Consensus Algorithms for Optimization in Multi-Agent Networks Peyresq'13

Pascal Bianchi

June 28, 2013

Context

Consider a network composed of N agents

- Agents process *local* data
- Agents cooperate to estimate some global parameter

Network architectures

- **Centralized** : A node (reducer, sink) aggregates the agents' outputs
- > Distributed : No central node Agents cooperate with their neighbors
- **Non cooperative** : Agents are players who don't share information

Network architectures

- **Centralized** : A node (reducer, sink) aggregates the agents' outputs
- **Distributed** : No central node Agents cooperate with their neighbors
- **Non cooperative** : Agents are players who don't share information

Some examples

Network	Agent	Objectives
Ad-hoc network	Mobile terminal	 Power control Load balancing Self-localization
Flotilla	Autonomous Underwater Vehicle	 Trajectory planning Flocking Localization and mapping
Cloud	Virtual machine	 Regression on distributed data sets Distributed clustering

Outline

Consensus and sharing

Consensus problem Sharing problem

The agreement algorithm

First-order methods

Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

The Problem

The Problem

=

The Problem

No single agent knows the target function to optimize The network does

Formally

$$\inf_{x\in X}\sum_{v\in V}f_v(x)$$

- $\mathcal{G} = (V, E)$ is the graph modelling the network
- f_v is the cost function of agent v
- ► X is a finite dimensional Euclidean space

Numerous works on that problem Early work: Tsitsiklis '84 (all f_v equal)

An example in wireless sensor networks

 $Y_v =$ random observation of sensor vx = unknown parameter to be estimated

Assume that

$$p(Y_1,\cdots,Y_N;x)=p_1(Y_1;x)\cdots p_N(Y_N;x)$$

The maximum likelihood estimate writes

$$\hat{x} = \arg \max_{x} \sum_{v} \ln p_{v}(Y_{v}; x)$$

[Ribeiro et al.'06, Moura et al.'11]

Centralized problem: For a data set $\{D_1, D_2, \dots\}$

$$\min_{x} \sum_{i=1,2...} \|D_i - q_x(D_i)\|^2$$

where $q_x(D)$ is the nearest point of D

Distributed problem: For *N* distributed data sets $\{D_{1,v}, D_{2,v}, ...\}$ $(v \in V)$

$$\min_{x} \sum_{v \in V} \left(\sum_{i=1,2...} \|D_{i,v} - q_{x}(D_{i,v})\|^{2} \right)$$

where $q_x(D)$ is the nearest point of D

[Patra'11, Forero'11]

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods

Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

The sharing problem

Let x(v) be the resource of an agent $v \in V$

- Agents share a resource $b: \sum_{v \in V} x(v) \le b$
- Agent v gets reward $-f_v(x(v))$ for using resource x(v)
- Maximize the global reward

$$\inf_{x:\sum x(v)\leq b}\sum_{v\in V}f_v(x(v))$$

Equivalence between consensus and sharing

Claim:

The dual of a sharing problem is a consensus problem

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods

Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Network model

A directed graph $\mathcal{G} = (V, E)$ is formed by

- ▶ a finite set V of vertices
- ▶ a set $E \subset V \times V$ of directed edges

An iterative algorithm is said **distributed on the graph** if, at any iteration: Agent v can receive information from w only if $(v, w) \in E$

Average consensus problem

Given an initial value $x_0(v) \in \mathbb{R}$ of each agent v, compute distributively

$$\overline{x}_0 \triangleq \frac{1}{N} \sum_{v \in V} x_0(v)$$

- ▶ Very special case of optimization problem! Just set $f_v(x) = (x x_0(v))^2$
- Useful to adress more general optimization problems

The agreement algorithm (De Groot'74)

Algorithm:

Each agent maintains an estimate $x_n(v)$. The update is:

$$\forall v \in V, \quad x_{n+1}(v) = \sum_{w \in V} A(v, w) x_n(w)$$

Assumptions:

- $A(v, w) \ge 0$ are non-negative weights
- A(v, w) > 0 if and only if $(v, w) \in E$ (we say that A is *adapted* to \mathcal{G})
- $\sum_{w} A(v, w) = 1$ for any $v \in V$

The agreement algorithm: Vector form

Agreement algorithm

$$\begin{array}{rcl}
x_n &=& A \, x_{n-1} \\
&=& A^n x_0
\end{array}$$

where $A = [A(u, v)]_{(u,v) \in V^2}$ is non-negative, row-stochastic and adapted to \mathcal{G}

Row stochasticity means:

$$A1 = 1$$

where
$$\mathbf{1} riangleq \left(egin{array}{c} 1 \\ \vdots \\ 1 \end{array}
ight)$$

Discussion

What do we hope for?

$$\forall x_0, \lim_n x_n = \overline{x}_0 \mathbf{1}$$
 (?)

• $x_n(w)$ cannot converge to \overline{x}_0 if no path from v to w ! (e.g. $A = I_N$) \mathcal{G} must be connected

• A should preserve the average *i.e.* $\overline{x}_1 = \overline{x}_0$

A must be doubly stochastic: $\mathbf{1}^* A = \mathbf{1}^*$

Even then, convergence is not ensured. Set e.g.

$$A = \left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right)$$

A consequence of the Perron-Frobenius theorem

Definition: Matrix A is primitive if $A^m > 0$ for some $m \ge 1$

Property: If G is connected and has a self-loop, then A is primitive

Theorem

Let $A \ge 0$. The following statements are equivalent:

- For any x_0 , $\lim_{n\to\infty} A^n x_0 = \overline{x}_0 \mathbf{1}$
- A is primitive and doubly stochastic

n.b. Many variants on that problem [Kempe et al.'03, Boyd et al.'06]

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods Basic algorithms

Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

The setting

Consensus problem in optimization

$$\inf_{x\in X}f(x)\triangleq \sum_{v\in V}f_v(x)$$

Scenario

Centralized gradient algorithm

$$x_{n+1} = x_n - \gamma \nabla f(x_n)$$

Under some assumptions, achieves *linear convergence rate* in $\mathcal{O}(\beta^n)$, $(\beta < 1)$ Problem: ∇f is nowhere available

Distributed gradient algorithms: The Two Main Options

Incremental

[Widrow-Hoff'60], [Nedic-Bertsekas'01]

Agreement

[Tsitsiklis'84], [Kushner'87], [Sayed et al.'05], [Ram et al.'10], ...

Incremental

Incremental

Incremental

Idea: couple gradient algorithm + agreement algorithm

[Local step] Each agent v generates a temporary update

 $\tilde{x}_{n+1}(v) = x_n(v) - \gamma_n \nabla f_v(x_n(v))$

[Local step] Each agent v generates a temporary update

$$\tilde{x}_{n+1}(v) = x_n(v) - \gamma_n \nabla f_v(x_n(v))$$

[Agreement step] Connected agents merge their temporary estimates

$$x_{n+1}(v) = \sum_{w=1}^{N} A(v, w) \tilde{x}_{n+1}(w)$$

Benefits & Drawbacks

Incremental

- Conceptually simple
- Needs Hamiltonian cycle (or at least a relaxed version)
- Concentrated information: less robust

- No need for a Hamiltonian cycle
- Simple to implement

Benefits & Drawbacks

Incremental

- Conceptually simple
- Needs Hamiltonian cycle (or at least a relaxed version)
- Concentrated information: less robust

- No need for a Hamiltonian cycle
- Simple to implement

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods

Basic algorithms

Convergence analysis

Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Distributed algorithm: Vector notation

Let $X = \mathbb{R}$ for simplicity. Recall notation

$$F(x) \triangleq \sum_{v \in V} f_v(x(v))$$

[Local step]

$$\tilde{x}_{n+1} = x_n - \gamma_n \nabla F(x_n)$$

[Agreement step]

$$x_{n+1} = A \, \tilde{x}_{n+1}$$

$$x_{n+1} = A(x_n - \gamma_n \nabla F(x_n))$$

Assumption

Except in special cases, convergence to the sought minimizers fails unless:

Assumption

- A is doubly stochastic
- ► A is primitive

Assume that $C := \limsup_{n \to \infty} \|\nabla F(x_n)\|$ is finite. Define

$$J=rac{\mathbf{11}^{*}}{N}$$
 $J_{\perp}=I_{N}-J$

Compute the *disagreement vector*:

$$J_{\perp}x_{n+1} = J_{\perp}A(x_n - \gamma_n \nabla F(x_n))$$

Assume that $C := \limsup_{n \to \infty} \|\nabla F(x_n)\|$ is finite. Define

$$J=rac{\mathbf{11}^{*}}{N}$$
 $J_{\perp}=I_{N}-J$

Compute the *disagreement vector*:

$$J_{\perp}x_{n+1} = J_{\perp}AJ_{\perp}(x_n - \gamma_n \nabla F(x_n))$$

Assume that $C := \limsup_{n \to \infty} \|\nabla F(x_n)\|$ is finite. Define

$$J=rac{\mathbf{11}^{*}}{N}$$
 $J_{\perp}=I_{N}-J$

Compute the *disagreement vector*:

$$J_{\perp}x_{n+1} = J_{\perp}AJ_{\perp}\left(J_{\perp}x_n - \gamma_n\nabla F(x_n)\right)$$

Assume that $C := \limsup_{n \to \infty} \|\nabla F(x_n)\|$ is finite. Define

$$J=\frac{\mathbf{11}^*}{N} \qquad J_\perp=I_N-J$$

Compute the *disagreement vector*.

$$J_{\perp}x_{n+1} = J_{\perp}AJ_{\perp}(J_{\perp}x_n - \gamma_n\nabla F(x_n))$$

Denote by σ the spectral norm of $J_{\perp}AJ_{\perp}$. We have $\sigma < 1$.

$$\|J_{\perp}x_{n+1}\| \leq \sigma \left(\|J_{\perp}x_n\| + \gamma_n\|\nabla F(x_n)\|\right)$$

Disagreement vector

Assume $\gamma_n/\gamma_{n+1} \to 1$.

$$\limsup_{n} \frac{\|J_{\perp} x_{n}\|}{\gamma_{n}} \leq \frac{\sigma C}{1-\sigma}$$

Remarks

1. In order that $\|J_{\perp}x_n\|
ightarrow 0$, vanishing step size is needed

$$\gamma_n \rightarrow 0$$

except if e.g. all f_v 's have a common minimizer (C = 0)

2. The disagreement tends to zero at rate γ_n

$$\|J_{\perp}x_n\| = \mathcal{O}(\gamma_n)$$

3. Factor $\frac{\sigma}{1-\sigma}$ quantifies the network effect [

[Duchi et al.'11]

Convergence of the network average

It remains to study the network-average

$$\overline{x}_n = \frac{\mathbf{1}^* x_n}{N}$$

As $1^*A = 1^*$,

$$\overline{x}_{n+1} = \overline{x}_n - \frac{\gamma_n}{N} \mathbf{1}^* \nabla F(x_n)$$

Convergence of the network average

It remains to study the network-average

$$\overline{x}_n = \frac{\mathbf{1}^* x_n}{N}$$

As $1^*A = 1^*$,

$$\overline{x}_{n+1} = \overline{x}_n - \frac{\gamma_n}{N} \mathbf{1}^* \nabla F(x_n)$$
$$\simeq \overline{x}_n - \frac{\gamma_n}{N} \mathbf{1}^* \nabla F(\overline{x}_n \mathbf{1})$$

Convergence of the network average

It remains to study the network-average

$$\overline{x}_n = \frac{\mathbf{1}^* x_n}{N}$$

As $1^*A = 1^*$,

$$\overline{x}_{n+1} = \overline{x}_n - \frac{\gamma_n}{N} \mathbf{1}^* \nabla F(x_n)$$
$$\simeq \overline{x}_n - \frac{\gamma_n}{N} \nabla f(\overline{x}_n)$$

The network average nearly behaves as a gradient descent on f.

Convergence result

Assumptions

$$\sum_n \gamma_n = +\infty, \quad \sum_n \gamma_n^3 < \infty$$

Moreover, assume that

- ∇f_v is lispchitz continuous for all v
- $f \triangleq \sum_{v} f_{v}$ is coercive and $\{\nabla f = 0\}$ is locally finite

Convergence

There exists $x^* \in \{\nabla f = 0\}$ such that

$$\lim_{n\to\infty}\overline{x}_n=x'$$

Asymptotic rate of convergence

Assumptions

$$\blacktriangleright \nabla^2 f(x^\star) \succ 0$$

• $\gamma_n \propto 1/n^{lpha}$ for $0 < lpha \leq 1$

Then, optimal convergence rate is achieved for $\gamma_n \propto \frac{1}{n}$ and

Convergence rate (smooth case)

$$x_n = x^* \mathbf{1} + \mathcal{O}\left(\frac{\log n}{n}\right)$$

Quite far from the *linear convergence rate* $\mathcal{O}(\beta^n)$ of the centralized case

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods

Basic algorithms Convergence analysis **Convex non-smooth functions: error bounds** Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Algorithm

Assumptions

- ▶ All *f_v* convex non-negative
- ► *f_v* are *L*-lipschitz
- $f = \sum_{v} f_{v}$ achieves its minimum at x^{\star}

Distributed subgradient algorithm

$$x_{n+1} = A(x_n - \gamma_n g_n)$$

where for any $v \in V$

 $g_n(v) \in \partial f_v(x_n(v))$

Convergence result (1/2)

Define the time-averaged estimate for all $v \in V$

$$\hat{x}_n(v) = \frac{\sum_{k \leq n} \gamma_k x_k(v)}{\sum_{k \leq n} \gamma_k}$$

Error bound (Nedic, Ozdaglar'10)

$$f(\hat{x}_n(v)) - f(x^*) \le \frac{\frac{1}{2} \|\overline{x}_0 - x^*\|^2 + (1 + NET)L^2 \sum_{k \le n} \gamma_k^2}{\sum_{k \le n} \gamma_k}$$

where NET grasps the excess-bound due to the distributed setting

$$NET = rac{\sigma}{1-\sigma} \left(\sqrt{N} + rac{1}{\sqrt{N}}
ight)$$

Convergence result (2/2)

The bound is exact (*i.e.* non-asymptotic)

• Set
$$\gamma_n \propto rac{1}{\sqrt{n}}$$

The bound is $\mathcal{O}\left(rac{\log n}{\sqrt{n}}
ight)$

log n factor can be saved following [Nesterov'05]
 [Duchi et al.'11] couples Nesterov algorithm + agreement algorithm

Optimal rate of the centralized case

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

First-order methods

Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

More problems

1. Asynchronism

Some agents are active at time n, others aren't

2. Noise

Gradients may be observed up to a random noise (online algorithms)

3. Constraints

Minimize
$$\sum_{v \in V} f_v(x)$$
 subject to $x \in G$

where G is a a closed convex set

$$\tilde{x}_{n+1} = x_n - \gamma_n \nabla F(x_n)$$

[Local step]

$$\tilde{x}_{n+1} = x_n - \gamma_n \nabla F(x_n)$$

[Agreement step]

[Local step]

$$\tilde{x}_{n+1} = x_n - \gamma_n \nabla F(x_n)$$

[Agreement step]

$$x_{n+1} = A_{n+1}\tilde{x}_{n+1}$$

Agent 4

$$A_{n+1}=\left(egin{array}{cccc} 1&&&&\ 0.5&0.5&&\ 0.5&&0.5&\ &&&1\end{array}
ight)$$

- ▶ row-stochastic but **not** column-stochastic $\mathbf{1}^*A_n \neq \mathbf{1}^*$
- ▶ hopefully, column stochasticity is satisfied in average $1^*\mathbb{E}(A_n) = 1^*$

Distributed Robbins-Monro algorithm

Our problem

$$\inf_{x\in X}\sum_{v\in V}f_v(x)$$

Algorithm

$$x_{n+1} = A_{n+1} \left(x_n - \gamma_n \nabla F(x_n) + \gamma_n \xi_{n+1} \right)$$

where ξ_{n+1} is a martingale increment noise

$$\mathbb{E}\left(\xi_{n+1} | A_n, \xi_n, A_{n-1}, \xi_{n-1}, \cdots\right) = 0$$
Distributed Robbins-Monro algorithm

Our problem

$$\inf_{x \in X} \sum_{v \in V} f_v(x) \text{ subject to } x \in G$$

Algorithm

$$x_{n+1} = A_{n+1} \cdot \operatorname{proj}_{G^{\otimes N}} \left[\left(x_n - \gamma_n \nabla F(x_n) + \gamma_n \xi_{n+1} \right) \right]$$

where ξ_{n+1} is a martingale increment noise

$$\mathbb{E}\left(\xi_{n+1} | A_n, \xi_n, A_{n-1}, \xi_{n-1}, \cdots\right) = 0$$

Consistency

Assume that $\mathbb{E}(A_n)$ is doubly stochastic and primitive

Theorem (Bianchi, Jakubowicz' 12)

Under suitable assumptions, x_n converges a.s. to $x^* \mathbf{1}$ where

$$-\nabla f(x^{\star}) \in \mathcal{N}_{G}(x^{\star})$$

One does not need A_n to be column-stochastic: broadcast protocol works!

Assume that x^* lies in the interior of G and $\nabla^2 f(x^*) \succ 0$

Theorem (Morral et al.'12)

Under suitable assumptions

•
$$J_{\perp}x_n = \mathcal{O}_P(\gamma_n)$$

► For all
$$v \in V$$
, $\sqrt{\gamma_n}^{-1}(\overline{x}_n - x^*) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \Sigma_{OPT} + \Sigma_{NET})$

Conclusions

- Convergence rate $\sqrt{\gamma_n}$ is identical to the centralized case Optimal rate $1/\sqrt{n}$ achieved when $\gamma_n = 1/n$
- However, an excess-variance Σ_{NET} occurs
- $\Sigma_{NET} = 0$ if A_n is doubly-stochastic: same performance as centralized!

 Σ_{NET} quantifies the price to pay for using uncoordinated weights

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

-irst-order methods Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

-irst-order methods Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers Parallel implementation

Distributed implementation Randomized ADMM

Consensus problem reformulated

All functions $f_v: X \to \mathbb{R}$ are assumed convex. Consider the problem:

$$\inf_{x\in X}\sum_{v\in V}f_v(x)$$

Set $F(x) = \sum_{v} f_{v}(x(v))$. The problem is equivalent to

 $\inf_{x\in X^N}F(x)+\iota_{\rm sp(1)}(x)$

where
$$\iota_{sp(1)}(x) = \begin{cases} 0 & \text{if } x(1) = \cdots = x(N) \\ +\infty & \text{otherwise} \end{cases}$$

- ► F is separable in x(1),...,x(N)
- l_{sp(1)} couples the variables but is simple

Alternating Direction Method of Multipliers (ADMM)

Define for any proper closed convex function h

$$\operatorname{prox}_h(x) = \arg\min_y \ h(y) + \frac{1}{2} \|y - x\|^2$$

Algorithm: Set $\rho > 0$.

$$\begin{aligned} x_{n+1} &= \operatorname{prox}_{\frac{1}{\rho}F}(z_n - \frac{\lambda_n}{\rho}) \\ z_{n+1} &= \operatorname{prox}_{\frac{1}{\rho}\iota_{\operatorname{sp}(1)}}(x_{n+1} + \frac{\lambda_n}{\rho}) \\ \lambda_{n+1} &= \lambda_n + \rho(x_{n+1} - z_{n+1}) \end{aligned}$$

• λ_n converges to a solution to the dual problem $\min_{\lambda} F^{\star}(-\lambda) + \iota_{sp(1)}^{\star}(\lambda)$

• x_n converges to a solution to the primal problem

Alternating Direction Method of Multipliers (ADMM)

Define for any proper closed convex function h

$$\operatorname{prox}_h(x) = \arg\min_y \ h(y) + \frac{1}{2} \|y - x\|^2$$

Algorithm: Set $\rho > 0$.

$$\begin{aligned} x_{n+1} &= \operatorname{prox}_{\frac{1}{\rho}F}(z_n - \frac{\lambda_n}{\rho}) \to \text{separable} \\ z_{n+1} &= \operatorname{prox}_{\frac{1}{\rho}\iota_{\operatorname{sp}(1)}}(x_{n+1} + \frac{\lambda_n}{\rho}) \to \text{projection} \\ \lambda_{n+1} &= \lambda_n + \rho(x_{n+1} - z_{n+1}) \end{aligned}$$

λ_n converges to a solution to the dual problem min_λ F^{*}(−λ) + ι^{*}_{sp(1)}(λ)
 x_n converges to a solution to the primal problem

Set
$$\beta_n = \lambda_n / \rho$$

Algorithm (see e.g. [Boyd'11])

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \overline{x}_n$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{1}{o}f_v}(\overline{x}_n - \beta_n(v))$

Set
$$\beta_n = \lambda_n / \rho$$

Algorithm (see e.g. [Boyd'11])

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \overline{x}_n$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{1}{a}f_v}(\overline{x}_n - \beta_n(v))$

Set
$$\beta_n = \lambda_n / \rho$$

Algorithm (see e.g. [Boyd'11])

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \overline{x}_n$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{1}{a}f_v}(\overline{x}_n - \beta_n(v))$

Set
$$\beta_n = \lambda_n / \rho$$

Algorithm (see e.g. [Boyd'11])

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \overline{x}_n$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{1}{\rho}f_v}(\overline{x}_n - \beta_n(v))$

4. Compute $\beta_n(v)$, $x_{n+1}(v)$ for all v

Remarks

- ▶ The algorithm is *parallel* but not *distributed* on the graph
- ► The algorithm is synchronous

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

-irst-order methods Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Context

Consider a non-directed connected graph $\mathcal{G} = (V, \mathcal{E})$

 $\mathcal{E} \subset 2^V$ is a set of nondirected edges

$$\inf_{x\in X^N}F(x)+\iota_{\rm sp(1)}(x)$$

How to rewrite the penalty $\iota_{sp(1)}(x)$ to include the graph structure?

Let A_1, A_2, \cdots, A_L be subsets of V

Let A_1, A_2, \cdots, A_L be subsets of V

$$\left(egin{array}{c} x(1) \ x(3) \end{array}
ight) \in {\sf sp}\left(egin{array}{c} 1 \ 1 \end{array}
ight)$$

Let A_1, A_2, \cdots, A_L be subsets of V

$$\begin{pmatrix} x(1) \\ x(3) \end{pmatrix} \in \mathsf{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x(2) \\ x(3) \end{pmatrix} \in \mathsf{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Let A_1, A_2, \dots, A_L be subsets of V

$$\begin{pmatrix} x(1) \\ x(3) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x(2) \\ x(3) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x(3) \\ x(4) \\ x(5) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

 $A_1 = \{1, 3\}, A_2 = \{2, 3\}, A_3 = \{3, 4, 5\}$

Let A_1, A_2, \cdots, A_L be subsets of V

$$\begin{pmatrix} x(1) \\ x(3) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x(2) \\ x(3) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x(3) \\ x(4) \\ x(5) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$A_1 = \{1,3\}$$
, $A_2 = \{2,3\}$, $A_3 = \{3,4,5\}$

Penalty function

$$\iota_{\rm sp}({}^1_1)\left(\begin{array}{c} x(1) \\ x(3) \end{array}\right) + \iota_{\rm sp}({}^1_1)\left(\begin{array}{c} x(2) \\ x(3) \end{array}\right) + \iota_{\rm sp}({}^1_1)\left(\begin{array}{c} x(3) \\ x(4) \\ x(5) \end{array}\right)$$

Let A_1, A_2, \cdots, A_L be subsets of V

$$\begin{pmatrix} x(1) \\ x(3) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x(2) \\ x(3) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} x(3) \\ x(4) \\ x(5) \end{pmatrix} \in \operatorname{sp} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$A_1 = \{1,3\}$$
, $A_2 = \{2,3\}$, $A_3 = \{3,4,5\}$

Penalty function

$$\iota_{\mathsf{sp}\begin{pmatrix}1\\1\end{pmatrix}}\begin{pmatrix}x(1)\\x(3)\end{pmatrix}+\iota_{\mathsf{sp}\begin{pmatrix}1\\1\end{pmatrix}}\begin{pmatrix}x(2)\\x(3)\end{pmatrix}+\iota_{\mathsf{sp}\begin{pmatrix}1\\1\\1\end{pmatrix}}\begin{pmatrix}x(3)\\x(4)\\x(5)\end{pmatrix}=\iota_{\mathsf{sp}(1)}(x)$$

consensus within subgraphs \Leftrightarrow global consensus

Example (Cont.)

The consensus problem is

$$\inf_{x \in X^{N}} F(x) + G(Mx)$$
where $Mx = \begin{pmatrix} x(1) \\ x(3) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \end{pmatrix}$ that is: $M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

and where G is the indicator function of the subspace of vectors of the form

$$\left(egin{array}{c} lpha \\ eta \\ eta \\ eta \\ \delta \\ \delta \\ \delta \end{array}
ight)$$

General case

Denote by $A_1, A_2, \cdots A_L$ a collection of subsets of V. Define

$$M = \left[\begin{array}{c} M_1 \\ \vdots \\ M_L \end{array} \right]$$

where M_ℓ is a *selection matrix* of size $|A_\ell| imes N$

Let G denote the indicator function of the vectors z of the form

$$\left(\begin{array}{c} \alpha_1 \mathbf{1}_{|A_1|} \\ \vdots \\ \alpha_L \mathbf{1}_{|A_L|} \end{array}\right)$$

Consensus problem:

 $\inf_{x\in X^N}F(x)+G(Mx)$

ADMM

ADMM iterations

$$\begin{aligned} x_{n+1} &= \arg\min_{x \in X^N} F(x) + \frac{\rho}{2} \|Mx - (z_n - \frac{\lambda_n}{\rho})\|^2 \\ z_{n+1} &= \operatorname{prox}_{\frac{1}{\rho}G} (Mx_{n+1} + \frac{\lambda_n}{\rho}) \\ \lambda_{n+1} &= \lambda_n + \rho (Mx_{n+1} - z_{n+1}) \end{aligned}$$

ADMM

ADMM iterations

$$\begin{array}{lll} x_{n+1} & = & \arg\min_{x\in X^N} F(x) + \frac{\rho}{2} \|Mx - (z_n - \frac{\lambda_n}{\rho})\|^2 & \to \text{ separable} \\ z_{n+1} & = & \Pr x_{\frac{1}{\rho}G}(Mx_{n+1} + \frac{\lambda_n}{\rho}) & \to \text{ projection} \\ \lambda_{n+1} & = & \lambda_n + \rho(Mx_{n+1} - z_{n+1}) \end{array}$$

ADMM

ADMM iterations

$$\begin{aligned} x_{n+1} &= \arg\min_{x \in X^N} F(x) + \frac{\rho}{2} \|Mx - (z_n - \frac{\lambda_n}{\rho})\|^2 \\ z_{n+1} &= \operatorname{prox}_{\frac{1}{\rho}G}(Mx_{n+1} + \frac{\lambda_n}{\rho}) \\ \lambda_{n+1} &= \lambda_n + \rho(Mx_{n+1} - z_{n+1}) \end{aligned}$$

Notations

▶ For all
$$\ell$$
, $\overline{x}_n^{(\ell)} = \frac{1}{|A_\ell|} \sum_{\nu \in A_\ell} x_n(\nu)$ is the ℓ th subgraph-average

▶ For all v,
$$\sigma_v \subset \{1, \cdots, L\}$$
 is the set of indices ℓ such that $v \in A_\ell$

•
$$\chi_n(v) = \frac{1}{|\sigma_v|} \sum_{\ell \in \sigma_v} \overline{\chi}_n^{(\ell)}$$
 is the average of subgraphs-averages in σ_v

Distributed ADMM (Ribeiro et al.'06)

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \chi_n(v)$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho \mid \sigma_v \mid}} (\chi_n(v) - \beta_n(v))$

Distributed ADMM (Ribeiro et al.'06)

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \chi_n(v)$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho \mid \sigma_v \mid}} (\chi_n(v) - \beta_n(v))$

1. For each subgraph, compute average $\overline{x}_n^{(\ell)}$

Distributed ADMM (Ribeiro et al.'06)

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \chi_n(v)$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho \mid \sigma_v \mid}} (\chi_n(v) - \beta_n(v))$

1. For each subgraph, compute average $\overline{x}_n^{(\ell)}$

F

Distributed ADMM (Ribeiro et al.'06)

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \chi_n(v)$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho \mid \sigma_v \mid}} (\chi_n(v) - \beta_n(v))$

1. For each subgraph, compute average $\overline{x}_n^{(\ell)}$

Distributed ADMM (Ribeiro et al.'06)

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \chi_n(v)$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho \mid \sigma_v \mid}} (\chi_n(v) - \beta_n(v))$

2. For each vertex v, compute $\chi_n(v) = \text{Average}(\overline{x}_n^{(\ell)} : v \in A_\ell)$

F

Distributed ADMM (Ribeiro et al.'06)

For all
$$v$$
, $\beta_n(v) = \beta_{n-1}(v) + x_n(v) - \chi_n(v)$
 $x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho \mid \sigma_v \mid}} (\chi_n(v) - \beta_n(v))$

3. For each vertex v, compute $\beta_n(v)$ and $x_{n+1}(v)$

The burden of synchronism

- All agents must complete their prox before combining
- The network waits for the slowest agents

Our objective for now on: allow for asynchronism

Outline

Consensus and sharing Consensus problem Sharing problem

The agreement algorithm

-irst-order methods Basic algorithms Convergence analysis Convex non-smooth functions: error bounds Distributed stochastic approximation

Alternating Direction Method of Multipliers

Parallel implementation Distributed implementation Randomized ADMM

Monotone operators

A monotone operator is a set-valued application $A: X \to 2^X$ such that

$$\forall (x,y), \ \forall (u,v) \in A(x) \times A(y), \quad \langle u-v, x-y \rangle \geq 0$$

- It is maximal if it is not contained in an other monotone operator
- A point x is a zero of A if $0 \in A(x)$
- We identify A with its graph $\{(x, u) : x \in X, u \in A(x)\}$

Monotone operators

A monotone operator is a set-valued application $A: X \to 2^X$ such that

$$\forall (x,y), \ \forall (u,v) \in A(x) \times A(y), \quad \langle u-v, x-y \rangle \geq 0$$

- It is maximal if it is not contained in an other monotone operator
- A point x is a zero of A if $0 \in A(x)$
- We identify A with its graph $\{(x, u) : x \in X, u \in A(x)\}$

The **resolvent** of *A* is

$$J_A = (I + A)^{-1}$$

- dom $(J_A) = X$ whenever A is maximal
- J_A is single-valued (it is a function)
- a fixed point of J_A is a zero of A
Firm non expansiveness

proximal point algorithm

$$x_{n+1}=J_A(x_n)$$

Assume that there exists $x^{\star} \in \operatorname{Zer}(A)$

proximal point algorithm

$$x_{n+1} = J_A(x_n)$$

Assume that there exists $x^* \in \operatorname{Zer}(A)$

proximal point algorithm

$$x_{n+1} = J_A(x_n)$$

Assume that there exists $x^* \in \text{Zer}(A)$

Convergence of the proximal point algorithm

If A is maximal monotone and $\operatorname{Zer}(A) \neq \emptyset$, x_n converges to a point in $\operatorname{Zer}(A)$

Douglas-Rachford (DR) operator

Problem: Find a zero of the sum of two monotone operators A + B**Douglas Rachford operator**:

 $S = \{ (v + \rho b, u - v) : (u, b) \in B, (v, a) \in A, u + \rho a = v - \rho b \}$

Property: If $\zeta^* \in \operatorname{Zer}(S)$, then $J_{\rho B}(\zeta^*) \in \operatorname{Zer}(A + B)$

Douglas-Rachford algorithm

Let A, B maximal monotone such that $\operatorname{Zer}(A+B) \neq \emptyset$. Set

$$\zeta_{n+1} = J_S(\zeta_n)$$

Then $\lambda_n = J_{\rho B}(\zeta_n)$ converges to a point in $\operatorname{Zer}(A + B)$

ADMM as a Douglas-Rachford algorithm

Consider the problem

 $\inf_{x\in X^N}F(x)+G(Mx)$

Under mild qualification conditions, the infimum coincides with

$$\min_{\lambda} F^{\star}(-M^{\star}\lambda) + G^{\star}(\lambda)$$

Solving the above optimization problem = finding a zero of

$$\partial \left[F^{\star} \circ \left(-M^{\star}\right) + G^{\star}\right]$$

ADMM as a Douglas-Rachford algorithm

Consider the problem

 $\inf_{x\in X^N}F(x)+G(Mx)$

Under mild qualification conditions, the infimum coincides with

$$\min_{\lambda} F^{\star}(-M^{\star}\lambda) + G^{\star}(\lambda)$$

Solving the above optimization problem = finding a zero of

$$-M\partial F^{\star}\circ (-M^{\star})+\partial G^{\star}$$

ADMM as a Douglas-Rachford algorithm

Consider the problem

 $\inf_{x\in X^N}F(x)+G(Mx)$

Under mild qualification conditions, the infimum coincides with

$$\min_{\lambda} F^{\star}(-M^{\star}\lambda) + G^{\star}(\lambda)$$

Solving the above optimization problem = finding a zero of

$$-M\partial F^{\star}\circ (-M^{\star})+\partial G^{\star}$$

The Douglas-Rachford algorithm boils down to ADMM when

$$A = -M\partial F^* \circ (-M^*)$$
$$B = \partial G^*$$

Block-components

Notation: denote by $\zeta^{(\ell)}$ the ℓ th block-component of $\zeta \in X^{|A_1|+\dots+|A_\ell|}$

$$\zeta = \begin{pmatrix} \zeta^{(1)} \\ \vdots \\ \zeta^{(L)} \end{pmatrix}$$
 where $\zeta^{(\ell)} = (\zeta^{(\ell)}(v))_{v \in A_{\ell}}$

