

An Epigraphical Convex Optimization Approach for Multicomponent Image Restoration using Non-Local Structure Tensor

G. Chierchia¹ N. Pustelnik² J.-C. Pesquet³ B. Pesquet-Popescu¹

¹LTCI, Télécom ParisTech/Institut Télécom – CNRS UMR 5141 ²Laboratoire de Physique, ENS Lyon – CNRS UMR 5672 ³LIGM, Université Paris-Est – CNRS UMR 8049

> Ecole d'été de Peyresq 23-29 Juin 2013

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restoration usi	ng Non-Local Structure Tensor	2/20

Outline

1 Introduction

- **2** Proposed approach
- **3** Numerical results

Introduction •000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for M	ulticomponent Image Restoratio	on using Non-Local Structure Tensor	3/20

Outline

1 Introduction

- 2 Proposed approach
- 3 Numerical results
- 4 Conclusions

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	ticomponent Image Restoration using	Non-Local Structure Tensor	4/20

Problem definition

Original.

$$z = A\overline{x} + w$$

- original (multicomponent) image: $\overline{x} = (\overline{x}_1, \dots, \overline{x}_R) \in (\mathbb{R}^N)^R$
- linear operator: $A = (A_{j,i})_{1 \le j \le S, 1 \le i \le R}$, with $A_{j,i} \in \mathbb{R}^{K \times N}$
- zero-mean white Gaussian noise: $w \in (\mathbb{R}^K)^S$
- degraded image: $z = (z_1, \ldots, z_S) \in (\mathbb{R}^K)^S$

Introduction ○●○○	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for N	Iulticomponent Image Restoration	using Non-Local Structure Tensor	4/20

Problem definition

Original.

$$z = A\overline{x} + w$$

- original (multicomponent) image: $\overline{x} = (\overline{x}_1, \dots, \overline{x}_R) \in (\mathbb{R}^N)^R$
- linear operator: $A = (A_{j,i})_{1 \le j \le S, 1 \le i \le R}$, with $A_{j,i} \in \mathbb{R}^{K \times N}$
- zero-mean white Gaussian noise: $w \in (\mathbb{R}^{K})^{S}$
- degraded image: $z = (z_1, \ldots, z_S) \in (\mathbb{R}^K)^S$

Objective

How can we recover \overline{x} from the observation z?

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	5/20

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Component-wise Total Variation (CC-TV)

[Blomgren 1998] [Zach 2007]

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• Component-wise Total Variation (CC-TV)

[Blomgren 1998] [Zach 2007]

• Structure Tensor TV (ST-TV)

• Component-wise Total Variation (CC-TV)

[Blomgren 1998] [Zach 2007]

• Structure Tensor TV (ST-TV)

→ ℓ_1 or $\ell_{1,2}$ matrix-norm regularization [Di Zenzo 1986] [Sapiro 1996] [Weickert 1999] [Tschumperlé 2001] [Bresson 2008] [Duval 2009] ...

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

• Component-wise Total Variation (CC-TV)

[Blomgren 1998] [Zach 2007]

• Structure Tensor TV (ST-TV)

 $\rightarrow \ell_1$ or $\ell_{1,2}$ matrix-norm regularization [Di Zenzo 1986] [Sapiro 1996] [Weickert 1999] [Tschumperlé 2001] [Bresson 2008] [Duval 2009] ...

うして ふゆう ふほう ふほう うらつ

 $ightarrow \ell_{1,\infty}$ matrix-norm regularization [Sapiro 1996] [Goldluecke 2012]

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	Ilticomponent Image Restoration	n using Non-Local Structure Tensor	6/20

$$\underset{x \in C}{\text{minimize}} \ \|Ax - z\|_2^2 \ \text{ subject to } \ g(x) \leq \eta$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

where C is a closed convex subset of $(\mathbb{R}^N)^R$

constrained approach

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	6/20

$$\underset{x \in C}{\text{minimize}} \ \|Ax - z\|_2^2 \ \text{ subject to } \ g(x) \leq \eta$$

where C is a closed convex subset of $(\mathbb{R}^N)^R$

constrained approach

 \rightarrow the choice of η may be easier

[Youla 1982] [Trussell 1984] [Combettes 1994] [Kose 2012] [Teuber 2012]

