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Heteroscedastic regression

Observations: sequence (z;, y;) € R x R obeying

Ly =" (@) + 57 (@)1, t=1,,T|

» Conditional mean: b* : R? — R such that E[y|z;] = b*(x;)
» Conditional variance: s* : R — R, such that
Var(y|a;] = s**(z;)

» Normalized errors: &; i.i.d such that E[{;|x:] = 0 and
Var([é|z) = 1 (e.g. Gaussian for simplicity)



Sparsity Assumption
» Estimating b* and s* is ill-posed
» sparsity senario: b* and s* belong to low dimensional spaces
Example: Homoscedastic regression
Ve, b*(x)=I[fi(x),...,f(x)]B", and s*(z)=o"

< Dictionary {fi,...,f,} of functions from R¢ to R

— Unknown vector (8%,0%) € R” x R, sparse vector B*

B7o:=)"" 1B #0) < T




Homoscedastic case with known noise level

Regression formulation

Y =XB" +0%¢
Observations: Y =1[y,...,yr] €RT
Noise: E=1¢,...,67]" eRT
Design Matrix: X =[fj(xz)] € R
T
Coefficients: B* = [ﬁf, . ,B;} € R?
Standard deviation: s*(x;) = o* € RS

REM:

> Y is observed
» X is known or chosen by the statistician

» | 3" is to be recovered by B




Pioneer methods: homoscedastic, ¢* known

LASSO Tibshirani (1996)

. (Y —XB|3 )
min | —— 2712 L AN X,
arﬁgeRpm ( 5 T E | X jl2]65]

Dantzig-Selector Candés and Tao (2007)

]
XY - XB) _ A}
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Oracle inequalities available e.g. Bickel et al. (2009) for a tuning
parameter satisfying A oc o*, but knowledge of o* needed!



Pioneering methods: homoscedastic, ¢*

Type of results proved Bickel et al. (2009)
Xisst. |X. jlg=1forall j=1,...,p; and X satisfies the RE

condition (RIP type condition), for A = Ao*y/ %62 (4 > 21/2)
then with probability 1 — p'~ A?/8

(0*)2

X3 - XB*3 % 18%(|0 log p

log

and 18- 51 3 \/3*||




Homoscedastic case with unknown noise level

Matrix/vector formulation

Y =XpB"+0%¢
Observations: Y =[y,...,yr] e€RT
Noise: E=1¢,..., 7] eRT
Design Matrix: X =[fj(x)] € R
Coefficients: B = [,Bik, e ,5;}T € RP
Standard deviation: s*(zy) = o* € RS

REM:
> Y is observed,
» X is known or chosen by the statistician

» | 3" and o* are to be recovered by B and &




Pioneering methods: homoscedastic, o*
unknown
Scaled-Lasso, Stadler et al. (2010)

. Y -XB)3 | A
argﬁgmn (Tlog(a) + gz + p Zj:1 \X:,j‘z‘ﬁjo-

< penalized (Gaussian, negative) log-likelihood minimization
< can be recast in a convex problem (p:= 1 and ¢ := g)

) Y — Xo|3 P
arg:;ﬁmm ( — Tlog(p) + |,02|2 + >‘ij1 |X:7j|2|¢j|>'
7p

» equivariant estimator, i.e. if Y < cY, 8% < ¢8*,0* < co*,
then 8 < ¢B and 6 + co

» Jointly convex problem



Pioneering methods: homoscedastic, o*
unknown

v Lasso Antoniadis (2010) , Belloni et al. (2011) , Sun and
Zhang (2012)

~SqR-Lasso . | Y - Xﬁ| p
B angmin (152 A Xl )
1 ~SqR-Lasso
6= —|Y -X
ﬁ‘ 2

» Can be solved by a Second Order Cone Program (SOCP)

» Not easily extended to the heteroscedastic case



Objectives

Extending previous works, cf. Dalalyan and Chen (2012) , we
propose a new method for jointly estimating:

» the conditional mean function b*

» the conditional volatility s*

— for the heteroscedastic regression

— without exact knowledge of the noise level

Problem re-formulation
Re-parametrize by the inverse of the conditional volatility s*
1 b*(x)

r*(z) = (@) and f*(z) =




Assumptions on the model (1)

Group Sparsity Assumption

For a given family Gi,..., Gk of disjoint subsets of {1,..., p},
there is a vector ¢* € R” such that

[f*(21),....F (z)]T = X",  Card({k: |@f, |, #0}) < K.

Sparse vector:
IENIIIEEE NN NN .
Group sparse vector:

REM: Note that the groups have not necessarily the same size



Examples of application (1)

Group sparsity assumption

» Sparse linear model with categorical data
— linear regression with qualitative covariates
— each covariate has several modalities

> Sparse additive model
— f*(x) = ff(2) + ... +fj(za) ; ff = 0 for most j
— Project on elementary functions (Fourier, Wavelet):

K;
fi(z) = D detbu(a)
=1

then ¢ = (¢ ;) is group sparse




Assumptions on the model (I1)

Low dimension volatility assumption

For ¢ given functions rq,...,r, mapping R? into R, there is a
vector a* € RY such that r*(z) = >/, ajri(x) for almost every
xz € R%, and S is the linear span of rq,. .., rg-
* * T _ *
[F(x1),...,r"(z7)] = R

R = (ri(zt));, is a T x g noise design matrix

REM: here and after ¢ < T

’ Reformulated model: diag(Y)Ra™ = X¢™ + 5‘




Examples of application (I1)

Low dimension volatility assumption

> Block-wise homoscedastic noise
— r* is well approximated by a piecewise constant
function: time series modeling (smooth variations over time)

» Periodic/seasonal noise-level

< r* belongs to the linear span of a few trigonometric
functions: e.g., meteorology (seasonal variations)




Penalized log-likelihood formulation

I 1 d 2
— Z log(R;.cx) + = Z yiRi .o — Xi.9)
t=1 t=1

l\.')

+ Z Ak’X:aGk¢Gk|2

k=1

Remind R = (r¢(z:)), , is the T x g noise design matrix

Tuning parameter: A = (A1,...,Ag) € RE
K

K

Use Z Ak‘Xth‘ka’z instead of Z /\k‘(ka|2 asin Simon
= k=1

and Tibshirani (2012) : equivariance w.r.t. invertible linear

transformations of predictors within groups
log-det problem not a Linear Programming (LP) or an SOCP



Relaxation of first order conditions (1)
> VEk € {l,...,K}, 52-PL(¢, @) = 0 implies:
k

T X:,Gk¢:,Gk —0

X/ (diag(Y)Ro — X¢p) + M X[ 22k =
ok ’ k’X:,Gk¢:,Gk|2

< Difficult problem: non-linear part

» Equivalence with

Ig, (diag(Y)Ra — X¢) = i X. 6, b6, /1X.,0,9P6, |2

Ilg, = XHGk(X:TGkXHGk)—FX:TGk: projector on Span(X. ¢, )

"Convexification" :  |TIg, (diag(Y)Ra — X¢p)|, < A




Relaxation of first order conditions (2)

» V=1,...,q, %PL((],’),(}) = 0 implies:
Jv e IR{I such that

R T
Zt IR y +>,_, (R~ Xt:0)y:Ry—v Ry =0

and v R; .o = 0 for every t.

"Convexification" : Z




Relaxation

Scaled Heteroscedastic Dantzig selector (ScHeDs)

Definition:
K
i el X, "
(¢7¢11)rél]R¥lp><Rq kgl k‘ '7Gk¢Gk 2 S
’HGk (diag(Y)Ra — Xo) |, < A, Vke{l,...,K}

T
R
Z = — (pRi.a — X;.0)y Ry <0, vee{l,...,q}

Theorem: ScHeDs can be solved by an SOCP
REM: The feasible set of this problem is not empty and contains, in
particular, all the minimizers of the penalized log-likelihood.



Comments on the procedure

Degrees of freedom:
— Many tuning parameters in the procedure
< Theory: Ay = Aoy/7% with \g > 0 and 1, = rank(X. ¢,)
— Most papers use A\ < /|G| (k=1,...,K)
Bias correction, practical improvement:
— Classical two-steps methods:
i) our algorithm with A, = X\o\/7% (k=1,... K)
ii) Least squares on the selected variables (A = 0)

Implementation with SOCP solvers (Matlab):

Sedumi Sturm (1999) : popular interior point method,
highly accurate solution for small datasets, e.g. p, T < 2000
Tfocs Becker et al. (2011) : first-order proximal method,
less accurate BUT can handle larger dimensions, e.g.

p = 5000 and T = 3000




Heteroscedastic (without blocks)

Data:

» Design matrix: X € RT*? i.i.d. entries N'(0,1)

» Noise vector: RT 5 é~ N(07,I) independent of X

» Variances: piecewise constant with blocks of length 7'/10
1st block o; = 8¢*; 5th block o; = 40™;
9th block o; = 50™*; others 7 blocks have o; = o*;

> B*=(2,3,3,3,1.5,1.5,1.5,0,0,0,2,2,2,0,--- ,0)T € RP

» Response vector: y; = X;.8" + 04&,.

Compared with: Square-root Lasso Belloni et al. (2011)
HRR (High dim. Heteroscedastic Regression) Daye et al. (2011)

Tuning parameters: "universal choice” A = \/2log(p);
R: encodes blocks of size T'/20 (i.e. ¢ = 20)




Heteroscedastic noise

Prediction error w (or H(XQAS)/(RCAX) — XB*||2/VT)

Sqrt-Lasso  Sqrt-Lasso Deb. Daye ScHeDs ScHeDs Deb.

T o=4, p=200

100 6.00 5.18 2.20 5.53 5.80
200 6.05 5.53 1.88 4.90 4.74
500 4.08 2.06 2.26 2.55 2.21
T o=6, p=200

100 707 7.77 6.96 6.57 7.14
200 6.75 6.17 2.97 5.02 3.63
500 5.08 2.78 3.80 2.77 2.64
T o=28, p=200

100 7.28 7.28 9.35 6.38 4.99
200 6.94 6.94 5.96 4.61 3.25
500 5.46 5.10 4.95 3.59 2.94
T o =10, p =200

100 6.01 6.91 5.14 5.30 9.15
200 7.14 7.14 11.11 5.52 5.12
500 6.53 6.43 6.07 4.21 3.46




Finite sample risk bound

Theorem

Under the (GRE) + assumptions on signal/noise ratio for any
€ >0, w.p. 1 — ¢, the ScHeDs estimator satisfies

R i 1 /. K
X(@— ¢, 3 (,.M 1K log (o) q10g<j>> D7
[R@-a7)], (1 )+ Jaros(h) ) 03
Rarle S s i* + |[K*| log( ; )+ qug(E) ) D75

with Dy s = log(%), K* = {k: |p,| # 0}, i = Z rank(X. q, )
kekC*

v

REM:

» assumptions on the signal/noise ratio only needed for the
theorem, not for the construction of the estimator.




Summary

New procedure named ScHeDs:

» Suitable for fitting heteroscedastic regression models

v

Estimating both the mean and the variance functions

v

Takes into account group sparsity

v

Relaxation of 1st order conditions for penalized MLE
— existence of a solution
< convex problem — second-order cone programming

v

Competitive with state-of-the-art algorithms

v

More simulations + real data in the paper
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min

subject to
Vk=1,--- K
Vk=1,--- K,
Vt=1,---,T,

SOCP reformulation

K
> Ak
k=1

{X:,Gk¢Gk|2 S Uk,

TG, (diag(Y)Ra — X)|, < M,

R'v < R" diag(Y)(diag(Y)Roa — X ¢);
|[vt; Ry cx; \@] |2 <+ Ry



Assumption

Some notations:

k= {k: oG], # 0},
Jg- = |J G =" |Gyl

ke ke

[K) = S6eRP: > el X @06, < > M| X606, ¢ -
keKe kel

Let 1 < b < K be a bound on the group sparsity: |Jy«| < b

Group Restricted Eigenvalue Condition (GREC)

3k, V8 € T(K) \ {0}, s.t.|K| < K%, [XS[2 > k2T Y [X. 6,065
ke

REM: extension of the RE Bickel et al. (2009)



Assumption signal/noise ratio

Define
Oy = min lz rip( X ¢")?
R T &= (Rya%)? '
1 r2
C, = - 44
2 Eiqf?{,q T ;- (R¢.a*)?
]. Ttp
(C3 = min —
3 6717 - q T t€Z7~ (Rt7a*)

The constant in the oracle inequalities satisfies:

A T
Drs = Ciby(1X6 % +log(5))
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