εo) = R known accuracies and covariances

Statistical approach: BLUE

X̂ = Xb + (B−1 + HT R−1H)−1HT R−1︸ ︷︷ ︸
gain matrix

(Y −HXb)︸ ︷︷ ︸
innovation vector

with
[
Cov(X̂)

]−1
= B−1 + HT R−1H accuracies are added
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Links between both approaches

Statistical approach: BLUE

X̂ = Xb + (B−1 + HT R−1H)−1HT R−1(Y − HXb)

with Cov(X̂) = (B−1 + HT R−1H)−1

Variational approach in the linear stationary case

J(x) =
1

2
‖x− xb‖2

b +
1

2
‖H(x)− y‖2

o

=
1

2
(x− xb)T B−1(x− xb) +

1

2
(Hx− y)T R−1(Hx− y)

min
x∈IRn

J(x) −→ x̂ = xb + (B−1 + HT R−1H)−1HT R−1 (y − Hxb)

Same remarks as previously

The statistical approach rationalizes the choice of the norms for Jo and Jb in the variational approach.[
Cov(X̂)

]−1

︸ ︷︷ ︸
accuracy

= B−1 + HT R−1H = Hess(J)︸ ︷︷ ︸
convexity
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If the problem is time dependent

Dynamical system: xt(tk+1) = M(tk , tk+1) xt(tk ) + e(tk )

xt(tk ) true state at time tk

M(tk , tk+1) model assumed linear between tk and tk+1

e(tk ) model error at time tk

Observations yk distributed in time.

Hypotheses

e(tk ) is unbiased, with covariance matrix Qk

e(tk ) and e(tl ) are independent (k 6= l)

Unbiased observation yk , with error covariance matrix Rk

e(tk ) and analysis error xa(tk )− xt(tk ) are independent
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If the problem is time dependent

Kalman filter (Kalman and Bucy, 1961)

Initialization: xa(t0) = x0 approximate initial state

Pa(t0) = P0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

xfk+1 = Mk,k+1 xak Forecast

Pf
k+1 = Mk,k+1Pa

kMT
k,k+1 + Qk

xak+1 = xfk+1 + Kk+1

[
yk+1 −Hk+1xfk+1

]
BLUE analysis

Kk+1 = Pf
k+1HT

k+1

[
Hk+1Pf

k+1HT
k+1 + Rk+1

]−1

Pa
k+1 = Pf

k+1 − Kk+1Hk+1Pf
k+1
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If the problem is time dependent

Equivalence with the variational approach

If Hk and M(tk , tk+1) are linear, and if the model is perfect (ek = 0), then the Kalman filter and
the variational method minimizing

J(x) =
1

2
(x− x0)T P−1

0 (x− x0) +
1

2

N∑
k=0

(HkM(t0, tk )x− yk )T R−1
k (HkM(t0, tk )x− yk )

lead to the same solution at t = tN .
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Common main methodological difficulties

Non linearities: J non quadratic / what about Kalman filter ?

Huge dimensions [x] = O(106 − 109): minimization of J / management of huge matrices

Poorly known error statistics: choice of the norms / B,R,Q

Scientific computing issues (data management, code efficiency, parallelization...)

−→ TODAY’s LECTURE
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Towards larger dimensions and stronger nonlinearities

Increasing the model resolution increases the size of the state variable and, for a number of
applications, allows for stronger scale interactions.

Snapshots of the surface relative vorticity in the SEABASS configuration of NEMO, for different model resolutions: 1/4◦, 1/12◦,

1/24◦ and 1/100◦.
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Kalman Filter(s)

Outline
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Kalman Filter(s)

Non linearities: extended Kalman filter

The Kalman filter assumes that M and H are linear. If not: linearization
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Kalman Filter(s)

Reminder: derivatives and gradients

f : E −→ F (E ,F being of finite or infinite dimension)

� Gradient (or Fréchet derivative): E ,F being Hilbert spaces, f is Fréchet differentiable at
point x ∈ E iff

∃p ∈ E such that f (x + h) = f (x) + p.h + o(‖h‖) ∀h ∈ E

p is the derivative or gradient of f at point x , denoted f ′(x) or ∇f (x).

