
Association problem in wireless networks : Policy Gradient
Reinforcement Learning approach

Richard Combes, Ilham El Bouloumi, Stephane Senecal, Zwi Altman

Orange Labs

Ecole d’été de Peyresq 2013, 28th June 2013

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 1 / 56



Agenda

1 Introduction

2 Problem Statement and Modeling
Association Problem
Markov Decision Process (MDP) Modeling

3 Reinforcement Learning Solution
Resolution Techniques and Scalability
Policy Gradient
Parameterization
Distributed Implementation

4 Numerical Experiments

5 Conclusion

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 2 / 56



Introduction

Agenda

1 Introduction

2 Problem Statement and Modeling

3 Reinforcement Learning Solution

4 Numerical Experiments

5 Conclusion

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 3 / 56



Introduction

Introduction : Association Problem

Mobile networks more and more heterogeneous → network operator
needs to manage different RAN technologies : GSM, HSDPA, LTE,
WLAN, . . .
Connection to network with lower load via advanced RRM algorithms
(implementing mobility and selection/re-selection mechanisms) can im-
pact significantly network performance and perceived QoS ;
RRM burden shifts from network to UE, which can learn how to take
smart association decision ;
To which Base Station (BS) a UE should connect to in order to optimize
network performance ? → Association Problem
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Introduction

Association problem : SON (1/2)

Introduction of Self-Organizing Networks (SON) in 4G mobile networks ;
Intra-system mobility load balancing optimization = self-optimization
feature introduced in LTE standard ;
Self-optimization aims at adapting network to traffic variations and to
new conditions of operations ;
Self-optimization process can be performed by autonomously adjusting
network parameters (e.g. parameters of RRM algorithms) ;
Real operating networks introduce strict requirements : scalability and
stability.
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Introduction

Association problem (2/2)

Scalability : SON features should operate correctly when deployed in
many network nodes (BS and neighboring ones) ;
Stability : network empowered by SON functionnality diminishes conges-
tion in the network → number of active users remains bounded and
tends to a stationary regime ;
Deriving optimal parameters values or controllers via learning (Reinfor-
cement Learning) ⇒ learning or exploration phase → monotonic per-
formance improvement during learning phase (robust learning) ;
Our contribution : development of a self-optimized association algo-
rithm based on Policy Gradient Reinforcement Learning, which is both
scalable, stable and robust.

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 6 / 56



Introduction

Reinforcement Learning (1/2)

Association problem modeled as a Markov Decision Process (MDP) ;
Requirement of robustness ⇒ exclusion of direct application of RL so-
lutions like Q-Learning ;
Value Iteration cannot be applied as no a priori knowledge of the system
dynamics (transition probabilities of the MDP) is available ;
Optimal policy for the MDP is derived for a small size problem
⇒ learn a functional form and parameterize the policy space ;
Obtained solution used as expert knowledge for the Policy Gradient
Reinforcement Learning algorithm.
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Introduction

Reinforcement Learning (2/2)

Policy Gradient Reinforcement Learning algorithm converges to a local
optimum and the average cost decreases monotically during the learning
phase ⇒ good candidate for practical implementation ;
Robustness ⇒ use the Policy Gradient Reinforcement Learning method
in an “always-on” learning mode.

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 8 / 56



Problem Statement and Modeling

Agenda

1 Introduction

2 Problem Statement and Modeling
Association Problem
Markov Decision Process (MDP) Modeling

3 Reinforcement Learning Solution

4 Numerical Experiments

5 Conclusion

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 9 / 56



Problem Statement and Modeling Association Problem

Association Problem (1/3)

?

?

?

?

Figure: Association problem in the simplifed setting.
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Problem Statement and Modeling Association Problem

Association Problem (2/3)

1,4

Figure: Association problem → determine the proportion of traffic from A0,I to be
served by BS s, for all s and I .
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Problem Statement and Modeling Association Problem

Association Problem (3/3)

Let us consider a new zone A0 ⊂ A in the network ;
Association problem⇒ allocate the traffic arriving in A0 to BSs in order
to optimize a given performance indicator ;
Dynamic problem : system has access to the current user configuration
to make a decision ;
User configuration composed of the number of active users, their loca-
tions, the BS they are currently attached to and their remaining amount
of data to be downloaded ;
Policy = mapping between user configuration and association of each
user to a BS ;
Problem consists in finding the policy that maximizes a given perfor-
mance indicator → MDP modeling.
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Problem Statement and Modeling Markov Decision Process (MDP) Modeling

