Heteroscedastic Regression by Conic Programming under Group Sparsity

Joseph Salmon Télécom ParisTech http://josephsalmon.eu/

Joint work with: Arnak Dalalyan (ENSAE-CREST), Mohamed Hebiri (Université Paris-Est), Katia Meziani (Université Paris-Dauphine)

Heteroscedastic regression

Observations: sequence $(\boldsymbol{x}_t, y_t) \in \mathbb{R}^d \times \mathbb{R}$ obeying

$$y_t = b^*(x_t) + s^*(x_t)\xi_t,$$
 $t = 1, \dots, T$

- $lackbox{\sf Conditional mean: } \mathsf{b}^*:\mathbb{R}^d o \mathbb{R} \text{ such that } \mathbf{E}[y_t|m{x}_t] = \mathsf{b}^*(m{x}_t)$
- ► Conditional variance: $s^{*2}: \mathbb{R}^d \to \mathbb{R}_+$ such that $\mathbf{Var}[y_t|\boldsymbol{x}_t] = s^{*2}(\boldsymbol{x}_t)$
- Normalized errors: ξ_t i.i.d such that $\mathbf{E}[\xi_t|\boldsymbol{x}_t] = 0$ and $\mathbf{Var}[\xi_t|\boldsymbol{x}_t] = 1$ (e.g. Gaussian for simplicity)

Sparsity **Assumption**

- Estimating b* and s* is ill-posed
- ▶ sparsity senario: b* and s* belong to low dimensional spaces

Example: Homoscedastic regression

$$\forall \boldsymbol{x}, \quad \mathsf{b}^*(\boldsymbol{x}) = [\mathsf{f}_1(\boldsymbol{x}), \dots, \mathsf{f}_p(\boldsymbol{x})] \boldsymbol{\beta}^*, \qquad \text{and} \quad \mathsf{s}^*(\boldsymbol{x}) \equiv \sigma^*$$

- \hookrightarrow Dictionary $\{f_1,\ldots,f_p\}$ of functions from \mathbb{R}^d to \mathbb{R}
- \hookrightarrow Unknown vector $(\boldsymbol{\beta}^*, \sigma^*) \in \mathbb{R}^p \times \mathbb{R}$, sparse vector $\boldsymbol{\beta}^*$

$$|\beta^*|_0 := \sum_{i=1}^p \mathbb{1}(\beta_j^* \neq 0) \ll T$$

Homoscedastic case with known noise level

Regression formulation

$$Y = X\beta^* + \sigma^* \xi$$

Observations:
$$oldsymbol{Y} = [y_1, \dots, y_T]^{ op} \in \mathbb{R}^T$$

Noise:
$$\boldsymbol{\xi} = \left[\xi_1, \dots, \xi_T\right]^{\mathsf{T}} \in \mathbb{R}^T$$

Design Matrix:
$$\mathbf{X}_{t,j} = [\mathsf{f}_j(\boldsymbol{x}_t)] \in \mathbb{R}$$

Coefficients:
$$oldsymbol{eta}^* = \left[eta_1^*, \dots, eta_p^*
ight]^ op \in \mathbb{R}^p$$

Standard deviation:
$$s^*(\boldsymbol{x}_t) \equiv \sigma^* \in \mathbb{R}^+_*$$

RFM:

- Y is observed
- ▶ X is known or chosen by the statistician
- \triangleright β^* is to be recovered by $\hat{\beta}$

Pioneer methods: homoscedastic, σ^* known

LASSO Tibshirani (1996)

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{arg\,min}} \left(\frac{|\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}|_2^2}{2T} + \lambda \sum_{j=1}^p |\boldsymbol{X}_{:,j}|_2 |\beta_j| \right)$$

Dantzig-Selector Candès and Tao (2007)

$$\operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \sum_{j=1}^p |\boldsymbol{X}_{:,j}|_2 |\beta_j| : \text{s.t.} \forall j = 1, \cdots, p, \ \frac{|\boldsymbol{X}_{:,j}^\top(Y - \boldsymbol{X}\boldsymbol{\beta})|}{|\boldsymbol{X}_{:,j}|_2} \leq \lambda \right\}$$

Oracle inequalities available e.g. Bickel et al. (2009) for a tuning parameter satisfying $\lambda \propto \sigma^*$, but knowledge of σ^* needed!