� h→ p(x).h is a linear function, called differential function or tangent linear function or
Jacobian of f at point x
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Kalman Filter(s)

Non linearities: extended Kalman filter

The Kalman filter assumes that M and H are linear. If not: linearization

xfk+1 = Mk,k+1(xak ) ' Mk,k+1(xtk ) + Mk,k+1 (xak − xtk )︸ ︷︷ ︸
ea
k

=⇒ xfk+1 − xtk+1 = efk+1 = Mk,k+1(xtk )− xtk+1︸ ︷︷ ︸
ek

+Mk,k+1eak

=⇒ Pf
k+1 = Cov(efk+1) = Mk,k+1Pa

kMT
k,k+1 + Qk

and similarly for the other equations of the filter
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Kalman Filter(s)

Non linearities: extended Kalman filter

Extended Kalman filter

Initialization: xa(t0) = x0 approximate initial state

Pa(t0) = P0 error covariance matrix

Step k: (prediction - correction, or forecast - analysis)

xfk+1 = Mk,k+1(xak ) Forecast

Pf
k+1 = Mk,k+1Pa

kMT
k,k+1 + Qk

xak+1 = xfk+1 + Kk+1

[
yk+1 − Hk+1(xfk+1)

]
BLUE analysis

Kk+1 = Pf
k+1HT

k+1

[
Hk+1Pf

k+1HT
k+1 + Rk+1

]−1

Pa
k+1 = Pf

k+1 − Kk+1Hk+1Pf
k+1

OK if nonlinearities are not too strong

Requires the availability of Mk,k+1 and Hk

More sophisticated approaches have been developed −→ unscented Kalman filter (exact up

to second order, requires no tangent linear model nor Hessian matrix)
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Kalman Filter(s)

Huge dimension: reduced order filters

As soon as [x] becomes huge, it’s no longer possible to handle the covariance matrices.

Idea: a large part of the system variability can be represented (or is assumed to) in a reduced
dimension space.

−→ RRSQRT filter, SEEK filter, SEIK filter...
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Kalman Filter(s)

Huge dimension: reduced order filters

Example: Reduced Rank SQuare Root filter

Pf
0 ' Sf

0

(
Sf

0

)T
with size(Sf

0) = (n, r) (r leading modes, r � n)

This is injected in the filter equations. This leads for instance to Pa
k = Sa

k (Sa
k )T , with

Sa
k = Sf

k︸︷︷︸
(n,r)

Ir −ΨT
k [ΨkΨT

k + Rk ]−1Ψk︸ ︷︷ ︸
(r,r)


1/2

where Ψk = HkSf
k︸ ︷︷ ︸

(p,r)

Pros: most computations in low dimension
Cons: choice and time evolution of the modes
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Kalman Filter(s)

A widely used filter: the Ensemble Kalman filter

addresses both problems of non linearities and huge dimension

rather simple and intuitive

Idea: generation of an ensemble of N trajectories, by N perturbations of the set of observations
(consistently with R). Standard extended Kalman filter, with covariance matrices computed using
the ensemble:

Pf
k =

1

N − 1

N∑
j=1

(xfj,k − x̄ f
k )(xfj,k − x̄ f

k )T withx̄ f
k =

1

N

N∑
j=1

xfj,k

Pa
k =

1

N − 1

N∑
j=1

(xaj,k − x̄a
k )(xfj,k − x̄ f

k )T withx̄a
k =

1

N

N∑
j=1

xaj,k
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Variational method(s)

Outline

A. Vidard (Data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 18 / 1



Variational method(s)

Reminder: derivatives and gradients

f : E −→ IR (E being of finite or infinite dimension)

� Directional (or Gâteaux) derivative of f at point x ∈ E in direction d ∈ E :

∂f

∂d
(x) = f̂ [x](d) = lim

α→0

f (x + αd)− f (x)

α

Example: partial derivatives
∂f

∂xi
are directional derivatives in the direction of the members of the canonical basis (d = ei )
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Variational method(s)

Reminder: derivatives and gradients

f : E −→ IR (E being of finite or infinite dimension)

� Gradient (or Fréchet derivative): E being an Hilbert space, f is Fréchet differentiable at
point x ∈ E iff

∃p ∈ E such that f (x + h) = f (x) + (p, h) + o(‖h‖) ∀h ∈ E

p is the derivative or gradient of f at point x , denoted f ′(x) or ∇f (x).

� h→ (p(x), h) is a linear function, called differential function or tangent linear function or
Jacobian of f at point x

� Important (obvious) relationship:
∂f

∂d
(x) = (∇f (x), d)

� Fréchet =⇒ Gâteaux
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Variational method(s)

Getting the gradient is not obvious

The computation of ∇J(xk ) may be difficult if the dependency of J with regard to the control
variable x is not direct.

It is often difficult (or even impossible) to obtain the gradient through the computation of growth
rates.

Example:{
dx(t))

dt
= M(x(t)) t ∈ [0,T ]

x(t = 0) = u
with u =

 u1

...
uN


J(u) =

1

2

∫ T

0
‖x(t)− xobs(t)‖2 −→ requires one model run

∇J(u) =


∂J

∂u1
(u)

...
∂J

∂uN
(u)

 '
 [J(u + α e1)− J(u)] /α

...
[J(u + α eN)− J(u)] /α


−→ N + 1 model runs
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Variational method(s)

Getting the gradient is not obvious

In actual applications like meteorology / oceanography, N = [u] = O(106 − 109) −→ this
method cannot be used.

