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Overview

Complexity of ideal sparse approximation
Convex optimization
Greedy algorithms

Nonconvex optimization ?




|deal sparse approximation

® |nput:
m x N matrix A, with m < N, m-dimensional vector b

® Possible objectives:
find the sparsest approximation within tolerance

arg min ||z|g, s.t.||b — Ax| <e
xXr

find best approximation with given sparsity

arg min ||b — Az||, s.t.||z|o < k
X

find a solution x to
b —Az| <€, and ||x|o < k
3
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Geometric interpretation
of sparse approximation

e Coefficient domain R” o Set Ad = (Z]D subspaces
® set D, of sparse vectors in signal domain
lflo < &
® |deal sparse approximation
= find nearest subspace

/ among ()

Combinatorial search!

Actual complexity ?
subspaces
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Complexity




Complexity

¢ Polynomial algorithm: given input of size
N, compute output in cost poly(N)

¢ Polynomial problem (is in P): thereis a
polynomial algorithm which can compute the
solution to each instance of the problem

e Example:

4

problem: find the nearest neighbor to an m-
dimensional vector from a collection of N such
vectors

input size = m x (N+1)

complexity = O(Nm) [N distances in R™]
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Complexity: NP

¢ Decision problem: of the type “does there
exist x satisfying a given set of constraints”

Non-deterministic polynomial
decision problems (in NP): if thereis a
polynomial algorithm which can check for any
instance of the problem if a candidate solution x

satisfies the constraint.

<+ warning: the algorithm is not required to find a solution. It merely
has to check if a solution x (given by an “oracle”) is acceptable.
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Complexity: NP-complete

Reduction: every instance of Problem A can be
transformed into an instance of Problem B in
polynomial time A “less complex”than B

NP-hard problem: Problem B such that every
Problem A in NP can be reduced to B.

NP-complete problems: NP-hard + in NP

Fact: there exists at least one NP-complete
problem (satisfiability problem = SAT)




Complexity of sparse
approximation

® Step |:express it as a decision problem:
+ description of an instance

m x N matrix A, m-dimensional vector b, parameters (6, k)

+ size of an instance = approximately mN
+ decision problem: does there exists x such that

Ib— Az|| <e, and |z]jo < &

® Step 2:proveitisin NP.Indeed, one can check in
polynomial time O(mN) whether a given x
satisfies the constraints

® Step 3:reduce an existing problem to it to show
it is NP-complete
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NP-completeness of
sparse approximation

® Which known NP-complete problem?

Exact-cover by 3-sets [Davis & al 1997]
(other approach in [Natarajan 1995])

+ Description of an instance:

<+ The integer interval E = [[1, Sl{fﬂ

% A collection of subsets of size 3

C={F,,1<n<NWF,CE,tF, =3

+ Decision problem:

<+ does there exist an exact cover (=disjoint partition) of E from
elements of C?

AN, Upepn Fy, = E n#n e A= F,NEFE, =0
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NP-completeness

® Reduction of 3-SETS to sparse approximation

+ m=3k
+ vector b= (b;)i%; b; =1,Vi
. 1, i€k,
+ matrix A = (am)lgingS"SN Yin =30, otherwise
+ tolerance e <1

® Exact cover implies existence of x such that
Ib— Az|| <€, and |z]o < &
T S G R T

® Non-exact cover implies the opposite
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Practical approaches:

Optimization principles




Overall compromise

® Approximation quality

|Az — bl|
® |deal sparsity measure : KO “norm”

|zflo := fin, xn # 0} = Z\an

® “Relaxed” sparsity measures
1
0 <p <00, ol = (L feal”) "
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Lp norms / quasi-norms

® Norms when 1 <p<oc = convex
|z||, =02 =0
[Az|lp = [All[z][p, VA, @

Triangle inequality H$ + pr < HZC |p + |’pr,\V/$,y

e Quasi-norms when 0<p<1 = nonconvex
|z +yll, <27 (lzllp, + lyllp), Yo,y

Quasi-triangle
inequality

le +ylly < 1=l + lylp, Ve, y

® “Pseudo”-norm for p=0
lz +yllo < llzllo + lyllo, Y, y
14




Optimization problems

® Approximation

min |b — Azl s.t. ||z||, < T
X

® Sparsification

min ||z, s.t. ||b — Axl|js <€
X

® Regularization

1
min [ — Azl + Az
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Lp “norms” level sets

® Strictly °
convex when

p>|

Convex p=1 ® Nonconvex

p<I

Texte

Observation: the minimizer is sparse
— {x s.t.b = Az}
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Sparsity of L7 minimizers

® Real-valued case
+ A = an m x N real-valued matrix
+ b = an m-dimensional real-valued vector
+ X = set of all minimum L7 norm solutionsto Ax = b

re X < |||y = min ||z||; s.t. Ax=Db

® Fact I: X is convex and contains a “sparse” solution
dxg € X, ||zollo < m

® Proof : exercice!