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	6/20

$$\underset{x \in \mathcal{C}}{\text{minimize}} \ \|Ax - z\|_2^2 \ \text{ subject to } \ g(x) \leq \eta$$

where C is a closed convex subset of $(\mathbb{R}^N)^R$

constrained approach

 \rightarrow the choice of η may be easier

[Youla 1982] [Trussell 1984] [Combettes 1994] [Kose 2012] [Teuber 2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

regularization by ST Non-Local TV (ST-NLTV)

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	6/20

$$\underset{x \in C}{\text{minimize }} \|Ax - z\|_2^2 \quad \text{subject to} \quad g(x) \leq \eta$$

where C is a closed convex subset of $(\mathbb{R}^N)^R$

constrained approach

 \rightarrow the choice of η may be easier

[Youla 1982] [Trussell 1984] [Combettes 1994] [Kose 2012] [Teuber 2012]

- regularization by ST Non-Local TV (ST-NLTV)
 - \rightarrow NLTV better preserves texture, details and fine structures
 - \rightarrow ST better reveals features not visible in single components

うして ふゆう ふほう ふほう うらつ

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restoration using N	Non-Local Structure Tensor	6/20

$$\underset{x \in \mathcal{C}}{\text{minimize }} \|Ax - z\|_2^2 \quad \text{subject to} \quad g(x) \leq \eta$$

where C is a closed convex subset of $(\mathbb{R}^N)^R$

constrained approach

 \rightarrow the choice of η may be easier

[Youla 1982] [Trussell 1984] [Combettes 1994] [Kose 2012] [Teuber 2012]

- regularization by ST Non-Local TV (ST-NLTV)
 - \rightarrow NLTV better preserves texture, details and fine structures
 - \rightarrow ST better reveals features not visible in single components

Problem

How can we efficiently handle ST-NLTV constraints?

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	ticomponent Image Restora	tion using Non-Local Structure Tensor	7/20

Outline

1 Introduction

2 Proposed approach

3 Numerical results

4 Conclusions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approact	h for Multicomponent Image Restoration	using Non-Local Structure Tensor	8/20

Structure Tensor Non-Local TV

• Non-Local gradient at point $\ell \in \{1, \dots, N\}$

$$X^{(\ell)} = \left(\omega_{\ell,n}\left(x_i^{(\ell)} - x_i^{(n)}\right)\right)_{n \in \mathcal{N}_{\ell}, \ 1 \le i \le R} \in \mathbb{R}^{M_{\ell} \times R}$$

Introduction	Proposed approach ○●○○○○○	Numerical results	Conclusions
Epigraphical Approach	for Multicomponent Image Restoration	on using Non-Local Structure Tensor	8/20

Structure Tensor Non-Local TV

• Non-Local gradient at point $\ell \in \{1, \dots, N\}$

$$X^{(\ell)} = \left(\omega_{\ell,n} \left(x_i^{(\ell)} - x_i^{(n)}\right)\right)_{n \in \mathcal{N}_{\ell}, \ 1 \le i \le R} \in \mathbb{R}^{M_{\ell} \times R}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- special case: ST-TV
 - $\mathcal{N}_\ell \rightarrow$ horizontal/vertical neighbours
 - $\omega_{\ell,n} = 1$

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	lticomponent Image Restorat	ion using Non-Local Structure Tensor	9/20

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ST-NLTV regularization

$$g(x) = \sum_{\ell=1}^N \|X^{(\ell)}\|_{P} \leq \eta$$

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for M	ulticomponent Image Restor	ation using Non-Local Structure Tensor	9/20

ST-NLTV regularization

$$g(x) = \sum_{\ell=1}^{N} \|X^{(\ell)}\|_{P} \leq \eta \qquad \Leftrightarrow \qquad Fx \in D$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for M	Iulticomponent Image Resto	ration using Non-Local Structure Tensor	9/20

ST-NLTV regularization

$$g(x) = \sum_{\ell=1}^{N} \|X^{(\ell)}\|_{P} \leq \eta \qquad \Leftrightarrow \qquad Fx \in D$$

linear operator

$$F: x \mapsto \begin{bmatrix} X^{(1)} \\ \vdots \\ X^{(N)} \end{bmatrix} \in \mathbb{R}^{(M_1 + \dots + M_N) \times R}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for M	Iulticomponent Image Resto	ration using Non-Local Structure Tensor	9/20

