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What is a Brain-Computer Interface ?

BCI : A communication and control system that does not consider usual
brain’s normal output pathways like muscles or peripherical nerves. It
translates human intentions or response to a stimulus into a command.

1

1. from Chavarriaga, 2009
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Clinical applications

Help patient with Lock-In Syndrome to communicate with their
environments through BCI Speller

[From Nijolt et al.]
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Clinical applications

Robotic arm command for patients
with amputed arm
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Gaming applications

game control without keyboard, joystick nor wiimote

from Nijholt et al.
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Different kinds of BCI

invasive

sensors implanted

asynchronous

BCI outputs are generated at
user’s will

unstimulated

user voluntarily produces the
required signals

non-invasive

surface sensors : EEG

synchronous

BCI outputs are synchronyzed
with a stimulus generator .

evoked potential

requires the user to focus on
stimuli to produce change in
brain responses
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Example : BCI P300 Speller

Experimental set-up proposed
by Donchin et al.

6× 6 matrix of symbols

a sequence : each row and
column flashes in a random
order

subject concentrates on a
symbol and counts as it flashes

visual P300 elicited when the
symbol to spell flashes

several sequences needed for
spelling a single symbol

synchronous, evoked potential
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Example : BCI SSEP

stimulus presented repetitively
at high rate : each symbol
flashes at individual frequency

task : patient looks at the
desired symbol

looking at the stimulus blinking
evokes a rythm of same
frequency in the visual cortex

spectral analysis of EEG

[Cheng et al. 2002]

Independent, Asynchronous, Evoked potential
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Example : BCI Motor Imagery Hex-O-Speller

Speller based on imagined movement of hands and feets. (developed
by Blankertz et al. )

µ-rythm amplitudes vary with movements, movements preparation,
or movement imagery

turn the hex-o-speller with imagined left and right hand movements
and selection with imagined feet movement

Independent, Asynchronous, Unstimulated
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BCI approaches

Operant conditioning

user learns to voluntary change features of EEG

need user’s training based on some feedback related to EEG

Machine-based

machine-based detection of user’s mental state

need to produce brain signals according to requested mental states

train a pattern recognition classifier to recognize mental states
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Examples of two µ-rythm based spellers

Albany’s one. Wolpaw et al.

user controls his µ− rhythm

ball travels horizontally at
constant speed

vertical movement controlled by
power of µ-rythm

Hex-O-Speller

µ− rhythm controlled speller

mental states are characterized
by modulation in the µ−
rhythm.
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Detecting mental states using machine learning

But do we need a machine learning approach ?

neurophysiology of BCI paradigms are well-known (P300, motor
imagery, · · · ).

Possible to extract features from EEG that discriminate mental
states

Example in motor imagery : Lateralized Readiness Potential

LRP : variation in electrical activity at the surface of the brain, that
reflect the preparation of motor activity on a certain side of the body
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Other examples of well-known neurophysiology results

Averaged P300 Oddball

averaged waveforms on Pz for disabled (top) and enabled (bottom)
people.
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Why do we need machine learning ?

Neurophysiology gives information only about the average brain

EEG Signals have a low signal-to-noise ratio

BCI paradigm considers only single specific brain but

intra-subject variability
inter-subject variability
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BCI Motor imagery : variability in ERD

intra-subject variability : topography power in the α band (around
10 Hz) during trial of 3.5s for a single subject for the same day

inter-subject variability : left hand vs right hand for different subject

Muller et al.
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BCI Motor imagery : variability in ERD

intra-subject variability : topography power in the α band (around
10 Hz) during trial of 3.5s for a single subject for the same day

inter-subject variability : left hand vs right hand for different subject

Machine learning and signal processing at the rescue for handling

low signal-to-noise ratio

variability

A. Rakotomamonjy () Peyresq 2010 16 / 62



Machine Learning in a nutshell

Objective

learn to recognize complex patterns and make decisions based on data

Usual ML tasks of interest for BCI

feature extraction (CSP, ICA, ...)