Sparsity of L7 minimizers

® Real-valued case
+ A = an m x N real-valued matrix
+ b = an m-dimensional real-valued vector
+ X =setof al solutii)ns to regularization problem

L(x) = 5[Az = b3 + Az

re X < L(2)=minL(x)

® Fact 2: X is a convex set and contains a “‘sparse”
solution

dxg € X, ||zollo < m

® Proof : exercice, using Fact I!
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Sparsity of L7 minimizers

® A word of caution: this does not hold true in
the complex-valued case

® Counter example: there is a construction where
+ A =2 2 x 3 complex-valued matrix
+ b = a 2-dimensional complex-valued vector
+ the minimum L1 norm solution is unique and has 3
nonzero components

[E.Vincent, Complex Nonconvex Optimization |_p norm minimization for underdetermined
source separation, Proc. ICA 2007.]




Global Optimization : from
Principles to Algorithms

N . 1
® Optimization principle min §HAx — bl5 + Al|z|?

+ Sparse representation A—0 Az =0Db

+ Sparse approximation A >0 Ax ~Db

NP-hard
combinatorial FOCUSS / IRLS Iterative thresholding / proximal algo. Linear

local minima

p=1

Lasso [Tibshirani 1996], Basis Pursuit (Denoising) [Chen, Donoho & Saunders, 1999]
Linear/Quadratic programming (interior point, etc.)

Homotopy method [Osborne 2000] / Least Angle Regression [Efron &al 2002]

\_ Iterative / proximal algorithms [Daubechies, de Frise, de Mol 2004, Combettes & Pesquet 2008,..]
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Algorithms for LI:
Linear Programming

® || minimization problem of size m x N

s min ||z]ly, s.t. Az = b
X

LASSO

® FEquivalent linear program of size m x 2N

minc’ z, s.t. [A,—A]z =b
z>0

C = (C@'), C;, — 1,\72
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LI regularization:
Quadratic Programming

® || minimization problem of size m x N

1
min  [[b — Az|5 + Allz|l;

® FEquivalent quadratic program of size m x 2N

1
min —Hb A, —Alz||3+c'z

2>0 2
c=(¢), ¢, =1,Vi
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Generic approaches vs
specific algorithms

® There is a vast literature on linear / quadratic
programming algorithms

® (Can use linprog in Matlab
® But..

+
+

*

The problem size is “doubled”

Specific structures of the matrix A can help solve BP
and BPDN more efficiently

More efficient toolboxes have been developed




Optimization algorithms




Example: orthonormal A

® Assumption : m=N and A is orthonormal
ATA =AA" =1dy
|b—Az|; =||A"b —z|3

® Expression of BPDN criterion to be minimized

Z %((ATb)n = xn)2 + Az, |P

n

® Minimization can be done coordinate-wise

1
5 (cn — $n)2 + Ay, |P
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Hard-thresholding (p=0)

HA(C) A /

V2

® Soluéf

1
min 5(6 —x)* + Xz




Soft-thresholding (p=1)
S)\(C)A

—A

® Squ/nof

1
min 5(0—:13)2 + A\ - |z




Iterative thresholding

® Proximity operator 1
©F (¢) = arg min §(x —c)* 4 Mz|?