ST-NLTV regularization

$$g(x) = \sum_{\ell=1}^{N} \|X^{(\ell)}\|_{P} \leq \eta \qquad \Leftrightarrow \qquad Fx \in D$$

linear operator

$$F: x \mapsto \begin{bmatrix} X^{(1)} \\ \vdots \\ X^{(N)} \end{bmatrix} \in \mathbb{R}^{(M_1 + \dots + M_N) \times R}$$

2 matrix $\ell_{1,p}$ -norm ball

$$D = \left\{ X \in \mathbb{R}^{M \times R} \mid \sum_{\ell=1}^{N} \| X^{(\ell)} \|_{\mathcal{P}} \leq \eta \right\}$$

where $M = M_1 + \cdots + M_N$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restor	ation using Non-Local Structure Tensor	10/20

$$\underset{x \in C}{\text{minimize}} \|Ax - z\|_2^2 \text{ subject to } Fx \in D$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	lticomponent Image Restor	ation using Non-Local Structure Tensor	10/20

$$\underset{x \in C}{\text{minimize}} \|Ax - z\|_2^2 \text{ subject to } Fx \in D$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Solution via proximal algorithms

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	ticomponent Image Restora	ation using Non-Local Structure Tensor	10/20

$$\underset{x \in C}{\text{minimize}} \|Ax - z\|_2^2 \text{ subject to } Fx \in D$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Solution via proximal algorithms

ightarrow primal-dual methods: directly applicable

[Chambolle 2011] [Vũ 2011] [Condat 2012] [Combettes 2012] ...

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	ticomponent Image Restora	ation using Non-Local Structure Tensor	10/20

$$\underset{x \in C}{\text{minimize}} \|Ax - z\|_2^2 \text{ subject to } Fx \in D$$

• Solution via proximal algorithms

 \rightarrow *primal-dual methods*: directly applicable

[Chambolle 2011] [Vũ 2011] [Condat 2012] [Combettes 2012] ...

 \rightarrow primal methods: applicable by reformulating the minimization problem (see [Peyré 2011] [Briceño-Arias 2011])

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	ticomponent Image Restora	ation using Non-Local Structure Tensor	10/20

$$\underset{x \in C}{\text{minimize}} \ \|Ax - z\|_2^2 \ \text{ subject to } \ Fx \in D$$

• Solution via proximal algorithms \rightarrow e.g.: M+LFBF [Combettes 2012]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\begin{split} &\gamma \in \left] 0, \ 1/(2\|A\|^2 + \|F\|) \right[, \ \ x^{[0]} \in (\mathbb{R}^N)^R, \ \ y^{[0]} \in \mathbb{R}^{M \times R} \\ &\text{for } t = 0, 1, \dots \text{ do} \\ &\widetilde{x}^{[t]} = P_C \left(x^{[t]} - \gamma (2A^\top A x^{[t]} - 2A^\top z + F^\top y^{(t)}) \right) \\ &X^{[t]} = \gamma^{-1} y^{[t]} + F x^{[t]} \\ &\widetilde{y}^{[t]} = X^{[t]} - \gamma^{-1} P_D(X^{[t]}) \\ &y^{[t+1]} = \widetilde{y}^{[t]} + \gamma F \left(\widetilde{x}^{[t]} - x^{[t]} \right) \\ &x^{[t+1]} = \widetilde{x}^{[t]} - \gamma \left(F^\top (\widetilde{y}^{[t]} - y^{[t]}) + 2A^\top A \left(\widetilde{x}^{[t]} - x^{[t]} \right) \right) \\ &\text{end for} \end{split}$$

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	icomponent Image Restorati	on using Non-Local Structure Tensor	10/20

$$\underset{x \in C}{\text{minimize}} \|Ax - z\|_2^2 \text{ subject to } Fx \in D$$

 \bullet Solution via proximal algorithms \rightarrow e.g.: M+LFBF [Combettes 2012]