Alternatively, the adjoint method provides a very efficient way to compute ∇J.

On the contrary, do not forget that, if the size of the control
variable is very small (< 10), ∇J can be easily estimated by the
computation of growth rates.

A. Vidard (Data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 22 / 1



Variational method(s)

Getting the gradient is not obvious

In actual applications like meteorology / oceanography, N = [u] = O(106 − 109) −→ this
method cannot be used.

Alternatively, the adjoint method provides a very efficient way to compute ∇J.

On the contrary, do not forget that, if the size of the control
variable is very small (< 10), ∇J can be easily estimated by the
computation of growth rates.

A. Vidard (Data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 22 / 1



Variational method(s)

Reminder: adjoint operator

� General definition:
Let X and Y two prehilbertian spaces (i.e. vector spaces with scalar products).
Let A : X −→ Y an operator.
The adjoint operator A∗ : Y −→ X is defined by:

∀x ∈ X , ∀y ∈ Y, < Ax , y >Y=< x ,A∗y >X

In the case where X and Y are Hilbert spaces and A is linear, then A∗ always exists (and is
unique).

� Adjoint operator in finite dimension:

A : IRn −→ IRm a linear operator (i.e. a matrix). Then its adjoint operator A∗ (w.r. to
Euclidian norms) is AT .
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Variational method(s)

let F be a non-linear Fréchet differentiable operator. If J(x) = 〈F (x),F (x)〉

Ĵ[x ](d) = lim
α→0

〈F (x + αd),F (x + αd)〉 − 〈F (x),F (x)〉
α

= lim
α→0

〈
F (x) + αF̂ [x ](d) + o(α),F (x) + αF̂ [x ](d) + o(α)

〉
− 〈F (x),F (x)〉

α

= lim
α→0

2
〈
αF̂ [x ](d) + o(α),F (x)

〉
+
〈
αF̂ [x ](d) + o(α), αF̂ [x ](d) + o(α)

〉
α

= 2
〈
F̂ [x ](d),F (x)

〉
F̂ [x ](.) being a linear operator,

J[x ](d) = 2
〈
F̂ [x ](d),F (x)

〉
= 2

〈
d , F̂ [x ]∗(F (x))

〉
= 〈d ,∇J〉

Hence ∇J = 2F̂ [x ]∗(F (x))
or in finite dimension: ∇J = 2FTF (x)

Why do we care?

if J(x0) = 1
2
(yo

i − Hi (M0,i (x0)))TR−1
i (yo

i − Hi (M0,i (x0)))

then ∇J = MT
0,iH

T
i R−1

i (yo
i − Hi (M0,i (x0)))
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Variational method(s)

4D-Var: Optimality System

The direct model

and its tangent (Gâteaux-derivative, direction d)

{
xi =Mi−1,i (xi−1), i = 1,N
x0= xb

{
x̂i =Mi−1,i x̂i−1, i = 1,N
x̂0= d

The cost function

J(x0) =
1

2
(x0 − xb

0)TB−1(x0 − xb
0) +

1

2

n∑
i=0

(yo
i − Hi (xi ))TR−1

i (yo
i − Hi (xi ))

According to previous slide: ∇x0J
o =

∑n
i=0 MT

0,iH
T
i R−1

i (yo
i − Hi (M0,i (x0)))

The adjoint model (backward){
x∗i =MT

i,i+1x∗i+1 + HT
i R−1

i (yo
i − Hi (xi )), i = N, 1

x∗n= HT
n R−1

n (yo
i − Hi (xi ))

Euler equation
∇x0J = B−1(x0 − xb

0) + x∗0 (= 0)
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Variational method(s)
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Variational method(s)
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Variational method(s)

4D-Var: Algorithm

Algorithm (4D-Var)

Initialization : x = x0, n = 0

While ‖∇J‖ > ε or n ≤ nmax, do :
1 Compute J thanks to the direct model M and the observation operator H
2 Compute ∇J thanks to the backward integration of the adjoint model MT and the

adjoint of the observation operator HT .
3 Descent and update of x
4 n = n + 1
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Variational method(s)

Incremental 4D-Var

Remarks: Non linearities If M and H are non linear, the computation of the gradient by
adjoint methods remains exact, but J becomes non convex and therefore difficult to
minimize.

In the case of M and/or H non linear, in order to avoid the minimization of a non convex
function, the incremental 4D-Var algorithm has been implemented. This is an
approximation of the 4D-Var, making the so-called Tangent Linear Appoximation (TLA)

Tangent Linear Approximation

M0→i (x0)−M0→i (xb
0) 'M0→i (x0 − xb

0)

and
Hi (xi )− Hi (xb

i ) ' Hi (xi − xb)
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Variational method(s)

Incremental 4D-Var (or Gauss-Newton)

Defining

increment δxk
0 = xk

0 − xb
0

innovation vector dk
i = yo

i − Hi (M0→i (x(k−1)))

Incremental 4D-Var cost function:

J̃k(δxk
0) = (δxk

0)TB−1δxk
0 +

n∑
i=1

(dk
i −HiMi . . .M1δxk

0)TR−1
i (dk

i −HiMi . . .M1δxk
0)

J̃(δxk
0) is now a quadratic function and therefore has a unique minimum.