® Goal = compute
arg min —HAZU = blf3 + All=l}

® Approach = iterative alternation between

+ gradient descent on fidelity term
22— ) L D AT (b — Ag®)

+ thresholding

2t . QP

(2 (z’+1/2))
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Iterative Thresholding

® Theorem: [Daubechies, de Mol, Defrise 2004, Combettes & Pesquet 2008]
+ consider the iterates a:< 1) — f( (i )) defined by
the thresholding function, with p > 1

f(x) = OF, (z + aAT(b — Ax))

assume that Vz, [|[Az[3 < c|lz||3 and @ < 2/c
then, the iterates converge strongly to a limit £~

Hx(z) — 2|y —ie0 O

the limit 2™ is a global minimum of §HA:1: — b3 + Az

if p>1, or if A is invertible, T is the unique minimum
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Pareto curve

1
—{[b— A3

Sparse
representation

————O—
|zl

P
— IRISA



Path of the solution

Lemma: let x” be a local minimum of BPDN

|
arg min §HA$ — b||§ + M|z ||

let | be its support
Then A7 (Az* —b)+ ) sign(z}) =0
|AT.(Az* — b)||ee < A

In particular

zr = (A7TA) " (ATb — X\ sign(zy))

P
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Homotopy method

® Principle: track the solution ™ ()\) of BPDN
along the Pareto curve

® Property:
+ solution is characterized by its sign pattern through

v = (A7Ar) " (A7b — X -sign(zr))

+ for given sign pattern, dependence on A is affine
+ sign patterns are piecewise constant functions of >\
+ overall, the solution is piecewise affine

® Method = iteratively find breakpoints




Greedy Algorithms




Greedy algorithms

® (Observation: when A is orthormal,
+ the problem

min |b — Az||5 s.t. ||z]|o < k&
xr

+ is equivalent to

min Z(Agb —x,)? st |lz|lo < K

o Let A\ index the k largest inner products
min |Alb| > max |AlD|
neAg nQAk
+ an optimum solution is

o =Alb,nc Ay, z, =0,n¢ Ay
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Greedy algorithms

® |terative algorithm (= Matching Pursuit)
+ [nitialize a residualtoro = b i =1
+ Compute all inner products

Alri = (AnTi1)hoy

+ Select the largest in magnitude

n; = arg max |A;r;_1|
n

+ Compute an updated residual

r, =r,_1 — (AT r,—1 )1&77’Z

+ If 2 > k then stop, otherwise increment i and iterate
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Dictionaries and atoms

® Convention on m x N matrix A
+ normalized columns: Al =1,Vn

+ complete column span:  span(A,,1 <n < N)=R"

+ in particular: m < N

® Vocabulary:
+ A is called a signal dictionary
+ columns are called atoms




Matching Pursuit (MP)

® Matching Pursuit (aka Projection Pursuit, CLEAN)
+ Initialization r9o=Db i=1
+ Atom selection:
n; = argmax |Alr;_;
+ Residual update "
ri —>~r;,—1 — (Afiri_l)Ani

® Energy preservation (Pythagoras theorem)

Iri—1]l3 = |AL rim1]” + [|ri]|3
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Main properties

® Global energy preservation

k
Ibl3 = llroll3 = > A% ri1]? + flrxl3
1=1

® Global reconstruction

k
E : T
b = I'o — Aniri_lAm —+ Iy
1=1

® Strong convergence

lim [[r;][2 =0
11— 00




Orthonormal MP (OMP)

k
Observation: after k iterations Tr =b — Z oA,
1=1

Approximant belongs to
Vi =span(A,,,n € Ag)

Best approximation from V. = orthoprojection
__ =+
Py,b= A A} b
OMP residual update rule r, =b— Py, b

P
— IRISA



OMP

® Same as MP, except residual update rule
+ Atom selection:

n; = argmax |Alr;_;

n
+ Index update A@ — Ai—l U {nz}
+ Residual update

V; = span(A,,n € A;)
r, — b — PVZb

® Property :strong convergence lim ||r;||> = 0

11— 00
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Weak Pursuits

® Sometimes the following optimization is too
complex

n; = argmax |Alr;_;
n

® Weak selection : pick any atom such that

A 1| > tsup|A;r;_|
n

® Convergence is preserved [Temlyakov]




Convergence rate

® (Observation:

+ the quantity HI‘HA = Sup \AZI‘\ is a norm
n

+ Dby equivalence of all norms in finite dimension

3¢ > 0,Vr, ||r||a > ¢|lr]|

® At each iteration
Iri||3 < |lrizall5 — t2lric1lla
< ri—1 |3 — 2P ||ri—1 |3

< (1—=t%c")"[Iroll3
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Caveats (1)

® MP can pick up the same atom more than

® OMP will never select twice the same atom
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Caveats (1)

® MP can pick up the same atom more than
once

® OMP will never select twice the same atom
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® OMP will never select twice the same atom
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Caveats (1)

® MP can pick up the same atom more than

® OMP will never select twice the same atom
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Caveats (2)