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

$$\begin{split} &\gamma \in \left] 0, \ 1/(2\|A\|^2 + \|F\|) \right[, \ x^{[0]} \in (\mathbb{R}^N)^R, \ y^{[0]} \in \mathbb{R}^{M \times F} \\ &\text{for } t = 0, 1, \dots \text{ do} \\ &\widetilde{x}^{[t]} = P_C \left(x^{[t]} - \gamma (2A^\top A x^{[t]} - 2A^\top z + F^\top y^{(t)}) \right) \\ &X^{[t]} = \gamma^{-1} y^{[t]} + F x^{[t]} \\ &\overbrace{ \tilde{y}^{[t]} = X^{[t]} - \gamma^{-1} P_D(X^{[t]}) \\ &y^{[t+1]} = \widetilde{y}^{[t]} + \gamma F \left(\widetilde{x}^{[t]} - x^{[t]} \right) \\ &x^{[t+1]} = \widetilde{x}^{[t]} - \gamma \left(F^\top (\widetilde{y}^{[t]} - y^{[t]}) + 2A^\top A \left(\widetilde{x}^{[t]} - x^{[t]} \right) \right) \\ &\text{end for} \end{split}$$

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	ticomponent Image Restor	ation using Non-Local Structure Tensor	10/20

$$\underset{x \in C}{\mathsf{minimize}} \ \|Ax - z\|_2^2 \ \text{ subject to } \ Fx \in D$$

• Solution via proximal algorithms \rightarrow e.g.: M+LFBF [Combettes 2012]

$$\begin{split} &\gamma \in \left] 0, \ 1/(2||A||^2 + ||F||) \right[, \ \ x^{[0]} \in (\mathbb{R}^N)^R, \ \ y^{[0]} \in \mathbb{R}^{M \times R} \\ &\text{for } t = 0, 1, \dots \text{ do} \\ &\widetilde{x}^{[t]} = P_C \left(x^{[t]} - \gamma (2A^\top A x^{[t]} - 2A^\top z + F^\top y^{(t)}) \right) \\ &X^{[t]} = \gamma^{-1} y^{[t]} + F x^{[t]} \\ &\boxed{y^{[t]} = X^{[t]} - \gamma^{-1} P_D (X^{[t]})} \\ &y^{[t+1]} = \widetilde{y}^{[t]} + \gamma F \left(\widetilde{x}^{[t]} - x^{[t]} \right) \\ &x^{[t+1]} = \widetilde{x}^{[t]} - \gamma \left(F^\top (\widetilde{y}^{[t]} - y^{[t]}) + 2A^\top A \left(\widetilde{x}^{[t]} - x^{[t]} \right) \right) \\ &\text{end for} \end{split}$$

Problem

How can we efficiently compute $P_D(X) = \arg \min_{\widehat{X} \in D} \|\widehat{X} - X\|$?

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restora	tion using Non-Local Structure Tensor	11/20

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Epigraphical Splitting Technique

• In general, no closed-form expression for P_D

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	ticomponent Image Restorat	tion using Non-Local Structure Tensor	11/20

Epigraphical Splitting Technique

- In general, no closed-form expression for P_D
 - \rightarrow specific numerical methods exist

[Quattoni 2007] [Van Den Berg 2008] [Weiss 2009] [Fadili 2011] [Kyrillidis 2012] ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restorat	ion using Non-Local Structure Tensor	11/20

Epigraphical Splitting Technique

- In general, no closed-form expression for P_D
 - \rightarrow specific numerical methods exist

[Quattoni 2007] [Van Den Berg 2008] [Weiss 2009] [Fadili 2011] [Kyrillidis 2012] ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- \rightarrow not always efficient (inner iterations)
- \rightarrow difficult to parallelize

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restorat	ion using Non-Local Structure Tensor	11/20

Epigraphical Splitting Technique

- In general, no closed-form expression for P_D
 - \rightarrow specific numerical methods exist

[Quattoni 2007] [Van Den Berg 2008] [Weiss 2009] [Fadili 2011] [Kyrillidis 2012] ...