During the minimization, δxk will grow and become too large, then the TLH will be
invalidated. In order to sort this out, one stops the minimization, updates the linearized
operators Mi and Hi and the innovation vector dk by recomputing the non linear
trajectory starting from the initial condition x(k+1)

0 = xb
0 + δxk

0 .
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Variational method(s)

Algorithm (incremental 4D-Var)

– Initialization : xr
0 = xb

0

(xr is called reference state ; xb
0 is the first guess).

Start the outer loop

Non linear model integration: xr
i = M0→i [x

r ] ;
compute the di = yoi − Hi (xri )
store the non linear trajectory (or some checkpoints) xri for the tangent and adjoint
integrations

Start the inner loop
Linear model integration:δxi = M0→iδx

compute do
i − Hi (xi )

Adjoint model backward integration δ∗xi = MT
N→iδ

∗xN −Hi
T [do

i −Hixi ]
∇J = δ∗x0

update δx0 thanks to the descent algorithm
End of the inner loop
Update the reference state xr0 = xr0 + δxa0

End of the outer loop
– Compute the final analysis: xa

0 = xr
0, xa

i = M0,i (xa
0).

Note: under some ”reasonable” assumption the incremental 4D-Var converges toward the
minimum of the original 4D-Var problem.
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Variational method(s)

Incremental 4D-Var
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Variational method(s)

Multi-incremental 4D-Var

One can use other kind of hypothesis than the TLH in this framework. In Numercal
Weather Prediction center (ECMWF, Météo-France, UK-MetOffice, ...) use the so-called
Multi-incremental approach: the models used in the successive minimizations of the inner
loop are approximation of the tangent model (lower resolution and simplified physics).
The first outer loop is performed using a very coarse grid for the inner loops models, and
the resolution (and the physics) is improve for each subsequent outer loops.
The hypothesis here is :

M0→i (xb
0 + S−I δxs

0)−M0→i (xb
0) ' S−IMs

0→iδxs
0

the exponent s meaning simplified model/state vector

A. Vidard (Data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 31 / 1



Variational method(s)

Algorithm (multi-incremental 4D-Var)

– Initialization : xr
0 = xb

0

(xr is called reference state ; xb
0 is the first guess).

Start the outer loop

Non linear model integration: xr
i = M0→i [x

r ] ;
compute the di = yoi − Hi (xri )
store the simplified non linear trajectory (or some checkpoints) Sxri for the tangent and
adjoint integrations

Start the inner loop
Simplified linear model integration:δxsi = Ms

0→iδxs

compute do
i − Hs

i δxsi

Adjoint model backward integration δ∗xsi = MsT
N→iδ

∗xsN −Hs
i
T [do

i −Hs
i δxsi ]

∇J = δ∗xs0
update δxs0 thanks to the descent algorithm
End of the inner loop
Update the analysis increment δxa0 = S−I δxs0
Update the reference state xr0 = xr0 + δxa0

End of the outer loop
– Compute the final analysis: xa

0 = xr
0, xa

i = M0,i (xa
0).

S is different from one outer iteration to the other (from simpler to more realistic).
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Variational method(s)

3D-Fgat

The 3D-FGAT (First Guess at Appropriate Time) is a further approximation of the
incremental 4D-Var algorithm where the evolution of the increment during the
assimilation window is assume to be stationnary, i.e.:

M0→i (xb
0 + δx0)−M0→i (xb

0) ' δx0

In other words it assumes that M = I and MT = I for the length of the assimilation
window.
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Variational method(s)

Algorithm (3D-FGAT)

– Initialization : xr
0 = xb

0

(xr is called reference state ; xb
0 is the first guess).

Start the outer loop

Non linear model integration: xr
i = M0→i [x

r ] ;
compute the di = yoi − Hi (xri )
store the non linear trajectory xri for the tangent and adjoint Observation operator (if
required)

Start the inner loop
Linear model integration:δxi = M0→iδx

compute do
i − Hiδx0

∇J = −∑i Hi
T [do

i −Hiδx0]
update δx0 thanks to the descent algorithm
End of the inner loop
Update the reference state xr0 = xr0 + δxa0

End of the outer loop
– Compute the final analysis: xa

0 = xr
0, xa

i = M0,i [x
a
0].
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Variational method(s)

4D-Var: xi = M0,i (x0)