Pioneering methods: homoscedastic, σ^*

Type of results proved Bickel et al. (2009)

and

 \pmb{X} is s.t. $|\pmb{X}_{:,j}|_2=1$ for all $j=1,\ldots,p$; and \pmb{X} satisfies the RE condition (RIP type condition), for $\lambda=A\sigma^*\sqrt{\frac{\log p}{n}}$ $(A>2\sqrt{2})$ then with probability $1-p^{1-A^2/8}$

$$\|\boldsymbol{X}\hat{\beta} - \boldsymbol{X}\beta^*\|_2^2 \lesssim \frac{(\sigma^*)^2}{\kappa^2} \|\beta^*\|_0 \log p$$
$$\|\hat{\beta} - \beta^*\|_1 \lesssim \frac{\sigma^*}{\kappa^2} \|\beta^*\|_0 \sqrt{\frac{\log p}{n}}$$

Homoscedastic case with unknown noise level

Matrix/vector formulation

$$Y = X\beta^* + \sigma^* \xi$$

Observations:
$$oldsymbol{Y} = [y_1, \dots, y_T]^ op \in \mathbb{R}^T$$

Noise:
$$\boldsymbol{\xi} = \left[\xi_1, \dots, \xi_T\right]^{\top} \in \mathbb{R}^T$$

Design Matrix:
$$\mathbf{X}_{t,j} = [\mathsf{f}_j(m{x}_t)] \in \mathbb{R}$$

Coefficients:
$$oldsymbol{eta}^* = \left[eta_1^*, \dots, eta_p^*\right]^ op \in \mathbb{R}^p$$

Standard deviation:
$$s^*(x_t) \equiv \sigma^* \in \mathbb{R}^+$$

REM:

- Y is observed.
- **X** is known or chosen by the statistician
- ightharpoonup $oldsymbol{eta}^*$ and σ^* are to be recovered by \hat{eta} and $\hat{\sigma}$

Pioneering methods: homoscedastic, σ^* unknown

Scaled-Lasso, Städler et al. (2010)

$$\operatorname*{arg\,min}_{\boldsymbol{\beta},\sigma}\bigg(T\log(\sigma) + \frac{|\,\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}|_2^2}{2\sigma^2} + \frac{\lambda}{\sigma}\sum\nolimits_{j=1}^p |\boldsymbol{X}_{:,j}|_2 |\beta_j|\bigg).$$

→ penalized (Gaussian, negative) log-likelihood minimization

 \hookrightarrow can be recast in a convex problem $(\rho := \frac{1}{\sigma} \text{ and } \phi := \frac{\beta}{\sigma})$:

$$\underset{\boldsymbol{\phi}, \rho}{\arg\min} \left(- T \log(\rho) + \frac{|\rho \mathbf{Y} - \mathbf{X}\boldsymbol{\phi}|_2^2}{2} + \lambda \sum_{j=1}^p |\mathbf{X}_{:,j}|_2 |\phi_j| \right).$$

- ▶ equivariant estimator, *i.e.* if $Y \leftarrow cY, \beta^* \leftarrow c\beta^*, \sigma^* \leftarrow c\sigma^*,$ then $\hat{\beta} \leftarrow c\hat{\beta}$ and $\hat{\sigma} \leftarrow c\hat{\sigma}$
- Jointly convex problem

Pioneering methods: homoscedastic, σ^* unknown

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\mathsf{SqR-Lasso}} &= \operatorname*{arg\,min}_{\boldsymbol{\beta}} \left(\frac{\left| \, \boldsymbol{Y} - \mathbf{X} \boldsymbol{\beta} \right|_2}{2 \sqrt{T}} + \lambda \sum_{j=1}^p \left| \boldsymbol{X}_{:,j} \right|_2 \! |\beta_j| \right) \\ \widehat{\boldsymbol{\sigma}}^* &= \frac{1}{\sqrt{T}} \! \left| \, \boldsymbol{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}}^{\mathsf{SqR-Lasso}} \right|_2 \end{split}$$

- ► Can be solved by a **S**econd **O**rder **C**one **P**rogram (SOCP)
- Not easily extended to the heteroscedastic case

Objectives

Extending previous works, cf. Dalalyan and Chen (2012), we propose a new method for **jointly** estimating:

- the conditional mean function b*
- the conditional volatility s*
 - \hookrightarrow for the **heteroscedastic** regression
 - → without exact knowledge of the noise level

Problem re-formulation

Re-parametrize by the inverse of the conditional volatility \boldsymbol{s}^*

$$\mathsf{r}^*({m x}) = rac{1}{\mathsf{s}^*({m x})} \ \ \mathsf{and} \ \ \mathsf{f}^*({m x}) = rac{\mathsf{b}^*({m x})}{\mathsf{s}^*({m x})}$$

Assumptions on the model (I)

Group Sparsity Assumption

For a given family G_1,\ldots,G_K of disjoint subsets of $\{1,\ldots,p\}$, there is a vector $\phi^*\in\mathbb{R}^p$ such that

$$[\mathsf{f}^*(\boldsymbol{x}_1),\dots,\mathsf{f}^*(\boldsymbol{x}_T)]^{ op}=\mathbf{X}\boldsymbol{\phi}^*,\qquad \mathsf{Card}(\left\{k:\left|\boldsymbol{\phi}_{G_k}^*\right|_2
eq 0
ight\})\ll K.$$

Sparse vector:

Group sparse vector:

REM: Note that the groups have not necessarily the same size

Examples of application (I)

Group sparsity assumption

- Sparse linear model with categorical data
 - \hookrightarrow linear regression with qualitative covariates
 - \hookrightarrow each covariate has several modalities
- Sparse additive model

$$\hookrightarrow \mathsf{f}^*(\boldsymbol{x}) = \mathsf{f}_1^*(x_1) + \ldots + \mathsf{f}_d^*(x_d) \; ; \; \mathsf{f}_j^* \equiv 0 \; \text{for most} \; j$$

 \hookrightarrow Project on elementary functions (Fourier, Wavelet):

$$f_j^*(x) \approx \sum_{\ell=1}^{K_j} \phi_{\ell,j} \psi_{\ell}(x)$$

then $oldsymbol{\phi} = (\phi_{\ell,j})$ is group sparse

Assumptions on the model (II)

Low dimension volatility assumption

For q given functions $\mathbf{r}_1,\ldots,\mathbf{r}_q$ mapping \mathbb{R}^d into \mathbb{R}_+ , there is a vector $\boldsymbol{\alpha}^* \in \mathbb{R}^q$ such that $\mathbf{r}^*(\boldsymbol{x}) = \sum_{\ell=1}^q \alpha_\ell^* \mathbf{r}_\ell(\boldsymbol{x})$ for almost every $\boldsymbol{x} \in \mathbb{R}^d$, and $\mathcal S$ is the linear span of $\mathbf{r}_1,\ldots,\mathbf{r}_q$.

$$[\mathsf{r}^*(oldsymbol{x}_1),\ldots,\mathsf{r}^*(oldsymbol{x}_T)]^ op = oldsymbol{R}oldsymbol{lpha}^*$$

$$oldsymbol{R} = (\mathsf{r}_\ell(oldsymbol{x}_t))_{t,\ell}$$
 is a $T imes q$ noise design matrix

<u>REM</u>: here and after $q \ll T$

Reformulated model: $\mathsf{diag}(\mathit{Y}) R \alpha^* = \mathbf{X} \phi^* + oldsymbol{\xi}$

Examples of application (II)

Low dimension volatility assumption

- Block-wise homoscedastic noise
 - \hookrightarrow r* is well approximated by a piecewise constant function: time series modeling (smooth variations over time)
- Periodic/seasonal noise-level
 - \hookrightarrow r* belongs to the linear span of a few trigonometric functions: *e.g.*, meteorology (seasonal variations)

Penalized log-likelihood formulation

$$\begin{aligned} \mathsf{PL}(\boldsymbol{\phi}, \boldsymbol{\alpha}) &= -\sum_{t=1}^{T} \log(\boldsymbol{R}_{t,:} \boldsymbol{\alpha}) + \frac{1}{2} \sum_{t=1}^{T} \left(y_{t} \boldsymbol{R}_{t,:} \boldsymbol{\alpha} - \boldsymbol{X}_{t,:} \boldsymbol{\phi} \right)^{2} \\ &+ \sum_{k=1}^{K} \lambda_{k} \left| \boldsymbol{X}_{:,G_{k}} \boldsymbol{\phi}_{G_{k}} \right|_{2} \end{aligned}$$

- ▶ Remind $\mathbf{R} = (\mathsf{r}_\ell(\mathbf{x}_t))_{t,\ell}$ is the $T \times q$ noise design matrix
- ▶ Tuning parameter: $\lambda = (\lambda_1, \dots, \lambda_K) \in \mathbb{R}_+^K$
- ▶ Use $\sum_{k=1}^{K} \lambda_k |\mathbf{X}_{:,G_k} \boldsymbol{\phi}_{G_k}|_2$ instead of $\sum_{k=1}^{K} \lambda_k |\boldsymbol{\phi}_{G_k}|_2$ as in Simon and Tibshirani (2012) : **equivariance** w.r.t. invertible linear transformations of predictors within groups
- ▶ log-det problem not a Linear Programming (LP) or an SOCP

Relaxation of first order conditions (1)

 $\forall k \in \{1,\ldots,K\}, \ \frac{\partial}{\partial \phi_{G}} \mathsf{PL}(\phi,\alpha) = 0 \ \mathsf{implies}:$

$$-\mathbf{X}_{:,G_k}^{\top}\big(\mathsf{diag}(\boldsymbol{\mathit{Y}})\boldsymbol{R}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\phi}\big) + \lambda_k\mathbf{X}_{:,G_k}^{\top}\frac{\mathbf{X}_{:,G_k}\boldsymbol{\phi}_{:,G_k}}{|\mathbf{X}_{:,G_k}\boldsymbol{\phi}_{:,G_k}|_2} = 0$$

 \hookrightarrow Difficult problem: non-linear part

► Equivalence with

$$\Pi_{G_k}(\mathsf{diag}(\mathit{Y})R\alpha - \mathbf{X}\phi) = \lambda_k \mathbf{X}_{:,G_k} \phi_{G_k} / |\mathbf{X}_{:,G_k} \phi_{G_k}|_2$$

$$\mathbf{\Pi}_{G_k} = \mathbf{X}_{:,G_k} (\mathbf{X}_{:,G_k}^\top \mathbf{X}_{:,G_k})^+ \mathbf{X}_{:,G_k}^\top \text{: projector on } \mathrm{Span}(\mathbf{X}_{:,G_k})$$

$$\underline{\text{"Convexification"}}: \quad \big|\mathbf{\Pi}_{G_k}(\mathsf{diag}(\textbf{\textit{Y}})\textbf{\textit{R}}\boldsymbol{\alpha} - \mathbf{X}\boldsymbol{\phi})\big|_2 \leq \lambda_k$$

Relaxation of first order conditions (2)

 $\forall \ell = 1, \ldots, q, \ \frac{\partial}{\partial \alpha_{\ell}} \mathsf{PL}(\phi, \alpha) = 0 \text{ implies:}$

$$\exists \; oldsymbol{
u} \in \mathbb{R}^T_{\perp} \; \mathsf{such \; that}$$

$$-\sum_{t=1}^{T} \frac{\boldsymbol{R}_{t\ell}}{\boldsymbol{R}_{t,:}\boldsymbol{\alpha}} + \sum_{t=1}^{T} (y_t \boldsymbol{R}_{t,:}\boldsymbol{\alpha} - \boldsymbol{X}_{t,:}\boldsymbol{\phi}) y_t \boldsymbol{R}_{t\ell} - \boldsymbol{\nu}^{\top} \boldsymbol{R}_{:,\ell} = 0$$

and $\nu_t \mathbf{R}_{t,:} \boldsymbol{\alpha} = 0$ for every t.

Relaxation

Scaled Heteroscedastic Dantzig selector (ScHeDs)

Definition:

$$\begin{aligned} & \min_{(\boldsymbol{\phi}, \boldsymbol{\alpha}) \in \mathbb{R}^p \times \mathbb{R}^q} & \sum_{k=1}^K \lambda_k \big| \mathbf{X}_{:,G_k} \boldsymbol{\phi}_{G_k} \big|_2, & s.t. \\ & \Big| \mathbf{\Pi}_{G_k} \big(\mathrm{diag}(\boldsymbol{Y}) \boldsymbol{R} \boldsymbol{\alpha} - \mathbf{X} \boldsymbol{\phi} \big) \big|_2 \leq \lambda_k, & \forall k \in \{1, \dots, K\} \\ & \sum_{t=1}^T \frac{\boldsymbol{R}_{t\ell}}{\boldsymbol{R}_{t,:} \boldsymbol{\alpha}} - \big(y_t \boldsymbol{R}_{t,:} \boldsymbol{\alpha} - \boldsymbol{X}_{t,:} \boldsymbol{\phi} \big) y_t \boldsymbol{R}_{t\ell} \leq 0, & \forall \ell \in \{1, \dots, q\} \end{aligned}$$