- \rightarrow not always efficient (inner iterations)
- \rightarrow difficult to parallelize

Proposed solution [Chierchia 2012]

Decompose D by adding an auxiliary vector $\zeta = (\zeta^{(\ell)})_{1 \le \ell \le N} \in \mathbb{R}^N$

$$\sum_{\ell=1}^{N} \|X^{(\ell)}\|_{p} \leq \eta \quad \Leftrightarrow \quad \begin{cases} \|X^{(\ell)}\|_{p} \leq \zeta^{(\ell)} \quad (\forall \ell \in \{1, \dots, N\}) \\ \sum_{\ell=1}^{N} \zeta^{(\ell)} \leq \eta \end{cases}$$

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	ticomponent Image Restora	tion using Non-Local Structure Tensor	12/20

$$\underset{x \in C}{\text{minimize}} \|Ax - z\|_2^2 \text{ subject to } Fx \in D$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for M	ulticomponent Image Restorat	tion using Non-Local Structure Tensor	12/20

$$\begin{array}{|c|c|c|c|}\hline \underset{x \in C}{\text{minimize}} & \|Ax - z\|_2^2 & \text{subject to} & Fx \in D \\ \hline \\ \vdots \\ \hline \\ \underset{(x,\zeta) \in C \times W}{\text{minimize}} & \|Ax - z\|_2^2 & \text{subject to} & (Fx,\zeta) \in E \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for M	ulticomponent Image Restorat	tion using Non-Local Structure Tensor	12/20

$$\begin{array}{|c|c|c|c|}\hline \underset{x \in C}{\text{minimize}} & \|Ax - z\|_2^2 & \text{subject to} & Fx \in D \\ \hline \\ \vdots \\ \hline \\ \underset{(x,\zeta) \in C \times W}{\text{minimize}} & \|Ax - z\|_2^2 & \text{subject to} & (Fx,\zeta) \in E \end{array}$$

collection of epigraphs

$$E = \{ (X, \zeta) \mid (X^{(\ell)}, \zeta^{(\ell)}) \in \operatorname{epi} \| \cdot \|_{p} \quad (\forall \ell \in \{1, \dots, N\}) \}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mu	Iticomponent Image Restoration using I	Ion-Local Structure Tensor	12/20

$$\begin{array}{|c|c|c|c|}\hline \underset{x \in C}{\text{minimize}} & \|Ax - z\|_2^2 & \text{subject to} & Fx \in D \\ \hline \vdots \\\hline \\ \underset{(x,\zeta) \in C \times W}{\text{minimize}} & \|Ax - z\|_2^2 & \text{subject to} & (Fx,\zeta) \in E \end{array}$$

collection of epigraphs

$$E = \{ (X,\zeta) \mid (X^{(\ell)},\zeta^{(\ell)}) \in \operatorname{epi} \| \cdot \|_{p} \quad (\forall \ell \in \{1,\ldots,N\}) \}$$

2 closed half-space

$$W = \left\{ \zeta \in \mathbb{R}^N \mid \mathbf{1}_N^\top \zeta \le \eta \right\}$$

with $\mathbf{1}_{\textit{N}} = (1, \ldots, 1)^\top \in \mathbb{R}^{\textit{N}}$

Introduction	Proposed approach ○○○○○○●	Numerical results	Conclusions
Epigraphical Approach for Mu	lticomponent Image Restora	ation using Non-Local Structure Tensor	13/20

(ロ) (型) (E) (E) (E) (O)

Epigraphical projection for matrix norms

P_{epi ||·||p} exists for vectorial norms with p ∈ {1,2,+∞}
[Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]

Introduction	Proposed approach ○○○○○○●	Numerical results	Conclusions
Epigraphical Approach for Mu	lticomponent Image Restoratio	n using Non-Local Structure Tensor	13/20

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Epigraphical projection for matrix norms

• $P_{epi \parallel \cdot \parallel_p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ [Pang 2003] [Pock 2010] [Ding 2012] [Chierchia 2012]

 \rightarrow can we extend these results to matrix norms?

Introduction 0000	Proposed approach ○○○○○●	Numerical results	Conclusions
Epigraphical Approach for Mu	ticomponent Image Restora	tion using Non-Local Structure Tensor	13/20

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Epigraphical projection for matrix norms

- $P_{epi \parallel \cdot \parallel_p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ \rightarrow can we extend these results to matrix norms?
- S.V.D.: $X^{(\ell)} = U^{(\ell)} \operatorname{Diag}(s^{(\ell)}) V^{(\ell)^{\top}}$

Introduction	Proposed approach ○○○○○○●	Numerical results	Conclusions
Epigraphical Approach for Mu	lticomponent Image Restora	ation using Non-Local Structure Tensor	13/20