feature selection (channel selection)

supervised learning of a classifier (LDA, SVM ...)

online learning
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Machine learning in play in BCI
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Machine learning for BCI : operating mode - Feedback
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Specific machine learning tasks in BCI

Feature extraction and selection

learn filters (spatial or temporal)

channel selection

subject-specific features

Classifier

mental state classification

subject-independent mental state classification
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BCI P300 Speller

Details

Sequence = 12 rows/columns are
flashed randomly

Sequences are repeated a certain
number of times of a letter spelling

Machine Learning Objective

Classify a post-stimulus EEG signal as containing or not a P300 evoked
potential.
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The EEG Signal

Characteristics

Time windows : 666 ms after visual stimuli

Problem Dimensionality : 64× 160 = 10240

Low signal to noise ratio

Non-stationary

Visualization of P300 in averaged signals.
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Signal and Preprocessing

On each channel

BandPass filtering [0.1, 10] Hz

Decimation : 14 time samples

Problem Dimensionality : 64× 14 = 896
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The obstacles for an easy classification

Difficulties

Low Signal to noise ratio : classes are highly mixed

Signal variability
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Classification strategy

Difficulties

Brain activities and noise non-related to the BCI task

Slow non-stationary phenomena

Solutions

reduce variabilities by separating training sets in “homogenous” sets.

Learn several classifiers for each set and perform channel selection.

average SVMs outputs.
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Learning Strategy

Training

SVMfiltering

Channel Elimination
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Test Strategy

Procedure

The object to classify is a post stimulus signal corresponding to a
row or a column

Object = signals from the 64 channels

Filtering, decimation and selection of the channels

SVMs outputs

SVM

SVM

SVM

filtering Σ
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Selecting the spelled letter

Procedure

a post stimulus signal (row or column)

Processing + SVMs outputs

Increments score associated to the row/column

Slig = Slig +
N∑
i=1

fi (x) Scol = Scol +
N∑
i=1

fi (x)

Final selection

After k sequences : 12× k stimuli

symbol coordinates in matrix

arg max
lig

Slig arg max
col

Scol
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Backward Channel Elimination

Outline

Rank channels by a decreasing order of importance

Selection criterion : performance

TP

TP + FP + FN

evaluated on validation data

Backward Elimination Algorithm
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Application to BCI Competition III

Experimental set-up

2 Subjects using P300 speller

EEG have been collected on a 64-channel scalp

85 spelled symbols for training, 100 for evaluating performances

for each single spelled symbol, we have 180 trials, 30 of which
should contain a P300.

cluster of 5 letters (900 signals)

linear classifier on each partition
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Application to BCI Competition III

Optimal number of channels to select

Subject A
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Application to BCI Competition III

Effect of channel selection

Performances after 5 and 15 sequences
Dataset Optimal channels 64 channels 8 channels

A1 26 66 22 55 24 60
A2 41 69 22 61 15 54
A3 28 64 19 59 5 27
A4 36 81 24 56 17 53
A5 39 75 27 69 23 52

B1 62 93 52 80 41 76
B2 61 90 49 73 31 54
B3 56 81 45 65 36 65
B4 57 89 49 81 47 65
B5 53 89 59 88 33 70

Compared performances on Competition
Nb of sequences

Algorithms 5 15

this algorithm 73.5 96.5
2nd ranked algorithm 55.0 90.5

3rd ranked algorithm 59.5 90
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Dealing with the BCI P300 Speller

Lessons learned

for P300, simple temporal features do the job

do channel selection (for better adaptation)

take care of variabilities

perform classifier output’s averaging for better robustness to
variabilities (see also Krusienski, 2009)

find more efficient strategy for channel selection

use better preprocessing : xDAWN, spatial filtering

Performance

Winner of the BCI Competition III

Third place of the BCI P300 MLSP 2010 competition with (81.9%
recognition rate vs 82.1%)
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Learn spatial filters for BCI : Common Spatial Patterns

Why is it important ?