Markov Decision Process (1/2)

Discrete state s ∈ S and action a ∈ A of the system ;
Transition P(s, a, s ′) and expected reward R(s, a) models ;
⇒ Find policy π : s ∈ S 7→ π(a|s)
in order to optimize an objective/target function fπ(R(s, a))
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Problem Statement and Modeling Markov Decision Process (MDP) Modeling

Markov Decision Process (2/2)

Average cost of policy π starting at s ∈ S can be defined by

Jπ(s) = lim sup
T→+∞

1
T
Eπ

{∫ T

0
rtdt

}
(1)

at ∼ π(.|st) (2)

rt ∼ R(st , at) (3)

π s.t. {st} ergodic ⇒ s 7→ Jπ(s) constant : Jπ(s) = Jπ ;
Solving the MDP ⇒ find the optimal policy which minimizes the cost

π? = argmin
π

Jπ (4)
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Problem Statement and Modeling Markov Decision Process (MDP) Modeling

MDP Modeling (1/2)

Association problem can be modeled as a continuous time MDP ;
Let us write ns,I the number of users of class (0, I ) that are attached
to BS s ;
The user configuration (state s with previous notations) is

n = (ns,I )1≤s≤Ns ,I∈I (5)

which completely specifies the number of users of each class, and the
BSs they are attached to (BS s belonging to a set of Ns BSs).
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Problem Statement and Modeling Markov Decision Process (MDP) Modeling

MDP Modeling (2/2)

Cost of a state chosen as the total number of users in this state ;
Ergodicity of policies and Little’s Law ⇒ Jπ divided by the total arrival
rate is in fact the mean file transfer time under the policy π ;
Alternatively, we can define the cost to be 1 if at least one user has a
throughput smaller than a target data rate, and 0 otherwise ;
Jπ is then the outage probability under the policy π.
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Problem Statement and Modeling Markov Decision Process (MDP) Modeling

Reinforcement Learning problem

Derive the optimal policy without the knowledge of the probabilistic
structure of the model, through trial-and-error ;
Namely the transition matrix P(s, a, s ′) and the distribution of the costs
R(s, a) are unknown ;
We can only obtain and exploit MDP realizations {st , at , st+1, rt} ;
→ Simulation-based methods or model-free methods.

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 17 / 56



Reinforcement Learning Solution

Agenda

1 Introduction

2 Problem Statement and Modeling

3 Reinforcement Learning Solution
Resolution Techniques and Scalability
Policy Gradient
Parameterization
Distributed Implementation

4 Numerical Experiments

5 Conclusion

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 18 / 56



Reinforcement Learning Solution Resolution Techniques and Scalability

Resolution Techniques and Scalability (1/2)

With discretization and “uniformization” schemes, always possible to
reduce a continuous time MDP to a discrete time MDP
→ in the following, for reinforcement learning, the discrete time version
of the system is considered ;
When the transition matrix P(s, a, s ′) and the distribution of the costs
R(s, a) are known, and both S and A are finite, the optimal policy π?

can be derived via an iterative scheme, namely dynamic programming,
thanks to a fixed-point relation holding at optimality ;
In practice however, for large state spaces, this becomes numerically
intractable (“curse of dimensionality”).
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Reinforcement Learning Solution Resolution Techniques and Scalability

Resolution Techniques and Scalability (2/2)

Scalable approach → introduce a parameterized family of policies
{πθ, θ ∈ Θ} and define the cost J(θ) = Jπθ
(using the previous hypothesis of ergodicity) ;
This parameterization is a powerful idea for solving optimal control
problems numerically with state spaces of large dimension ;
Problem becomes the optimization of θ 7→ J(θ), which is assumed to
be computationally tractable ;
Note that the performance of such a scheme highly depends on the
goodness of the chosen family of policies ;
Choosing a good parameterization generally implies having some know-
ledge on the structure of the optimal controller → can be seen as a
form of “expert knowledge”.
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Reinforcement Learning Solution Policy Gradient

Policy Gradient Reinforcement Learning (1/3)

How to optimize θ 7→ J(θ), without the knowledge of the probabilistic
structure of the model ?
Assume that we are at least able to simulate the system for a fixed value
of θ, and that J(θ) can then be computed by averaging the observed
cost for a sufficiently long simulation ;
Interested in both local and global optima.
For global optima, since the problem is not convex in general, a search
heuristic (e.g. genetic algorithm, particle swarm optimization) is needed,
which requires to compute J(θ) for a large number of values of θ ;
For local optima, we can use a descent method by computing ∇θJ(θ).
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Reinforcement Learning Solution Policy Gradient