Theorem: ScHeDs can be solved by an SOCP

<u>REM</u>: The feasible set of this problem is not empty and contains, in particular, all the minimizers of the penalized log-likelihood.

Comments on the procedure

- Degrees of freedom:
 - \hookrightarrow Many tuning parameters in the procedure
 - \hookrightarrow Theory: $\lambda_k = \lambda_0 \sqrt{r_k}$ with $\lambda_0 > 0$ and $r_k = \operatorname{rank}(\mathbf{X}_{:,G_k})$
 - \hookrightarrow Most papers use $\lambda_k \propto \sqrt{|G_k|} \ (k=1,\ldots,K)$
- ▶ Bias correction, practical improvement:
 - \hookrightarrow Classical two-steps methods:
 - i) our algorithm with $\lambda_k = \lambda_0 \sqrt{r_k} \; (\mathsf{k}{=}1,\dots,\mathsf{K})$
 - ii) Least squares on the selected variables ($\lambda=0$)
- Implementation with SOCP solvers (Matlab): Sedumi Sturm (1999): popular interior point method, highly accurate solution for small datasets, e.g. p, $T \le 2000$ Tfocs Becker et al. (2011): first-order proximal method, less accurate BUT can handle larger dimensions, e.g. p = 5000 and T = 3000

Heteroscedastic (without blocks)

Data:

- ▶ Design matrix: $\mathbf{X} \in \mathbb{R}^{T \times p}$ i.i.d. entries $\mathcal{N}(0,1)$
- ▶ Noise vector: $\mathbb{R}^T \ni \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}_T, \mathbf{I})$ independent of \mathbf{X}
- Variances: piecewise constant with blocks of length T/10 1st block $\sigma_t \equiv 8\sigma^*$; 5th block $\sigma_t \equiv 4\sigma^*$; 9th block $\sigma_t \equiv 5\sigma^*$; others 7 blocks have $\sigma_t \equiv \sigma^*$;
- $\beta^* = (2, 3, 3, 3, 1.5, 1.5, 1.5, 0, 0, 0, 2, 2, 2, 0, \dots, 0)^{\top} \in \mathbb{R}^p$
- ▶ Response vector: $y_t = \mathbf{X}_{t,:} \boldsymbol{\beta}^* + \sigma_t \boldsymbol{\xi}_t$.

Compared with: Square-root Lasso Belloni et al. (2011)
HRR (High dim. Heteroscedastic Regression) Daye et al. (2011)

Tuning parameters: "universal choice" $\lambda = \sqrt{2 \log(p)}$; \mathbf{R} : encodes blocks of size T/20 (i.e. q=20)

Heteroscedastic noise

Prediction error $\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}^*\|_2}{\sqrt{T}}$ (or $\|(\mathbf{X}\hat{\boldsymbol{\phi}})./(\boldsymbol{R}\hat{\boldsymbol{\alpha}}) - \mathbf{X}\boldsymbol{\beta}^*\|_2/\sqrt{T}$)

	Sqrt-Lasso	Sqrt-Lasso Deb.	Daye	ScHeDs	ScHeDs Deb.
T	$\sigma = 4, \ p = 200$				
100	6.00	5.18	2.20	5.53	5.80
200	6.05	5.53	1.88	4.90	4.74
500	4.08	2.06	2.26	2.55	2.21
T	$\sigma = 6, \ p = 200$				
100	7.77	7.77	6.96	6.57	7.14
200	6.75	6.17	2.97	5.02	3.63
500	5.08	2.78	3.80	2.77	2.64
T	$\sigma = 8, \ p = 200$				
100	7.28	7.28	9.35	6.38	4.99
200	6.94	6.94	5.96	4.61	3.25
500	5.46	5.10	4.95	3.59	2.94
T	$\sigma = 10, \ p = 200$				
100	6.01	6.91	5.14	5.30	9.15
200	7.14	7.14	11.11	5.52	5.12
500	6.53	6.43	6.07	4.21	3.46