® “Improved” atom selection does not
necessarily improve convergence

® There exists two dictionaries A and B

+ Best atom from B at step i:

n; = argmax |Blr;_1]

n
+ Better atom from A
T T

Ay ri1| = Byrio]

+ Residual update
T
iy =r;—1 — (Agiri—l)AEi

® Divergence! dc > 0,Vi,|r;||2 > c
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Stagewise greedy algorithms

® Principle = select multiple atoms at a time to
accelerate the process

® Example of such algorithms
Morphological Component Analysis [MCA, Bobin et al]
Stagewise OMP [Donoho & al]
CoSAMP [Needell & Tropp]
ROMP [Needell & Vershynin]
Iterative Hard Th resholding [Blumensath & Davies 2008]

P
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Main greedy algorithms

b:AZCZ—FI’Z

A=A, ... AN]

Matching Pursuit

OMP Stagewise

Selection

[ := argmax |A; r;_y| T = {n | |ATr 4| > 6;}

Ny = AN UTY
Tij = Tj—1 + ARI‘i—1

_ +
ri =r;—1 — Ap,Ar 11

Ny =N UTY
r, = b — AAz.CCZ'

StOMP: Donoho & al 2006 (similar to MCA, Bobin & al 2006)

[ MP & OMP: Mallat & Zhang 1993
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Summary

Global optimization Iterative greedy algorithms

1 iterative decomposition I'; = b — A:Cq
Principle min —|| Az — bH% + >\H37H£ * select new components
x 2 * update residual

stopping criterion
(nb of iterations, error level, ...)

lzillo = &k [lrf] < e

Tuning

quality/sparsity regularization parameter \

choice of sparsity measure p
Variants optimization algorithm
initialization

*selection criterion (weak, stagewise ...)
*update strategy (orthogonal ...)




Complexity of IST

® Notation: O(A) cost of applyingA or Al

® [terative Thresholding f(z) = 6%, (z + aAT (b — Ax))
+ cost per iteration = O(A)
+ when A invertible, linear convergence at rate
. . 2
|2 — a2, SCBla*]ls B<1-

amin

2
max

number of iterations guaranteed to approach limit
within relative precision €

O(log1/e)

® Limit depends on choice of penalty factor )y
added complexity to adjust it

o
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Complexity of MP

Number of iterations depends on stopping
criterion ||r;|l2 <€, ||xi|lo > k

Cost of first iteration = atom selection O(A)
(computation of all inner products)

Naive cost of subsequent iterations = O(A)

If “local” structure of dictionary [Krstulovic & al, MPTK]
+ subsequent iterations only cost O(log N)

Generic A Local A
k iterations O(kA) > O(km) | O(A+ klogN)

ko m O(mlog N)

P—
= ITRISA




Complexity of OMP

® Number of iterations depends on stopping
criterion Ir

ille < e llzil|lo >k
® Naive cost of iteration i
+ atom selection O(A)+ orthoprojection O(i”)

® With iterative matrix inversion lemma
+ atom selection O(A)+ coefficient update O(7)

® |f“local” structure of dictionary [Muaihé & dal, LocOMP]
+ subsequent approximate iterations only cost O(log N)

Generic A Local A
k iterations O(kA + k%) O(A + klogN)
koxm O(m?) O(mlog N)

0 e TRISA




LoCOMP

® A variant of OMP for shift invariant dictionaries
(Ph.D. thesis of Boris Mailhé, ICASSP09)

Fig. 1. SNR depending on the number of iterations N = 5 I 05 samples, k= 20 000 iterations

Table 3. CPU time per iteration (s)
Iteration MP LocOMP GP OMP
First (z = 0) 3.4 3.4 3.4 3.5
Begin (i ~ 1) | 0.028 0.033 3.4 3.4
End (z = I) 0.028 0.050 40.5 41
Total time 571 854 4.50 -10°  4.52-10°

0.5 1 1.5
Number of iterations

® |mplementation in MPTK in progress for larger scale

experiments, collaboration with T. Blumensath
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Some algorithms /
software on the market

® Matlab (simple to adapt, medium scale problems):

+ LI minimization with an available toolbox
=  http://www.l1-magic.org/ (Candés et al.), ...

+ iterative thresholding
=  http://www.morphologicaldiversity.org/ (Starck et al.)