Policy Gradient Reinforcement Learning (2/3)

Crudest approach is to approximate the gradient using finite differences ;
Computation of its k-th component by :

J(θ + εek)− J(θ − εek)

2ε
(6)

for a small ε, where ek stands for the k-th unit vector ;
Possible whenever J(θ) can be computed, but requires a number of
simulations equal to twice the number of components of θ ;
Also, this approach is not suitable for an “on-line” implementation where
instead of simulating the system, the algorithm must compute an esti-
mate of the gradient based on observations from a real network.
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Reinforcement Learning Solution Policy Gradient

Policy Gradient Reinforcement Learning (3/3)

Approach proposed → estimate ∇θJ(θ) from a single (discrete-time)
sample path {st , at , st+1, rt} ;
It is possible to compute iteratively the eligibility traces :

z(t + 1) = βz(t) +
∇θπθ(at |st)

πθ(at |st)
(7)

and the related gradient estimates :

∆(t + 1) = ∆(t) +
1

t + 1
(rt+1z(t + 1)−∆(t)) (8)

The gradient estimates converge almost surely to an ascent direction :

lim inf
t→+∞

< ∆(t),∇θJ(θ) > > 0 (9)
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Reinforcement Learning Solution Parameterization

Rationale behind the parameterization choice (1/2)

Let θ ∈ RNs×(I+1)×|I| be a vector of weights ;
When a user arrives in zone A0,I , he/she has to evaluate, for each
possible BS, the peak rate available with this BS, and the load of the
BS, which depends on the number of active users already attached to
the BS and their peak rate ;
In order to take a decision, for each BS s, we compute the weighted
sum

θs,0,I +
∑

1≤i≤I
θs,i ,ITs,i (n) (10)

The term θs,0,I is independent of the load, and is linked to the peak
rate available at BS s, irrespective of its load ;
The term

∑
1≤i≤I θs,i ,ITs,i (n) is load dependent and is a weighted sum

of the number of active users with different peak rates.
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Reinforcement Learning Solution Parameterization

Rationale behind the parameterization choice (2/2)

The attachment rule should assign a positive probability to all possible
decisions → the average cost should be differentiable with respect to
θ ;
When a user of class (0, I ) enters the network, he/she is attached to
BS s with probability ps,I :

ps,I (n, θ) =
exp(θs,0,I +

∑
1≤i≤I θs,i ,ITs,i (n))∑

1≤s≤Ns
exp(θs,0,I +

∑
1≤i≤I θs,i ,ITs,i (n))

(11)

The policy space contains several “intuitively” good policies ;
Note that the action rule proposed above is a smooth approximation to
the maximum function.
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Reinforcement Learning Solution Parameterization

Parameterized Policies

We give four policies which should perform well, at least from an intuitive
point of view :

Join the station offering the best peak rate ;
Join the station offering the best data rate ;
Join the station with the smallest workload ;
Join the station with the shortest queue.

Those policies often appear as solutions of control problems of queueing
systems.
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Reinforcement Learning Solution Distributed Implementation

Distributed Implementation (1/5)

Each BS s has a central zone in which all users are attached to s, and
for each neighboring BS s ′ there is a zone in which users can only be
attached either to s or s ′ → Is,s′ zone ;
Parameters which control the decisions for zone Is,s′ are

(θs,i ,Is,s′ , θs′,i ,Is,s′ )0≤i≤I (12)

To alleviate notation, we use the notation θs,s′ to denote the parameters
used in the decision of association to s or s ′.
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Reinforcement Learning Solution Distributed Implementation

Distributed Implementation (2/5)

Let ∆s,s′ and zs,s′ be the components of ∆ and z respectively relative
to θs,s′ ;
Gradient estimation procedure equations (7) and (8) :

zs,s′(t + 1) = βzs,s′(t) +
∇θs,s′πθ(at |st)

πθ(at |st)
(13)

∆s,s′(t + 1) = ∆s,s′(t) +
1

t + 1
(rt+1zs,s′(t + 1)−∆s,s′(t)) (14)

Algorithm distributed → actions are taken based on locally available
information ;
When a user arrives in the network and could be attached to BS s, then
BS s needs only to know the number of active users in its neighboring
BSs ;
zs,s′(t) is computed solely based on the number of active users in BSs
s and s ′.
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Reinforcement Learning Solution Distributed Implementation

Distributed Implementation (3/5)