EEG potentials have poor spatial resolution

nearby sources contribute to each scalp electrode

strong signals can interfere with the weak signal of interest

Illustration of effectiveness (Blankertz,2008)

spectra from left (dark) and right (light) hand motor imagery.
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Learning spatial filters for BCI

The picture

Labeled multi-channel EEG data : Si ∈ RK×T , yi = {+1,−1},
i = 1, · · · , n, (T number of samples , K number of channels). Si is
supposed to be band-pass filtered.

Look for a spatial filter w ∈ RK so that S t
i w has high power spectra

for one class and low power spectra for the other class

Approximation of power spectra with signal variance

‖S t
i w‖2 = w tSiS

t
i w

Overall variance for positive and negative class signals∑
i :yi=1

w tSiS
t
i w and

∑
i :yi=−1

w tSiS
t
i w
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Learning spatial filters for BCI

Now, the problem can be formulated as

max
w

∑
i :yi=1 w

tSiS
t
i w∑

i :yi=−1 w
tSiS t

i w

Owing to scale invariance in w , it can be translated into

maxw wTΣ+1w
wTΣ−1w = 1

where Σ+1 and Σ−1 are the covariance matrix for positive and
negative classes.

Lagrangian and optimality give

(Σ−1)−1Σ+1w = λw

with λ Lagrangian multiplier. We have a generalized eigenvalue
problem
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Learning spatial filters for BCI

The resulting filter

the spatial filters are the eigenvector of Σ−1
−1Σ+1

symmetry of the problem : use extreme eigenvalues/eigenvectors

number of spatial filters to use : cross-validation if necessary or pick
few.

Visualizing the filter (Blankertz,2008)
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Applying spatial filter for BCI Motor imagery

Experimental set-up (Blankertz,2006)

6 subjects, MI : left hand, right hand, foot

32 channels [7, 30] Hz band-pass filtered

training set 420 trials (140 for each class)

feedback : 1D cursor control (hit the correct target)

6 spatial filters + LDA with log-variance as features.
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Learn spatio-temporal filter : CSSSP (Dornhege, 2006)

Why spatio-temporal filters ?

improve subject-specific BCI by focusing on appropriate spectral
band frequency.

improve spatial filters by integrating temporal filters.

Set-up and approach

classify EEG motor imagery 2 classes trials

Define FIR filter

Define filtered signal version Si ,b = Si +
∑T

k=2 bkS
k
i

find w and {b} that maximizes spatial filter criterion

build power spectra features and use linear classifier

A. Rakotomamonjy () Peyresq 2010 39 / 62



Learn spatio-temporal filter : CSSSP

The optimization problem

maxb maxw wT
(∑T−1

k=0 (
∑T−k

j=1 bjbk+j)Σk
1

)
w + C

T

∑
k |bk |

wT
(∑T−1

k=0 (
∑T−k

j=1 bjbk+j)(Σk
1 + Σk

2)
)
w = 1

Outline

sparse filter induced by the `1 penalization of b.

same optimization problem as in CSP for fixed b.

subgradient descent optimization for optimizing b
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Effectiveness of CSSSP

example of patterns CSP vs CSSSP

The discriminative pattern extracted by
CSSSP has a much clearer and plausible
topography ( centered around C3 and
C4)

error comparison CSP vs CSSSP on test data

60 datasets from 22 subjects (120
to 200 trials)

50/50 train/test split

32 channels [7, 30] Hz band-pass
filtered

subject-specific preprocessing leads
to better mental states recognition
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Learn smooth spatial filters

why smooth filter ?