Epigraphical projection for matrix norms

- $P_{epi \parallel \cdot \parallel_p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ \rightarrow can we extend these results to matrix norms?
- S.V.D.: $X^{(\ell)} = U^{(\ell)} \operatorname{Diag}(s^{(\ell)}) V^{(\ell)^{\top}}$
- prox. operator of spectral functions [Lewis 1995]

$$\operatorname{prox}_{\|\cdot\|_{\boldsymbol{P}}}(X^{(\ell)}) = U^{(\ell)} \operatorname{Diag}(\operatorname{prox}_{\|\cdot\|_{\boldsymbol{P}}}(s^{(\ell)})) V^{(\ell)^{\top}}$$

うして ふゆう ふほう ふほう うらつ

Introduction	Proposed approach ○○○○○○●	Numerical results	Conclusions
Epigraphical Approach for Mu	ticomponent Image Restoration usir	ng Non-Local Structure Tensor	13/20

Epigraphical projection for matrix norms

- $P_{epi \parallel \cdot \parallel_p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ \rightarrow can we extend these results to matrix norms?
- S.V.D.: $X^{(\ell)} = U^{(\ell)} \operatorname{Diag}(s^{(\ell)}) V^{(\ell)^{\top}}$
- prox. operator of spectral functions [Lewis 1995]

$$\operatorname{prox}_{\|\cdot\|_{P}}(X^{(\ell)}) = U^{(\ell)} \operatorname{Diag}(\operatorname{prox}_{\|\cdot\|_{P}}(\mathsf{s}^{(\ell)})) V^{(\ell)^{\top}}$$

Epigraphical projection

•
$$P_{\mathsf{epi} \parallel \cdot \parallel_{P}}(X^{(\ell)}, \zeta^{(\ell)}) = \left(U^{(\ell)} \operatorname{Diag}(\mathsf{t}^{(\ell)}) V^{(\ell)^{\top}}, \theta^{(\ell)} \right)$$

Introduction	Proposed approach ○○○○○●	Numerical results	Conclusions
Epigraphical Approach for Mu	ulticomponent Image Restor	ration using Non-Local Structure Tensor	13/20

Epigraphical projection for matrix norms

- $P_{epi \parallel \cdot \parallel_p}$ exists for vectorial norms with $p \in \{1, 2, +\infty\}$ \rightarrow can we extend these results to matrix norms?
- S.V.D.: $X^{(\ell)} = U^{(\ell)} \operatorname{Diag}(s^{(\ell)}) V^{(\ell)^{\top}}$
- prox. operator of spectral functions [Lewis 1995]

$$\operatorname{prox}_{\|\cdot\|_{\boldsymbol{P}}}(X^{(\ell)}) = U^{(\ell)} \operatorname{Diag}(\operatorname{prox}_{\|\cdot\|_{\boldsymbol{P}}}(s^{(\ell)})) V^{(\ell)^{\top}}$$

Epigraphical projection

•
$$P_{\mathsf{epi} \parallel \cdot \parallel_{P}}(X^{(\ell)}, \zeta^{(\ell)}) = \left(U^{(\ell)} \operatorname{Diag}(\mathsf{t}^{(\ell)}) V^{(\ell)^{\top}}, \theta^{(\ell)} \right)$$

$$(\mathbf{t}^{(\ell)}, \ \theta^{(\ell)}) = P_{\mathsf{epi} \parallel \cdot \parallel_{\mathbf{P}}}(\mathbf{s}^{(\ell)}, \zeta^{(\ell)})$$

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration	using Non-Local Structure Tensor	14/20

Outline

1 Introduction

2 Proposed approach

3 Numerical results

4 Conclusions

▲□▶ ▲圖▶ ▲ 差▶ ▲ 差 ● のQ@

Introduction	Proposed approach	Numerical results ○●○○	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	15/20

$$\underset{(x,\zeta)\in C\times W}{\text{minimize}} \|Ax-z\|_2^2 \quad \text{subject to} \quad (Fx,\zeta)\in E$$

• degradation: 3×3 uniform blur, 90% of decimation, AWGN with $\alpha = 10$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Introduction	Proposed approach	Numerical results ○●○○	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	15/20

$$\underset{(x,\zeta)\in C\times W}{\text{minimize}} \ \|Ax-z\|_2^2 \ \text{ subject to } \ (Fx,\zeta)\in E$$

• degradation: 3×3 uniform blur, 90% of decimation, AWGN with $\alpha = 10$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