Computation of ∆s,s′(t) requires to know the costs rt , which are not a
local information ;
For instance, if the cost is the number of active users in the whole
network (case of minimization of the mean file transfer time), every BS
needs to be aware of the number of active users in every BS in the
network ;
When the number of BSs grows, the gradient estimates become more
noisy → random fluctuations of the costs in all BSs will affect the
estimation of the gradient with respect to θs,s′ , although this parameter
mainly impacts BSs s and s ′ ;
Serious impairments for practical application
⇒ suggestion of a heuristic.
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Reinforcement Learning Solution Distributed Implementation

Distributed Implementation (4/5)

Let assume that the cost is a sum of “local costs” r =
∑Ns

s=1 r
(s), one

per BS ;
For instance if the cost is the total number of active users in the network,
the cost of BS s is simply the number of active users in BS s ;
Heuristic proposed for the computation of the gradient with respect to
θs,s′ → use only the local rewards for BSs s and s ′ :

zs,s′(t + 1) = βzs,s′(t) +
∇θs,s′πθ(at |st)

πθ(at |st)
(15)

∆s,s′(t + 1) = ∆s,s′(t)

+
1

t + 1
((r (s)t+1 + r (s

′)
t+1)zs,s′(t + 1)−∆s,s′(t)) (16)
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Reinforcement Learning Solution Distributed Implementation

Distributed Implementation (5/5)

Heuristic fully distributed : ∆s,s′ can be computed solely based on the
local costs r (s) and r (s

′) ;
The intuitive explanation behind the noise reduction is that using the
heuristic, any random fluctuation of the local cost in a BS which is
far away from BS s will not affect the estimation of the gradient with
respect to θs,s′ ;
This is merely a heuristic since we cannot guarantee that the gradient
estimate will be a valid ascent direction at each step ;
However, it performs very well numerically, and yields a considerable
improvement of the gradient estimation accuracy (by a factor of 10, as
shown hereinafter).
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Numerical Experiments
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Figure: Hexagonal network of 19 BSs with wrap-around (to avoid border effects).
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Numerical Experiments

Traffic

?

?
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?

Figure: Association problem in the simplifed setting.
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Numerical Experiments

Setting

Each BS s has a central zone where users are served with a data rate
of 10Mbps ;
The area of a central zone is 1

2 of a cell area ;
For each couple of BSs (s, s ′), s 6= s ′, there is a zone in which users
can be served by either BSs s or s ′, both with a data rate of 5Mbps.
The area of this zone is 1

6 of a cell area, which is shared between BSs
s and s ′ ;
For the outage probability calculation, a target rate of 1Mbps is sought ;
The mean file size is 10Mb.
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Numerical Experiments

Policies Comparison (1/3)
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Numerical Experiments

Policies Comparison (2/3)

Reference policy is “best peak rate” where users simply connect to the
BS offering the best peak rate (i.e the best SINR), without considering
the loads of available BSs ;
Worst performance → not load-aware : it attaches users to the closest
BS, even if it is overloaded, which does not reduce network congestion
when traffic is high ;
Policy “smallest workload” brings little improvement : even though it
takes the loads into account, it can possibly admit a user when the
number of active users is already large, resulting in outage ;
→ even for a large number of active users, the workload can be small
if they have almost finished their transfer, or if their data rate is high.

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 37 / 56



Numerical Experiments

Policies Comparison (3/3)

Policies “best data rate” and “shortest queue” perform the best, and
bring large improvement in both outage probability and mean file trans-
fer time ;
For high traffic, say 100Mbps, policies “best peak rate” and “smallest
workload” yield a mean file transfer time of 7s and a outage probability
of 60% ;
Policies “best data rate” and “shortest queue” yield 4s for the mean file
transfer time and 10% for the outage probability ;
This shows that reducing congestion has a considerable impact on the
network performance.
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Numerical Experiments

Accuracy of the Gradient Estimates (1/3)

Accuracy of the gradient estimates obtained using the policy gradient
standard method (denoted as “centralized”) and the proposed heuristic
which allows a distributed implementation (denoted as “distributed”) ;
Choice of θ = 0 for comparison ;
For a fixed number of time steps, generation of 500 gradient estimates
using both methods ;
Computation of the sign of the dot product between the gradient es-
timate and the true gradient obtained by finite difference for a long
simulation with 100, 000 time steps ;
If their dot product is strictly positive, then the gradient estimate is an
admissible ascent direction ;
Plot of the percentage of gradient estimates which are admissible ascent
directions ;
The higher the percentage, the better the gradient estimate is.
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Numerical Experiments

