Search Neutrality debate: arguments and mathematical modeling

Patrick Maillé, Bruno Tuffin

Institut Mines-Telecom/Telecom Bretagne, Inria Rennes, France

Peyresq summer school - June 2013

• Major role of search engines in the Internet economy

• Major role of search engines in the Internet economy

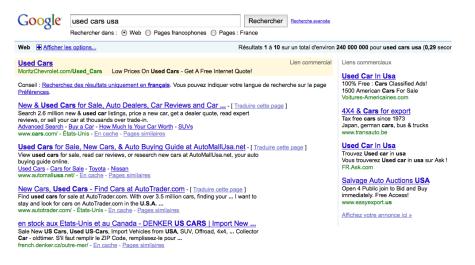
- most used way to reach webpages
- about 20 billion requests treated per month from the US home and work desktops only

• Major role of search engines in the Internet economy

- most used way to reach webpages
- about 20 billion requests treated per month from the US home and work desktops only
- Search engines return a ranked list of links-the organic results-from a (set of) keyword(s)

• Major role of search engines in the Internet economy

- most used way to reach webpages
- about 20 billion requests treated per month from the US home and work desktops only
- Search engines return a ranked list of links-the organic results-from a (set of) keyword(s)


organic results are supposed to be based on relevance

• Major role of search engines in the Internet economy

- most used way to reach webpages
- about 20 billion requests treated per month from the US home and work desktops only
- Search engines return a ranked list of links-the organic results-from a (set of) keyword(s)

organic results are supposed to be based on relevance

Search engines are more and more suspected to tamper with the ranking

- Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)
- Google admitted penalizing Foundem and other specialized search services "to protect users from spam"

- Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)
- Google admitted penalizing Foundem and other specialized search services "to protect users from spam"
- But this can also be seen as hindering competition: Google offers similar services (Maps, Shopping, Images, videos...)

- Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)
- Google admitted penalizing Foundem and other specialized search services "to protect users from spam"
- But this can also be seen as hindering competition: Google offers similar services (Maps, Shopping, Images, videos...)

Term close to *net neutrality*: limitations on users' access to all relevant services on the Internet

- Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)
- Google admitted penalizing Foundem and other specialized search services "to protect users from spam"
- But this can also be seen as hindering competition: Google offers similar services (Maps, Shopping, Images, videos...)

Term close to *net neutrality*: limitations on users' access to all relevant services on the Internet

Search neutrality would impose that all contents have the same chances of being displayed \Rightarrow a ranking based on **relevance** (to be defined objectively)

Arguments in favor:

Arguments in favor:

• Neutrality benefits to users, who get the most relevant results

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services

 \Rightarrow new businesses can emerge more easily

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services

 \Rightarrow new businesses can emerge more easily

Arguments against:

• Users are interested in the differences among search engines ("Google users tend to prefer Google products")

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services

 \Rightarrow new businesses can emerge more easily

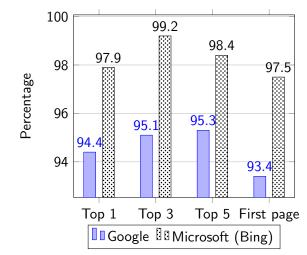
- Users are interested in the differences among search engines ("Google users tend to prefer Google products")
- Search engines would not be able to manipulate rankings to prevent spam ⇒ worse results for users

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services

 \Rightarrow new businesses can emerge more easily

- Users are interested in the differences among search engines ("Google users tend to prefer Google products")
- Search engines would not be able to manipulate rankings to prevent spam ⇒ worse results for users
- Imposing transparency of the ranking algorithms facilitates the job of spammers


Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services

 \Rightarrow new businesses can emerge more easily

- Users are interested in the differences among search engines ("Google users tend to prefer Google products")
- Search engines would not be able to manipulate rankings to prevent spam ⇒ worse results for users
- Imposing transparency of the ranking algorithms facilitates the job of spammers
- Competition is just one click away...

They do

Percentage of Google or Bing search results with **own content not ranked similarly** by any rival search engine (Wright, 2012).

Comparison between Google, Bing, and Blekko (Wright, 2012):

- Microsoft content is 26 times more likely to be displayed on the first page of Bing than on any of the two other search engines
- Google content appears 17 times more often on the first page of a Google search than on the other search engines

Search engines do favor their own content

Regulatory intervention

• The European Commission, is progressing toward an antitrust settlement deal with Google

Google must be even-handed. It must hold all services, including its own, to exactly the same standards, using exactly the same crawling, indexing, ranking, display, and penalty algorithms.

• The European Commission is running a market testing (started in April 2013) to estimate the extent to which the Google ranking algorithm respects these guidelines (Google may face a fine as large as \$5 billion)

For a given keyword, each webpage i is characterized by

For a given keyword, each webpage i is characterized by

• its relevance r_i

For a given keyword, each webpage i is characterized by

- its relevance r_i
- the gain g_i to the search engine if the link is clicked

For a given keyword, each webpage i is characterized by

- its relevance r_i
- the gain g_i to the search engine if the link is clicked

Then users click on links depending on their *position* in the ranking clicking probabilities $\theta_1 > \theta_2 > \dots$

For a given keyword, each webpage i is characterized by

- its relevance r_i
- the gain g_i to the search engine if the link is clicked

Then users click on links depending on their *position* in the ranking clicking probabilities $\theta_1 > \theta_2 > ...$

Relevance of the ranking π (π_i =position of webpage i):

$$r=\sum_i\theta_{\pi_i}r_i.$$

For a given keyword, each webpage i is characterized by

- its relevance r_i
- the gain g_i to the search engine if the link is clicked

Then users click on links depending on their *position* in the ranking clicking probabilities $\theta_1 > \theta_2 > \dots$

Relevance of the ranking π (π_i =position of webpage i):

$$r=\sum_{i}\theta_{\pi_{i}}r_{i}.$$

Expected gain per search:

$$g = \underbrace{\beta}_{\text{from ads}} + \sum_{i} \theta_{\pi_i} g_i$$

P. Maillé, B. Tuffin (IMT - Inria)

• Favoring revenue-yielding webpages increases the revenue per search

- Favoring revenue-yielding webpages increases the revenue per search
- But users are interested in relevance: they may switch to another search engine

- Favoring revenue-yielding webpages increases the revenue per search
- But users are interested in relevance: they may switch to another search engine

Model: a number of searches per time unit $\lambda(r)$, increasing with the relevance r

- Favoring revenue-yielding webpages increases the revenue per search
- But users are interested in relevance: they may switch to another search engine

Model: a number of searches per time unit $\lambda(r)$, increasing with the relevance r

 \Rightarrow expected revenue per time unit $= \frac{\lambda(r) \times g}{\lambda(r) \times g}$

P. Maillé, B. Tuffin (IMT - Inria)

• Neutral ranking: based on relevance $(r_i)_i$

- Neutral ranking: based on relevance $(r_i)_i$
 - \Rightarrow maximizes the average relevance, and thus the number of requests

- Neutral ranking: based on relevance (r_i)_i
 ⇒ maximizes the average relevance, and thus the number of requests
- Non-neutral ranking: aimed at maximizing the revenue $\lambda(r) imes g$

- Neutral ranking: based on relevance (r_i)_i
 ⇒ maximizes the average relevance, and thus the number of requests
- Non-neutral ranking: aimed at maximizing the revenue $\lambda(r) \times g$ Maximization over the set of permutations

- Neutral ranking: based on relevance (r_i)_i
 ⇒ maximizes the average relevance, and thus the number of requests
- Non-neutral ranking: aimed at maximizing the revenue $\lambda(r) \times g$ Maximization over the set of permutations Say with *m* candidate pages and $\lambda(r) = r$

$$\max_{\text{permutations } \pi} \left(\sum_{i=1}^{m} \theta_{\pi_i} r_i \right) \cdot \left(\beta + \sum_{i=1}^{m} \theta_{\pi_i} g_i \right)$$