CSP ignores the spatial location of EEG electrodes

neighboring neurons tend to have similar functions.

neighboring electrodes measure similar signals

Spatially regularized CSP (Lotte,2010)

Smooth spatial filter

Formulation of regularized spatial filter :

J(w) = maxw
wTΣ+1w

wTΣ−1w + αP(w)

where P(w) is a function that measures the spatial smoothness of w
(the smaller the more regular)
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Spatially regularized CSP

Spatial regularizer : Laplacian penalty

Laplacian penalty : let G (i , j) = Sim(Eleci ,Elecj) be a similarity
measure on electrodes position (e.g G (i , j) = 1 if electrodes i and j
are considered as neighbors), then we define

P(w) =
∑
i ,j

Gi ,j(wi − wj)
2 = w t(D − G )w

with D,G ∈ RK×K and D is a diagonal matrix such that
Dii =

∑
j Gi ,j

Interpretation :

P(w) becomes larger as neighbor electrodes get some different
weights.
small value of P(w) encourages smooth spatial filter
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Spatially regularized CSP : solution

Eigenvalue problem

the filter is given by the eigenvectors of

(Σ−1 + α(D − G ))−1Σ+1

corresponding to largest eigenvalues.

the problem is not symmetric. For the second class, the filter is
related to

(Σ+1 + α(D − G ))−1Σ−1

Hyperparameters : α and parameters of the similarity measure.
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Effectiveness of SRCSP (Lotte, 2010)

Experimental setup

Dataset from BCI Competition III

5 subjects, mental imagery : left and right hand

280 trials per subject, 118 channels, [8-30] Hz filtering

compare spatial filter and SRCSP recognition rate
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Summary on spatial filters

the good

made untrained subjects able to control a BCI

considerable improvements of performance wrt to state of the art

provide interpretable filters

caveats and questions

need to estimate a covariance matrix

sensitive to outliers and noise

is it the most appropriate criterion to optimize ? Large Margin
approach (see Flamary et al.)

how to adapt the filter to signal non-stationarities ? ML issue :
online resolution of an eigenvalue problem
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Novel challenges

what new since Donchin 88 ?

proof of concept of BCI to different applications (P300 Speller,
prothesis control, wheelchair command)

more robust and efficient BCI

study of ALS in-home use (Sellers, 2008)

dry electrodes for easier use

what are the next big issues for a Machine Learning ?

reduce calibration or zero training (covariate shift)

adaptation (how to cope with user’s variabilities (fatigue, mental
states ...)

find invariant feature and subject-independent classifier
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Reduced calibration and zero training approaches

Multi-task learning (Almagir, 2010)

Use data from available subjects to learn a generic classifier that can be
applied to a novel subject without training

Sequential Subject Selection (Lotte, 2010)

Among data from available subjects use those that are most helpful for
classifying novel subject data.

Ensemble of BCI Classifier (Fazli,2010)

Among a large set of classifiers trained with available data, select a few
of them that minimize empirical loss.
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Sequential Subject Selection (Lotte, 2010)

Framework

motor imagery

Typically used BCI algorithms consider CSP and LDA

Both algorithms need estimation of covariance matrices of the data.

Heuristic

Mix data from available subjects and novel subject for estimating
covariance matrix

Ĉt = (1− λ)Ct +
λ

|S |
∑
i∈S

Ci
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Sequential Subject Selection (Lotte, 2010)

algorithm for subject selection

Forward-Backward selection

Start from empty subject set
Look for the subject which added dataset maximizes accuracy
Among already selected subject, remove subject’s dataset that
maximizes accuracy

Comments

can be time-consuming

still need some few data
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Sequential Subject Selection (Lotte, 2010)

Experimental set-up

Motor imagery dataset (left and right hand), 9 subjects

signals are band-pass filtered (8-30 Hz)

72 trials per class on time-segment of 2 seconds for training and
testing
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Ensemble of Classifier (Fazli,2010)

Idea

zero training approach for a novel subject

construct an ensemble method from a large set of weak classifiers
(mimic idea from boosting)

weak classifier :

single subject/session dataset
particular frequency band
CSP + LDA
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Ensemble of Classifier (Fazli,2010)