® MPTK :C++,large scale problems

+ optimized Matching Pursuit

+ millions of unknowns, a few minutes of computation
+ several time-frequency dictionaries
*

builtin multichannel
=  http://mptk.irisa.fr

® More on http://www.dsp.rice.edu/cs



http://www.l1-magic.org
http://www.l1-magic.org
http://www.morphologicaldiversity.org
http://www.morphologicaldiversity.org
http://mptk.irisa.fr
http://mptk.irisa.fr
http://www.dsp.rice.edu/cs
http://www.dsp.rice.edu/cs
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Iterative Soft Thresholding
(IST)

¢ Theorem :assume |
+ consider the iterates (' T1) = f(a?(z)) defined
by the soft thresholding function

f(x) = Sax(z + A’ (b — Az))

assume that al|z|; < [[Az|3 < bllz3, V2 0<a<i<o
whenevera = 2/(b + a) the iterates converge
geometrically in L2 norm to the unique local

minimum x *of the BPDN optimization problem

for o = 2/(b—|—a) the rate is
(i) _ ¢ b—a"\ © _
[EAE A PN 2™ — 2|2
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Convergence of IST (1)

Sa)\(c)

® Soft thresholding satisfies )
Sar(@) = Sarx®) < la—b
C

A
® Recall that “

f(x) = Sar(z + A’ (b — A))

® Therefore for any x,y
[f(@) = fW)llq < llz —y — aAT Az — )l

= [|(Id — a A" A)(z — )|
< [[Id — &ATAHq—MJ e — qu
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Convergence of IST (2)

® Assume that forsome 1 < g < ¢
B:=|Id — aAT A/, < 1

® Fixed point theorem (contracting iterations):

+ the sequence x<7“)converges in the p-norm to the

unique solution of the fixed point equation
¥ = f(x*) = S,(a* + AT (b — Az™))
® The convergence is geometric with rate [
' * ' 0 *
|2 —a*|y < 8|21 — 27|,




Convergence of IST (3)

® Set g=2.By assumption, in the sense of
symmetric matrices

ald < A" A < pId
(1—ab)ld <Id — aATA < (1 — aa)ld
® The condition g = |Id — aA* Al|so < 1 is
equivalent to max(|1 — ab|, |1 — aal) < 1
0<a<2/b

2
® The optimum is reached for a = ;
b—a + a

6:b+a




Proof of the Lemma

A 1 =matrix with columns of A indexed by |

. * . o« o
The restricted vector x7 is a local minimum of

.1 _ _
arg min | 413 = blj3 + Aljz]|

Since =7 has no zero entry, the objective function
is smooth at =7 and its gradient must be zero

A7 (Arzs —b) + X\ -sign(ay) =0
A similar analysis yields the second condition
|AT(Az* — D)oo < A




Limit of IST (2)

e T'= any local minimum of BPDN
*
® |=supportof T

® For indices in | we have
aAT (b — Azx*) = alsign(z})
5 + aAf (b — Ax*) = (Jz%] + a))sign(z})
Sax(x7 + aAT (b — Az*)) = |zf|sign(z]) = 27

® For indices not in | we have
Sox(zte + aAL (b — Az*¥)) = Sar(aAl. (b — Az*))
=0=1z7
e Therefore T is the unique fixed point
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Limit of IST (3)

® We conclude that

+
+
+

* = f(z*) = Sax(z* + A’ (b — Azx*))

ZC* was any local minimum of BPDN

it must be the unique fixed point

therefore, there is a unique local minimum of
BPDN, which is the limit of IST.



Homotopy method
vr = (ATA)! (A?b — A sign(az;))

LJc =0

® For any sign pattern s, define 2™ (), s) as
above, which varies affinely with A

o |f HA}F(S)C(Ax*()\,S) —b)|loc < A then

+ the strict inequality remains true for " close
to A, meaning that in a neighborhood of A the
solution to BPDN is indeed z*(\, s)
the sign pattern is therefore piecewise constant
breakpoint occur where ||A7 ). (Az* (A, s) = b)|loc = A

P
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Homotopy algorithm

® For) > ||ATDb|«the solutionis £* = 0 with
sign pattern s; = 0 ;set A\ = oc and k=0

® Determine the next breakpoint: Ax+1 is the

largest value of A <A i such that either
+ acomponent of z7 (A, s) vanishes
+ a component violates the inequality

AT (A7 (A 56) = B) oo < A

® Determine the sign pattern Sg+1 for A < A
+ some components may go to zero
+ some new components may enter
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