J(x0) =
1

2

N∑
i=0

(
H(xi )− yi

)
R−1(H(xi )− yi

)
+

1

2
(x0 − xb)TB−1

i (x0 − xb)

incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + M0,Nδx0

J(δx0) =
1

2

N∑
i=0

(
Hδxi − di

)
R−1(Hδxi − di

)
+

1

2
δxT

0 B−1
i δx0

multi-incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + S−IML
0,NδxL

0

J(δxL
0) =

1

2

N∑
i=0

(
HLδxL

i − di

)
R−1(HLδxL

i − di

)
+

1

2
(δxL

0)TB−1
i δxL

0

3D-FGAT : M0,N(x0 + δx0) ' M0,N(x0) + δx0

J(δx0) =
1

2

N∑
i=0

(
Hδx0 − di

)
R−1(Hδx0 − di

)
+

1

2
δxT

0 B−1
i δx0

3D-Var : M0,N(x0 + δx0) ' x0 + δx0

J(x0) = (x0 − xb
0)TB−1

0 (x0 − xb
0) +

N∑
i=0

(
Hi (x0)− yi

)T
R−1

i

(
Hi (x0 − yi )

)

A. Vidard (Data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 35 / 1



Variational method(s)

4D-Var: xi = M0,i (x0)

J(x0) =
1

2

N∑
i=0

(
H(xi )− yi

)
R−1(H(xi )− yi

)
+

1

2
(x0 − xb)TB−1

i (x0 − xb)

incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + M0,Nδx0

J(δx0) =
1

2

N∑
i=0

(
Hδxi − di

)
R−1(Hδxi − di

)
+

1

2
δxT

0 B−1
i δx0

multi-incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + S−IML
0,NδxL

0

J(δxL
0) =

1

2

N∑
i=0

(
HLδxL

i − di

)
R−1(HLδxL

i − di

)
+

1

2
(δxL

0)TB−1
i δxL

0

3D-FGAT : M0,N(x0 + δx0) ' M0,N(x0) + δx0

J(δx0) =
1

2

N∑
i=0

(
Hδx0 − di

)
R−1(Hδx0 − di

)
+

1

2
δxT

0 B−1
i δx0

3D-Var : M0,N(x0 + δx0) ' x0 + δx0

J(x0) = (x0 − xb
0)TB−1

0 (x0 − xb
0) +

N∑
i=0

(
Hi (x0)− yi

)T
R−1

i

(
Hi (x0 − yi )

)
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Variational method(s)

4D-Var: xi = M0,i (x0)

J(x0) =
1

2

N∑
i=0

(
H(xi )− yi

)
R−1(H(xi )− yi

)
+

1

2
(x0 − xb)TB−1

i (x0 − xb)

incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + M0,Nδx0

J(δx0) =
1

2

N∑
i=0

(
Hδxi − di

)
R−1(Hδxi − di

)
+

1

2
δxT

0 B−1
i δx0

multi-incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + S−IML
0,NδxL

0

J(δxL
0) =

1

2

N∑
i=0

(
HLδxL

i − di

)
R−1(HLδxL

i − di

)
+

1

2
(δxL

0)TB−1
i δxL

0

3D-FGAT : M0,N(x0 + δx0) ' M0,N(x0) + δx0

J(δx0) =
1

2

N∑
i=0

(
Hδx0 − di

)
R−1(Hδx0 − di

)
+

1

2
δxT

0 B−1
i δx0

3D-Var : M0,N(x0 + δx0) ' x0 + δx0

J(x0) = (x0 − xb
0)TB−1

0 (x0 − xb
0) +

N∑
i=0

(
Hi (x0)− yi

)T
R−1

i

(
Hi (x0 − yi )

)
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Variational method(s)

4D-Var: xi = M0,i (x0)

J(x0) =
1

2

N∑
i=0

(
H(xi )− yi

)
R−1(H(xi )− yi

)
+

1

2
(x0 − xb)TB−1

i (x0 − xb)

incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + M0,Nδx0

J(δx0) =
1

2

N∑
i=0

(
Hδxi − di

)
R−1(Hδxi − di

)
+

1

2
δxT

0 B−1
i δx0

multi-incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + S−IML
0,NδxL

0

J(δxL
0) =

1

2

N∑
i=0

(
HLδxL

i − di

)
R−1(HLδxL

i − di

)
+

1

2
(δxL

0)TB−1
i δxL

0

3D-FGAT : M0,N(x0 + δx0) ' M0,N(x0) + δx0

J(δx0) =
1

2

N∑
i=0

(
Hδx0 − di

)
R−1(Hδx0 − di

)
+

1

2
δxT

0 B−1
i δx0

3D-Var : M0,N(x0 + δx0) ' x0 + δx0

J(x0) = (x0 − xb
0)TB−1

0 (x0 − xb
0) +

N∑
i=0

(
Hi (x0)− yi

)T
R−1

i

(
Hi (x0 − yi )

)
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Variational method(s)

4D-Var: xi = M0,i (x0)

J(x0) =
1

2

N∑
i=0

(
H(xi )− yi

)
R−1(H(xi )− yi

)
+

1

2
(x0 − xb)TB−1

i (x0 − xb)

incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + M0,Nδx0

J(δx0) =
1

2

N∑
i=0

(
Hδxi − di

)
R−1(Hδxi − di

)
+

1

2
δxT

0 B−1
i δx0

multi-incremental 4D-Var: M0,N(x0 + δx0) ' M0,N(x0) + S−IML
0,NδxL

0

J(δxL
0) =

1

2

N∑
i=0

(
HLδxL

i − di

)
R−1(HLδxL

i − di

)
+

1

2
(δxL

0)TB−1
i δxL

0

3D-FGAT : M0,N(x0 + δx0) ' M0,N(x0) + δx0

J(δx0) =
1

2

N∑
i=0

(
Hδx0 − di

)
R−1(Hδx0 − di

)
+

1

2
δxT

0 B−1
i δx0

3D-Var : M0,N(x0 + δx0) ' x0 + δx0

J(x0) = (x0 − xb
0)TB−1

0 (x0 − xb
0) +

N∑
i=0

(
Hi (x0)− yi

)T
R−1

i

(
Hi (x0 − yi )

)
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(Pre)conditioning

Outline
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(Pre)conditioning

Definition

The conditioning of the minimisation is defined by the ratio between the larger and the
smaller eigenvalue of H the Hessian of J. The larger this number is, the more
ill-conditioned the problem is. This is the main characteristic that affect the minimization
efficiency.
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(Pre)conditioning

In the following, for the sake of simplicity, we will assume that M and H are linear, and
we will use a cost function such as:

J(δx0) =
1

2
(δx0)TB−1δx0 +

1

2
[do − Gδx0]TR−1[do − Gδx0]

δx0 = x0 − xb
0 ; G = HM; do = yo −HM(x0)b

then the hessian can be written as:

H = B−1 + GTR−1G

and we can show that the minimization is equivalent of the inversion of the Hessian.
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(Pre)conditioning

Change of Variable

Ideally, if we make the following change of variable:

v = H
1
2 δx0

(H = H
T
2 H

1
2 )

the cost function becomes:

Jv(v) = [H−
1
2 v]TB−1[H−

1
2 v] +

1

2
[do − GH−

1
2 v]TR−1[do − GH−

1
2 v]

and the gradient:

∇vJ = H−
T
2 B−1H−

1
2 v −H−

T
2 GTR−1[do − GH−

1
2 v]

and finally the hessian:

Hv = H−
T
2 B−1H−

1
2 +H−

T
2 GTR−1GH−

1
2 = H−

T
2 HH−

1
2 = I

Meaning that the conditioning of the minimization of Jv is 1, which is as the best
conditioning as you can get
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(Pre)conditioning

However the GTR−1G term is difficult to evaluate and to handle. In practice, most of the
time the actual change of variable is:

v = B−
1
2 δx (1)

where the new control variable v is without dimension.
In practice, only the inverse of the change of variable is required ( δx0 is required in order
to integrate the model) and the gradient of Jδxo is easily retrieved by:

∇Jδv = BT/2∇Jδx0 (2)
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(Pre)conditioning

With this change of variable, the hessian becomes:

Hv = B
T
2 HδxB

1
2 = Id + B

T
2 GTR−1GB

1
2

with B
T
2 GTR−1GB

1
2 symmetric definite positive.

This preconditioning ensure that the smallest eigenvalue of H is larger than 1 and
therefore its conditioning is bounded Moreover the size of the control vector is generally
far larger than the number of observation therefore the hessian of the preconditioned
problem has a majority of 1
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(Pre)conditioning

Remark 1:

If we are not in the case of a non dimensional problem, for the minimization to be
effective, one needs to account for the problems of the possible different order of
magnitude of the different variables. Such preconditioning as presented above have the
advantage to make the control vector without dimension.

Remark 2:

The Hessian of the variational data assimilation cost function is equal to the inverse of
the analysis error covariance matrix

H−1 = Pa = [B−1 + GTR−1G]−1 (3)

A. Vidard (Data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 42 / 1



Background Error covariance matrix

Outline
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Background Error covariance matrix

The role of B

The dependence of the optimal state is significantly depending on B for 3D-Var is
quite strong since

xa = xb + BHT (HBHT + R)−1(yo − H(xb))

In the same way, for the 4D-Var we get:

xa = xb + BMTHT (HMBMTHT + R)−1(yo − H(xb))

Lets assume that we get one observation in one grid point corresponding to the k th

element of the state vector. The observation operator is then very simple:

H =
(

0 . . . 0 1 0 . . . 0
)

The k th column only contains 1, the others are set to 0.

3DVAR: The increment is proportional to a column of B! The choice of B is then
crucial, it will describe how this observation will influence what is happening to the
neighbouring points and for the other variables.

4DVAR:The increment at time i is proportional to a column of MBMT which
describe the background error covariances at time i . The B implicitly evolve with
time in the 4D-Var algorithm.
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Background Error covariance matrix

Remarks

Moreover, as presented before, the B matrix is often use as a preconditioner for the
minimization, using the change of variable:

v = B−1/2δx0

If N is the number of the model variables multiplied by the number of grid point,
then B is of size N2. N being of the order of magnitude 107 à 1010 for current
geophysical applications. In practice B is never formed not stored, we rather code
operators the take v as input and gives Bv or B1/2x as output.

information spreading : in poorly observed areas, the form of the analysis increment
is determined by the covariances structures.

information smoothing : in densly observed areas, the smoothing will be governed by
the correlation of B, assuring that the scales represented in the increment are
compatible with the one of the model.

balance properties : thanks to the off-diagonal blocks

ill-conditionning of the problem : The data assimilation problems are under
determined. The background term allows to introduce more information.

flow dependent structure function
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Background Error covariance matrix

B as a sequence of operator

In order to get the full (or multivariate) error covariance matrix B one can write

Bmulti = KΣCΣKT (4)

where K is the balance operator
Σ the diagonal matrix of StdDev,
C the spatial correlation matrix
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Future challenges

Outline
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Future challenges

Faire face à l’évolution des moyens de calcul

Its components (M,H,B,. . . ) can be parallel, but...

Variational data assimilation is intrinsically sequential (iterative minimisation)

In NWP, 4D-Var typically scales well up to an order 103s processors

in the near future we need an order of magnitude more
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Future challenges

Une piste : les méthodes variationnelles d’ensemble
Liu et al 2008

Let εp = xp − x0 denote an ensemble of p = 1, · · · ,Ne state error realisations with
respect to an unperturbed control member x0

Let ε′p = εp − ε̄ where ε̄ =
∑Ne

p=1 εp/Ne and Bsam = X′X′T where

X′ =
(
ε′p, · · · , ε′Ne

)
/
√
Ne − 1.

the reduced order incremental 4Dvar problem would be (preconditioned by
δx(k) = X′(k)w(k))

min
w(k)∈Rp

J(w(k)) = w(k)Tw(k)

+
∑
i∈obs

(H(k)
i M(k)

0,ti
X′(k)w(k) − y(k−1)

i )TR−1
i (H(k)

i M(k)
0,ti

X′(k)w(k) − y(k−1)
i )

whose gradient is

∇J = w(k) +
∑
i∈obs

(H(k)
i M(k)

0,ti
X′(k))TR−1

i (H(k)
i M(k)

0,ti
X′(k)w(k) − y(k−1)

i )
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Future challenges

Une piste : les méthodes variationnelles d’ensemble
Liu et al 2008

the idea here is to form the matrices (H(k)
i M(k)

0,ti
X′(k)), using the ensemble, and

transpose it directly

(H(k)
i M(k)

0,ti
X′(k)) ≈ 1√

Ne − 1

(
Hi (M0,ti (xb(k−1)

1 ))−Hi (M0,ti (xb(k−1))),

, · · · ,Hi (M0,ti (xb(k−1)
p ))−Hi (M0,ti (xb(k−1)))

)
Pros :

At last, we are rid of the adjoint !
the inner loop is far cheaper
the expensive part (outer loop) does scale well in parallel
same as for any ensemble methods

Cons:
same as for any ensemble methods (localization, inflation, cost increases with number
of obs)
convergence properties ? (toward the 4Dvar minimum)
approximate TL/AD
For highly non linear systems, the number of required outer loops will increase
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Future challenges

Une autre piste : parallélisme en temps
Idée de départ Weak constraint 4D-Var

{
dx

dt
= M(x) + η(t), t ∈ [0,T ],

x(0) = x0,

and the cost function to be minimised becomes

J(x0, η) =
1

2
‖ x0 − xb ‖2

X +
1

2

∫ T

0

‖ y(t)−H[x(x0, η, t)] ‖2
O dt

+
1

2

∫ T

0

‖ η(t) ‖2
E dt,

Early attempts: η constant or with prescribed evolution
(Griffith and Nichols 2000), (Vidard 2000, Vidard et al 2004)

For a modest additional cost, the fit to the data was slightly improve, but mainly :

it reduces the ’jump’ between two subsequent assimilation windows

it allows for longer assimilation windows
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Future challenges

Une autre piste : parallélisme en temps
Weak constraint 4D-Var

(Vidard 2001, Lemieux and Vidard 2012)

J(x0, ηt1 , · · · , ηtN ) =
1

2
‖ x0 − xb ‖2

X +
1

2

∫ T

0

‖ y(t)−H[x(t)] ‖2
O dt

+
1

2N

N∑
i=1

‖ ηtj ‖
2
E

tnβ tnγtnαt0

xb0

βα γ

xα
0

ηγ
ηβ

xβ0 = M0,nα (x
α
0 ) + ηβ

xγ0 = Mnα,nβ

(
xβ0

)
+ ηγ

(Trémolet 2007):

J(x0, xt1 , · · · , xtN ) =
1

2
‖ x0 − xb ‖2

X +
1

2

∫ T

0

‖ y(t)−H[x(t)] ‖2
O dt

+
1

2N

N∑
i=1

‖ Mtj−1→tj (xtj−1 )− xtj ‖
2
E

tnβ tnγtnα

xα
0

xβ
0

t0

M0,nα (x
α
0 )

xγ
0

Mnα,nβ

(
xβ0

)

xb0

βα γ
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Future challenges

Une autre piste : parallélisme en temps
Weak constraint 4D-Var

(Vidard 2001, Lemieux and Vidard 2012)

J(x0, ηt1 , · · · , ηtN ) =
1

2
‖ x0 − xb ‖2

X +
1

2

∫ T

0

‖ y(t)−H[x(t)] ‖2
O dt

+
1

2N

N∑
i=1

‖ ηtj ‖
2
E

tnβ tnγtnαt0

xb0

βα γ

xα
0

ηγ
ηβ

xβ0 = M0,nα (x
α
0 ) + ηβ

xγ0 = Mnα,nβ

(
xβ0

)
+ ηγ

(Trémolet 2007):

J(x0, xt1 , · · · , xtN ) =
1

2
‖ x0 − xb ‖2

X +
N∑
i=1

1

2

∫ ti

ti−1

‖ y(t)−H[x(t)] ‖2
O dt

+
1

2N

N∑
i=1

‖ Mtj−1→tj (xtj−1 )− xtj ‖
2
E

tnβ tnγtnα

xα
0

xβ
0

t0

M0,nα (x
α
0 )

xγ
0

Mnα,nβ

(
xβ0

)

xb0

βα γ
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Future challenges

Résolution de plus en plus grandes
Actuelle

�  Mercator&operational&
model:&NEMO&1/12°&
�  Number&of&gridpoints:&

�  1&year&of&simulation&
costs&414&Gb&memory,&
90000&CPU&hours,&1Tb&
storage&(daily&outputs)&

Horizontal&discretisation&

4322 ⇥ 3059 ⇥ 75 ⇠ 109

Ocean&models&

courtesy MEOM team at LGGE (UGAS/CNRS)

(In NWP operational models produce 13 millions fields daily (Totalling 8 TB/day)...
target is ×40 in 2030)
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Future challenges

Résolution de plus en plus grandes
Future

Horizontal&discretisation&

5454 ⇥ 3474 ⇥ 300 ⇠ 5.7 109

Ocean&models&

�  NATL60&
�  Gridpoints:&

�  13000&processors,&1&
month&of&simulation&
takes&1&day&
�  Full&storage&
impossible&

courtesy MEOM team at LGGE (UGAS/CNRS)

Why do we care?

The higher the resolution, the more expensive the model.

4DVar needs iterations, EnKF requires an ensemble and accurate error covariances.

−→ Toward model reduction and multi resolution methods

A. Vidard (Data assimilation) Peyresq Summer School 2015 Peyresq, 25th − 26thof April 2015 55 / 1



Future challenges

Vers des systèmes complexes
Système de modélisation - plusieurs échelles

Couplage de systèmes multi-échelles et/ou de dimensions hétérogènes

Activités de modélisation – AIRSEA May 29, 2015 - 9

Couplage de modèles multi-dimensionels appliqués au littoral (M.-P. Daou et al., 2015)   

Participants Collaborations Financements

E. Blayo, L. Debreu, M.-P. Daou,
R. Patoum LAMFA

LAGA
ADT AGRIF
ARTELIA
NOVELTIS
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Future challenges

Vers des systèmes complexes
Système de modélisation - plusieurs milieux

The Earth system:

Numerous different physical processes
and media.

Heterogeneous time and space scales.

Credit: NASA Johnson Space Center

Activités de modélisation – AIRSEA May 29, 2015 - 3

Applications : prévisions, climatologie, impacts environnementaux,
activités liées aux aléas climatiques, ...

k

E(k)

kc(�x, O(schema))

Contraintes de modélisation :

! Aspects multi-échelles (espace-temps), processus sous-maille ) paramétrisations

! Géométries complexes et interfaces ”physiques” ) couches limites

! Systèmes ”ouverts” à de nouvelles interactions (physique,
chimie, biologie ...)

) problèmes de couplage

Different models and scientific
cummunities

Strong interactions between media
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