• color space: RGB

Introduction	Proposed approach	Numerical results ○●○○	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	15/20

$$\underset{(x,\zeta)\in C\times W}{\text{minimize}} \|Ax-z\|_2^2 \quad \text{subject to} \quad (Fx,\zeta)\in E$$

• degradation: 3 \times 3 uniform blur, 90% of decimation, AWGN with $\alpha=$ 10

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- color space: RGB
 - \rightarrow pixels of z have missing colors

Introduction	Proposed approach	Numerical results ○●○○	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	15/20

$$\underset{(x,\zeta)\in C\times W}{\text{minimize}} \|Ax-z\|_2^2 \quad \text{subject to} \quad (Fx,\zeta)\in E$$

• degradation: 3×3 uniform blur, 90% of decimation, AWGN with $\alpha = 10$

- color space: RGB
 - \rightarrow pixels of z have missing colors
 - \rightarrow impossible to work into YCbCr, CIELab, \ldots

Introduction	Proposed approach	Numerical results ○●○○	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	15/20

$$\underset{(x,\zeta)\in C\times W}{\text{minimize}} \|Ax-z\|_2^2 \quad \text{subject to} \quad (Fx,\zeta)\in E$$

• degradation: 3×3 uniform blur, 90% of decimation, AWGN with $\alpha = 10$

- color space: RGB
 - \rightarrow pixels of z have missing colors
 - \rightarrow impossible to work into YCbCr, CIELab, \ldots
- dynamics range constraint: $x_i^{(\ell)} \in [0, 255]$

Introduction	Proposed approach	Numerical results ○●○○	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	15/20

$$\underset{(x,\zeta)\in C\times W}{\text{minimize}} \|Ax-z\|_2^2 \quad \text{subject to} \quad (Fx,\zeta)\in E$$

• degradation: 3×3 uniform blur, 90% of decimation, AWGN with $\alpha = 10$

- color space: RGB
 - \rightarrow pixels of z have missing colors
 - \rightarrow impossible to work into YCbCr, CIELab, \ldots
- dynamics range constraint: $x_i^{(\ell)} \in [0, 255]$
- weights $\omega_{\ell,n}$ estimated as in [Foi 2012]

Introduction	Proposed approach	Numerical results ○●○○	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	15/20

$$\underset{(x,\zeta)\in C\times W}{\text{minimize}} \|Ax-z\|_2^2 \quad \text{subject to} \quad (Fx,\zeta)\in E$$

• degradation: 3 imes 3 uniform blur, 90% of decimation, AWGN with lpha= 10

ション ふゆ く 山 マ チャット しょうくしゃ

- color space: RGB
 - \rightarrow pixels of z have missing colors
 - \rightarrow impossible to work into YCbCr, CIELab, \ldots
- dynamics range constraint: $x_i^{(\ell)} \in [0, 255]$
- weights $\omega_{\ell,n}$ estimated as in [Foi 2012]
- $\bullet\,$ choice of η based on image characteristics

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restoratio	on using Non-Local Structure Tensor	16/20

Qualitatively results (SNR - SSIM)

Original

Degraded

(ロ)、(部)、(E)、(E)、 E

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restoratio	n using Non-Local Structure Tensor	16/20

Qualitatively results (SNR - SSIM)

CC-TV-l2: 22.33 - 0.812

ST-TV-*l*₂: 23.10 - 0.823

CC-NLTV-*l*₂: 23.20 - 0.829

ST-NLTV-*l*₂: 23.69 - 0.836

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mul	ticomponent Image Restoration us	ing Non-Local Structure Tensor	16/20

Qualitatively results (SNR - SSIM)

CC-TV- ℓ_{∞} : 22.00 - 0.803

 $ST-TV-\ell_{\infty}$: 22.68 - 0.817

 $\mathsf{CC}\text{-}\mathsf{NLTV}\text{-}\boldsymbol{\ell}_\infty\text{: } 23.28\text{-}0.827$

ST-NLTV- ℓ_{∞} : 23.03 - 0.823

э

Introduction	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Mult	icomponent Image Restoration (ising Non-Local Structure Tensor	17/20

Convergence speed ($||x^{[n]} - x^{[\infty]}|| / ||x^{[\infty]}||$ vs time)