- Neutral ranking: based on relevance (r_i)_i
 ⇒ maximizes the average relevance, and thus the number of requests
- Non-neutral ranking: aimed at maximizing the revenue $\lambda(r) \times g$ Maximization over the set of permutations Say with *m* candidate pages and $\lambda(r) = r$

$$\max_{\text{permutations } \pi} \left(\sum_{i=1}^{m} \theta_{\pi_i} r_i \right) \cdot \left(\beta + \sum_{i=1}^{m} \theta_{\pi_i} g_i \right)$$

not an easy task...

An example

One keyword, three pages, click probabilities $\theta_i = \frac{1}{2^i}$ $\lambda(r) = r$

i	Relevance r_i	Gain g _i
1	3	0
2	2	0
3	1	2

Ranking	Relevance	Engine revenue per
	(<i>r</i>)	time unit
1; 2; 3	2.125	$2.125\left(eta+rac{1}{4} ight)$
1; 3; 2	2	$2\left(eta+rac{1}{2} ight)$
3; 1; 2	1.5	1.5(eta+1)

Depending on the revenues from ads (value of β), each of these three can be the best one

Users do not change search engines for each keyword: they build a "reputation" of the search engines (average relevance of their results)

Users do not change search engines for each keyword: they build a "reputation" of the search engines (average relevance of their results)

Model:

- keywords treated as random: for each search we have
 - ► a (random) vector of relevances R
 - ► a (random) vector of revenues G

 \Rightarrow one ranking $\pi(R,G)$ to perform for each search

Users do not change search engines for each keyword: they build a "reputation" of the search engines (average relevance of their results)

Model:

- keywords treated as random: for each search we have
 - ► a (random) vector of relevances R
 - ► a (random) vector of revenues G
 - \Rightarrow one ranking $\pi(R,G)$ to perform for each search
- but the ranking chosen affects the reputation of the search engine

Users do not change search engines for each keyword: they build a "reputation" of the search engines (average relevance of their results)

Model:

- keywords treated as random: for each search we have
 - ► a (random) vector of relevances R
 - ► a (random) vector of revenues G
 - \Rightarrow one ranking $\pi(R,G)$ to perform for each search
- but the ranking chosen affects the reputation of the search engine

Revenue =
$$\lambda \left(\mathbb{E} \left[\sum_{i=1}^{m} \theta_{\pi_i} R_i \right] \right) \cdot \left(\beta + \mathbb{E} \left[\sum_{i=1}^{m} \theta_{\pi_i} G_i \right] \right)$$

We have a few results regarding that problem

• Analyze the non-neutral ranking

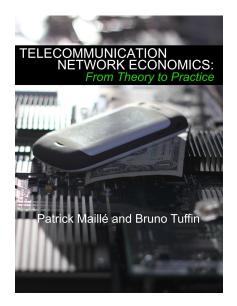
- Analyze the non-neutral ranking
- Compare the performance and neutral and non-neutral policies

- Analyze the non-neutral ranking
- Compare the performance and neutral and non-neutral policies
 - Cost of non-neutrality: loss of relevance for users

• Analyze the non-neutral ranking

• Compare the performance and neutral and non-neutral policies

- Cost of non-neutrality: loss of relevance for users
- Cost of neutrality (for search engines): loss of revenue for search engines


• Analyze the non-neutral ranking

• Compare the performance and neutral and non-neutral policies

- Cost of non-neutrality: loss of relevance for users
- Cost of neutrality (for search engines): loss of revenue for search engines

• Discuss the need for regulation

This topic (and many others), in a book to appear:

P. Maillé, B. Tuffin (IMT - Inria)