Finite sample risk bound

Theorem

Under the **(GRE)** + assumptions on signal/noise ratio for any $\epsilon>0$, w.p. $1-\epsilon$, the ScHeDs estimator satisfies

$$\begin{split} & \left| \boldsymbol{X} (\hat{\boldsymbol{\phi}} - \boldsymbol{\phi}^*) \right|_2 \precsim \left(\frac{1}{\kappa} \sqrt{i^* + |\mathcal{K}^*| \log(\frac{K}{\epsilon})} + \sqrt{q \log(\frac{q}{\epsilon})} \right) D_{T,\delta}^{3/2} \\ & \frac{\left| \boldsymbol{R} (\hat{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^*) \right|_2}{|\boldsymbol{R} \boldsymbol{\alpha}^*|_{\infty}} \precsim \left(\frac{1}{\kappa} \sqrt{i^* + |\mathcal{K}^*| \log(\frac{K}{\epsilon})} + \sqrt{q \log(\frac{q}{\epsilon})} \right) D_{T,\delta}^{3/2} \end{split}$$

with
$$D_{T,\delta}=\log(\frac{T}{\delta})$$
, $\mathcal{K}^*=\{k:|\pmb{\phi}^*_{G_k}|\neq 0\}$, $i^*=\sum_{k\in\mathcal{K}^*}\mathrm{rank}(\mathbf{X}_{:,\mathbf{G_k}})$

REM:

assumptions on the signal/noise ratio only needed for the theorem, not for the construction of the estimator.

Summary

New procedure named ScHeDs:

- ► Suitable for fitting heteroscedastic regression models
- Estimating both the mean and the variance functions
- ► Takes into account group sparsity
- Relaxation of 1st order conditions for penalized MLE
 - → existence of a solution
 - → convex problem second-order cone programming
- ► Competitive with state-of-the-art algorithms
- ► More simulations + real data in the paper

References I

- ► A. Antoniadis, Comments on: ℓ₁-penalization for mixture regression models, TEST 19 (2010), no. 2, 257–258. MR 2677723
- S. R. Becker, E. J. Candès, and M. C. Grant, Templates for convex cone problems with applications to sparse signal recovery, Mathematical Programming Computation 3 (2011), no. 3, 165–218.
- A. Belloni, V. Chernozhukov, and L. Wang, Square-root Lasso: Pivotal recovery of sparse signals via conic programming, Biometrika 98 (2011), no. 4, 791–806.
- ▶ P. J. Bickel, Y. Ritov, and A. B. Tsybakov, *Simultaneous analysis of Lasso and Dantzig selector*, Ann. Statist. **37** (2009), no. 4, 1705–1732.
- ▶ E. J. Candès and T. Tao, *The Dantzig selector: statistical estimation when p is much larger than n*, Ann. Statist. **35** (2007), no. 6, 2313–2351.
- ► A. S. Dalalyan and Y. Chen, Fused sparsity and robust estimation for linear models with unknown variance, NIPS, 2012, pp. 1268–1276.

References II

- ▶ J. Daye, J. Chen, and H. Li, High-dimensional heteroscedastic regression with an application to eQTL data analysis, Biometrics 68 (2012), no. 1, 316–326.
- ▶ N. Städler, P. Bühlmann, and Sara s van de Geer, ℓ₁-penalization for mixture regression models, TEST **19** (2010), no. 2, 209–256.
- N. Simon and R. Tibshirani, Standardization and the Group Lasso penalty, Stat. Sin. 22 (2012), no. 3, 983–1001 (English).
- ▶ J. F. Sturm, Using sedumi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization Methods and Software 11–12 (1999), 625–653.
- ► T. Sun and C.-H. Zhang, Scaled sparse linear regression, Biometrika 99 (2012), no. 4, 879–898.
- ▶ R. Tibshirani, *Regression shrinkage and selection via the Lasso*, J. R. Stat. Soc. Ser. B Stat. Methodol. **58** (1996), no. 1, 267–288.

SOCP reformulation

$$\begin{aligned} & \min \quad \sum_{k=1}^K \lambda_k u_k \\ & \text{subject to} \\ & \forall k = 1, \cdots, K \quad \left| \boldsymbol{X}_{:,G_k} \boldsymbol{\phi}_{G_k} \right|_2 \leq u_k, \\ & \forall k = 1, \cdots, K, \quad \left| \boldsymbol{\Pi}_{G_k} \big(\operatorname{diag}(\boldsymbol{Y}) \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{X} \boldsymbol{\phi} \big) \right|_2 \leq \lambda_k, \\ & \boldsymbol{R}^\top \boldsymbol{v} \leq \boldsymbol{R}^\top \operatorname{diag}(\boldsymbol{Y}) \big(\operatorname{diag}(\boldsymbol{Y}) \boldsymbol{R} \boldsymbol{\alpha} - \boldsymbol{X} \boldsymbol{\phi} \big); \\ & \forall t = 1, \cdots, T, \quad \left| \left[v_t; \boldsymbol{R}_{t,:} \boldsymbol{\alpha}; \sqrt{2} \right] \right|_2 \leq v_t + \boldsymbol{R}_{t,:} \boldsymbol{\alpha}; \end{aligned}$$

Assumption

Some notations:

$$\mathcal{K}^{*} = \left\{k : \left|\phi_{G_{k}}^{*}\right|_{1} \neq 0\right\},$$

$$J_{\phi^{*}} = \bigcup_{k \in \mathcal{K}^{*}} G_{k}, \qquad i^{*} = \sum_{k \in \mathcal{K}^{*}} |G_{k}|,$$

$$\Gamma(\mathcal{K}) = \left\{\delta \in \mathbb{R}^{p} : \sum_{k \in \mathcal{K}^{c}} \lambda_{k} |\mathbf{X}_{:,G_{k}} \delta_{G_{k}}|_{2} \leq \sum_{k \in \mathcal{K}} \lambda_{k} |\mathbf{X}_{:,G_{k}} \delta_{G_{k}}|_{2}\right\}.$$

Let $1 \leq b \leq K$ be a bound on the group sparsity: $|J_{\phi^*}| \leq b$

Group Restricted Eigenvalue Condition (GREC)

$$\exists \kappa, \forall \boldsymbol{\delta} \in \Gamma(\mathcal{K}) \setminus \{0\}, \text{s.t.} \big| \mathcal{K} \big| \leq \mathcal{K}^*, \big| \mathbf{X} \boldsymbol{\delta} \big|_2^2 \geq \kappa^2 T \sum_{k \in \mathcal{K}} \big| \mathbf{X}_{:,G_k} \boldsymbol{\delta}_{G_k} \big|_2^2$$

REM: extension of the RE Bickel et al. (2009)

Assumption signal/noise ratio

Define

$$C_{1} = \min_{\ell=1,\dots,q} \frac{1}{T} \sum_{t \in \mathcal{T}} \frac{r_{t\ell}^{2}(\boldsymbol{X}_{t,:}\boldsymbol{\phi}^{*})^{2}}{(\boldsymbol{R}_{t,:}\boldsymbol{\alpha}^{*})^{2}} ,$$

$$C_{2} = \max_{\ell=1,\dots,q} \frac{1}{T} \sum_{t \in \mathcal{T}} \frac{r_{t\ell}^{2}}{(\boldsymbol{R}_{t,:}\boldsymbol{\alpha}^{*})^{2}} ,$$

$$C_{3} = \min_{\ell=1,\dots,q} \frac{1}{T} \sum_{t \in \mathcal{T}} \frac{r_{t\ell}}{(\boldsymbol{R}_{t,:}\boldsymbol{\alpha}^{*})} .$$

We denote $C_4 = (\sqrt{C_2} + \sqrt{2C_1})/C_3$ and

$$\max_{t=1,\cdots,T} \frac{(\boldsymbol{R}_{t,:}\hat{\boldsymbol{\alpha}})}{(\boldsymbol{R}_{t}.\boldsymbol{\alpha}^*)} \leq \hat{D}_1$$

The constant in the oracle inequalities satisfies:

$$D_{T,\delta} = C_4 \hat{D}_1(|\boldsymbol{X}\boldsymbol{\phi}^*|_{\infty}^2 + \log(\frac{T}{\delta}))$$