Accuracy of the Gradient Estimates (2/3)
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Figure: Accuracy of gradient estimates vs number of time steps.
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Numerical Experiments

Accuracy of the Gradient Estimates (3/3)

Accuracy of gradient estimates goes to 100% when the number of time
steps grows ;
Proposed heuristic performs significantly better than the straighforward
policy gradient ;
For the same level of accuracy (say 95%) the number of time steps
required by the heuristic is 10 times smaller than for the classical policy
gradient.
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Numerical Experiments

Learning Process (1/3)

Evolution of the average cost and of the corresponding controller para-
meter values during learning process ;
Total traffic is 100Mbps ;
Large number of parameters (57 in total) → only the two first compo-
nents of the parameter vector are represented ;
For each update of θ, the gradient is estimated during 100s.
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Numerical Experiments

Learning Process (2/3)
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Numerical Experiments

Learning Process (3/3)

Starting from θ = 0, and a heavily congested network, the outage
probability diminishes almost monotonically ;
⇒ the algorithm is able to find a configuration of parameters for which
the congestion in the network is reduced ;
Algorithm convergence speed with regards to the evolution of the daily
traffic is satisfactory → in operational networks, the traffic pattern (ar-
rival rates in each region) can reasonably be assumed fixed for at least
one hour.
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Conclusion
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Conclusion

Summary (1/2)

Proposition of a model for association problem in wireless networks ;
Taking into account traffic dynamics→ optimize performance indicators
directly perceived by users (mean file transfer time, outage probability) ;
Modeling via Markov Decision Process (MDP) ;
On-line Policy Gradient Reinforcement Learning method adapted to op-
timally control the system.

R. Combes et al. (Orange Labs) Policy Gradient Learning 28th June 2013 46 / 56



Conclusion

Summary (2/2)

Introduction of a heuristic to enable a distributed implementation and
improve the gradient estimation procedure ;
The approach enjoys several advantages and thus is suitable for practical
implementation :

Convergence to a local optimum ;
Average system performance improves monotically, and convergence speed
is compatible with typical traffic evolution in operational networks ;
Solution scalable (complexity increases linearly with number of BSs) ;
Solution can be implemented in a distributed manner.

Numerical experiments demonstrated that proposed solution performs
well in practice, and effectively decreases congestion in the network.
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Conclusion
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Conclusion

Perspectives

Problem : variance reduction for policy gradient estimates ;
⇒ “Virtual Paths” techniques.
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Conclusion

Thank You !
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Conclusion

Appendix : SON
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Conclusion

Appendix : Ergodicity

Ergodicity : an irreducible, aperiodic, Harris-reccurent Markov chain
which admits an invariant distribution is ergodic.
Irreducibility : every non-zero probability set for distribution φ can be
reached by the Markov chain in a finite number of steps/iterations for
every starting point.
Harris-recurrence : every non-zero probability set can be visited by the
Markov chain infinitely often for every starting point.
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Conclusion

Appendix : MDP Modeling

We assume that association decisions are taken when users enter the
system → avoid the possibility of constant hand-overs every time the
user configuration changes, which would be impractical due to a high
amount of additional overhead ;
Note that the subset of states in which an action is available is relatively
small, which is attractive in terms of practical controller implementation.
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Conclusion

Appendix : Little’s Law

Little’s Law : the long-term average number of customers in a stable
system L is equal to the long-term average effective arrival rate λ multi-
plied by the (Palm-)average time a customer spends in the system W :
L = λ×W .
⇒ This relationship holds for all arrival process distribution, service
distribution, service order. . .
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Conclusion

Appendix : Parameterized Policies

The existence of those four policies has two practical implications :
→ finding the best parameterized policy yields performance at least as
good as the previously described policies ;
→ if we seek to find the optimal value of θ through an iterative search
(the optimal parameterized policy), for instance using gradient descent,
then the initial value of θ can be chosen as one of those four policies ;
This technique guarantees that even during the first iterations of the
scheme, the system performance is already acceptable, as opposed to
starting to a random value of θ which might yield very poor performance
in the initial stages ;
Note that when the number of users in BS s is significantly larger than
in the other BSs, ps,I becomes very small and no users of A0 are served
by BS s ⇒ parameterized family of policies introduces a form of load
balancing.
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Conclusion

Appendix : Setting

Wrap-around essential : without, BSs on the outer ring would be signi-
ficantly less loaded than BSs on the inner rings, and it would introduce
considerable bias in the simulations ;
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