Flowchart

The final gating function used for testing on subject

minwi,j

∑
x∈X (h(x)− y(x))2 + λ

∑
i ,j |wi ,j |

with h(x) =
∑

i ,j∈S wi ,jci ,j(x) + b
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Ensemble of Classifier (Fazli,2010)

Feature selection results during cross-validation

45 subjects, 90 sessions, 9 band-pass filters

leave-one-subject out
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Ensemble of Classifier (Fazli,2010)

Results

45 subjects, 90 sessions, 9 band-pass filters

leave-one-subject out (left) and hold-out (right)

compare with subject-dependent auto-band CSP
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Multi-Task Learning

Hypothesis

learning related tasks jointly can improve performances on each
single task

some knowlegde can be shared across tasks :

models are similar
all tasks share the same features

Example of applications

Character recognition (Obozinski, 2009)

Medical image recognition (Xiong,2007)
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Multi-Task Learning : general framework

Framework

T tasks. For each task, we have samples{xi ,t , yi ,t}mt
i=1 coming from

the same space and drawn accordinfg to Pt

Distributions Pt are different for each task but related

Learn decision function ft(xi ,t) that predicts accurately yi ,t

min
f1,··· ,fT

T∑
t=1

mt∑
i=1

Lt(yi ,t , f (xi ,t)) + λΩ(f1, · · · , fT )

where Lt(·, ·) are some loss functions, Ω a regularizer that should
reflect tasks-relatedness and λ a hyperparameter

Typical prior for the regularizer

models are similar

shared feature selection
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Multi-Task Learning with Joint linear Least-Squares

Framework

linear model for each task t : wT
t x

sparse shared features : define W = [w1w2 · · ·wT ],

minwt

1

2

∑
t

‖Xtwt − yt‖2 + λ
∑
k

‖Wk,·‖2

weights are similar :

minvt ,w0

1

2

∑
t

‖Xtwt − yt‖2 + ‖w0‖2 +
∑
t

‖v2
t ‖

with wt = w0 + vt

weights are distributed according to a Gaussian distribution

minwt ,µ,Σ
1

2

∑
t

‖Xtwt−yt‖2+
∑
t

(wt−µ)tΣ−1(wt−µ)+
T

2
log det(Σ)
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Multi-Task Learning with Joint linear Least-Squares

Solving MTL with Gaussian prior on wt (Alamgir,2010)

The problem

min
wt ,µ,Σ

1

2λ

∑
t

‖Xtwt−yt‖2+
1

2

∑
t

(wt−µ)tΣ−1(wt−µ)+
T

2
log det(Σ)

alternate optimization wrt to W and (µ,Σ)

Update

weights wt

wt = (
1

λ
X t
t Xt + Σ−1)−1(

1

λ
X t
t yt + Σ−1µ)

Gaussian distribution

µ =
1

T

∑
t

wt Σ =
1

K

∑
t

(wt − µ)(wt − µ)t
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Applying MTL with Gaussian prior to BCI

Objective

zero training BCI

BCI adaptation to subject as data stream in

How-to ?

Consider all subjects with already available data as tasks

learn the shared prior µ and Σ

start with the weights for the novel user

w = (
1

λ
X tX + Σ−1)−1(

1

λ
X ty + Σ−1µ)

update matrix X and y as data from the novel user are acquired
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Effectiveness of MTL for BCI

Experimental set-up

10 subjects, motor imagery : left hand, right hand

150 trials. For the novel subject : 100 used for online, 50 for test
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Conclusions and challenges

State of the art

Successful applications of BCI

pro-eminent role of machine learning

some issues have been addressed e.g channel selection, feature
extraction with spatial filters, tackling inter variability by providing
subject-specific automated methods

future Machine challenges for BCI

improve zero training BCI

adaptation to evolution of the subject mental states (online learning)

learn invariant features and subject-independent classifier that
generalizes well

proper addressing of concept drift problem
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