Let *S* be the DR operator of two maximal monotone operators *A* and *B* **Douglas-Rachford algorithm**

$$\zeta_{n+1} = \begin{pmatrix} J_{\mathcal{S}}^{(1)}(\zeta_n) \\ \vdots \\ J_{\mathcal{S}}^{(L)}(\zeta_n) \end{pmatrix}$$

This means that $\zeta_{n+1}^{(\ell)}=J_{\mathcal{S}}^{(\ell)}(\zeta_n)$ for all $\ell=1,\ldots,L$

Asynchronous Douglas-Rachford algorithm

Asynchronous Douglas-Rachford algorithm

At time n, select a subgraph $\ell \in \{1, \ldots, L\}$ at random. Set

$$\begin{aligned} \zeta_{n+1}^{(\ell)} &= J_S^{(\ell)}(\zeta_n) \\ \zeta_{n+1}^{(k)} &= \zeta_n^{(k)} \text{ for all } k \neq \ell \end{aligned}$$

We should

- prove that this 'degraded' algorithm still converges to Zer(S)
- make the implementation explicit

Convergence

Denote by ζ_n the sequence generated by the asynchronous DR algorithm

Assumptions

- ▶ The indices of the active subgraph at time *n* forms an iid sequence
- $\operatorname{Zer}(A+B) \neq \emptyset$

Theorem (lutzeler et al.'13, submitted)

Sequence ζ_n converges almost surely to a random variable supported by Zer(S)

Corollary

Sequence $\lambda_n = J_{\rho B}(\zeta_n)$ converges a.s. to a r.v. supported by Zer(A + B)

Asynchronous algorithm explicited (1/3)

The consensus problem can be formulated as

$$\inf_{x\in X^N}F(x)+G(Mx)$$

Example:

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad G = \text{indicator of vectors of the form} \begin{pmatrix} \alpha \\ \alpha \\ \beta \\ \beta \\ \delta \\ \delta \\ \delta \\ \delta \end{pmatrix}$$

Let us explicit the asynchronous DR algorithm for the monotone operators

$$A = -M\partial F^* \circ (-M^*)$$
 and $B = \partial G^*$

General case: Denote by A_1, A_2, \dots, A_L a collection of subgraphs Each node v maintains the variables

$$x_n(v), \ \lambda_n^{(\ell)}(v), \ \overline{z}_n^{(\ell)} \ orall \ell$$
 such that $v \in A_\ell$

At time *n*, a component A_{ℓ} is activated

At time *n*, a component A_{ℓ} is activated

All agents $v \in A_\ell$ compute

$$x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho|\sigma_v|}} \left(\frac{1}{|\sigma_v|} \sum_{k \in \sigma_v} \left(\overline{z}_n^{(k)} - \frac{\lambda_n^{(k)}(v)}{\rho} \right) \right)$$

At time *n*, a component A_{ℓ} is activated

All agents $v \in A_\ell$ compute

$$x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho | \sigma_v|}} \left(\frac{1}{|\sigma_v|} \sum_{k \in \sigma_v} \left(\overline{z}_n^{(k)} - \frac{\lambda_n^{(k)}(v)}{\rho} \right) \right)$$

$$ar{z}_{n+1}^{(\ell)} = rac{1}{|A_\ell|} \sum_{w \in A_\ell} x_{n+1}(w)$$

All agents $v \in A_{\ell}$ compute

$$x_{n+1}(v) = \operatorname{prox}_{\frac{f_v}{\rho | \sigma_v|}} \left(\frac{1}{|\sigma_v|} \sum_{k \in \sigma_v} \left(\overline{z}_n^{(k)} - \frac{\lambda_n^{(k)}(v)}{\rho} \right) \right)$$

All agents in A_ℓ communicate to find the average

$$\bar{z}_{n+1}^{(\ell)} = \frac{1}{|A_{\ell}|} \sum_{w \in A_{\ell}} x_{n+1}(w)$$

All agents $v \in A_{\ell}$ update

 $\lambda_{n+1}^{(\ell)}(v) = \lambda_n^{(\ell)}(v) + \rho(x_{n+1}(v) - \bar{z}_{n+1}^{(\ell)})$

Other variables are maintained to former values