- blue line: algorithm with epigraphical projections
- red line: algorithm with direct projections

Convergence speed ($||x^{[n]} - x^{[\infty]}|| / ||x^{[\infty]}||$ vs time)

- blue line: algorithm with epigraphical projections
- red line: algorithm with direct projections

Introduction	Proposed approach	Numerical results	Conclusions ●○○
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	18/20

Outline

1 Introduction

- 2 Proposed approach
- **3** Numerical results

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	19/20

• Structure tensor

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	19/20

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Conclusions

• Structure tensor

 $\rightarrow\,$ natural choice for multicomponent image restoration

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	19/20

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Structure tensor
 - $\rightarrow~$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restorati	on using Non-Local Structure Tensor	19/20

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

- Structure tensor
 - $\rightarrow~$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow~$ simply defined in terms of matrix norms

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	19/20

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Structure tensor
 - $\rightarrow~$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow~$ simply defined in terms of matrix norms
- Epigraphical technique

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	19/20

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Structure tensor
 - $\rightarrow~$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow~$ simply defined in terms of matrix norms
- Epigraphical technique
 - $\rightarrow\,$ allows us to handle matrix-norm constraints

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restoration using N	on-Local Structure Tensor	19/20

- Structure tensor
 - $\rightarrow\,$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow\,$ simply defined in terms of matrix norms
- Epigraphical technique
 - $\rightarrow\,$ allows us to handle matrix-norm constraints
 - ightarrow faster than direct methods (10 to 40 times for ℓ_∞ -norms)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restorati	on using Non-Local Structure Tensor	19/20

- Structure tensor
 - $\rightarrow\,$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow\,$ simply defined in terms of matrix norms
- Epigraphical technique
 - $\rightarrow\,$ allows us to handle matrix-norm constraints
 - ightarrow faster than direct methods (10 to 40 times for ℓ_∞ -norms)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

 \rightarrow amenable to parallel implementations [Gaetano 2011]

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Mult	icomponent Image Restorati	on using Non-Local Structure Tensor	19/20

- Structure tensor
 - $\rightarrow\,$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow\,$ simply defined in terms of matrix norms
- Epigraphical technique
 - $\rightarrow\,$ allows us to handle matrix-norm constraints
 - ightarrow faster than direct methods (10 to 40 times for ℓ_∞ -norms)

ション ふゆ く 山 マ チャット しょうくしゃ

- \rightarrow amenable to parallel implementations [Gaetano 2011]
- $\ell_{1,p}$ -norm regularization

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Multicomponent Image Restoration using Non-Local Structure Tensor			19/20

- Structure tensor
 - $\rightarrow\,$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow\,$ simply defined in terms of matrix norms
- Epigraphical technique
 - $\rightarrow\,$ allows us to handle matrix-norm constraints
 - ightarrow faster than direct methods (10 to 40 times for ℓ_∞ -norms)

ション ふゆ く 山 マ チャット しょうくしゃ

- \rightarrow amenable to parallel implementations [Gaetano 2011]
- $\ell_{1,p}$ -norm regularization
 - $\rightarrow\,$ good choice for defining smoothness constraints

Introduction	Proposed approach	Numerical results	Conclusions ○●○
Epigraphical Approach for Multicomponent Image Restoration using Non-Local Structure Tensor			19/20

- Structure tensor
 - $\rightarrow\,$ natural choice for multicomponent image restoration
 - $\rightarrow~$ easily extensible by Non-Locality principle
 - $\rightarrow\,$ simply defined in terms of matrix norms
- Epigraphical technique
 - $\rightarrow\,$ allows us to handle matrix-norm constraints
 - ightarrow faster than direct methods (10 to 40 times for ℓ_∞ -norms)

- \rightarrow amenable to parallel implementations [Gaetano 2011]
- $\ell_{1,p}$ -norm regularization
 - $\rightarrow\,$ good choice for defining smoothness constraints
 - $\rightarrow~\boldsymbol{\ell}_{1,2}\text{-norm}$ vs $\boldsymbol{\ell}_{1,\infty}\text{-norm}\colon$ trade-off quality-speed

Introduction 0000	Proposed approach	Numerical results	Conclusions
Epigraphical Approach for Multicomponent Image Restoration using Non-Local Structure Tensor			20/20

Thanks for your attention...

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで