Des processus stochastiques multifractals pour la modélisation d'images naturelles

Pierre CHAINAIS

Université Clermont-Ferrand II

LIMOS UMR 6158

France

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

イロン イヨン イヨン イヨン

De l'opacité à la transparence totale !

Modélisation du Soleil calme

2

De l'opacité à la transparence totale !

Modélisation du Soleil calme

De l'opacité à la transparence totale !

De l'opacité à la transparence totale !

Construction d'une cascade Poisson composée

イロト イヨト イヨト イヨト

Modélisation du Soleil calme

Cascades Poisson Composées (CPC) Version de base

Différentes descriptions :

 \implies superposition de cylindres transparents en 3D !

modèle multiplicatif pour l'intensité $I(x) \equiv Q_{\ell}(x)$ \uparrow modèle additif pour le contraste $\phi(x) \propto \log I(x) \equiv \log Q_{\ell}(x)$

Modélisation du Soleil calme

Cascades Poisson Composées (CPC) Version de base

Différentes descriptions :

$$\mathbf{Q}_{\ell}(\mathbf{x}) = \frac{\prod_{(\mathbf{x}_i, r_i)} \mathbf{W}_i^{\mathbf{I}_{\mathcal{D}(\mathbf{x}_i, r_i)}}}{\mathsf{E}\left[\prod_{(\mathbf{x}_i, r_i)} \mathbf{W}_i^{\mathbf{I}_{\mathcal{D}(\mathbf{x}_i, r_i)}}\right]}$$

En prenant le logarithme :

$$\log Q_{\ell}(x) = \sum_{(x_i,r_i)} \log W_i \cdot \mathbb{I}_{\mathcal{D}(x_i,r_i)} + K$$

 \implies superposition de cylindres transparents en 3D !

modèle multiplicatif pour l'intensité $I(x) \equiv Q_{\ell}(x)$ \uparrow modèle additif pour le contraste $\phi(x) \propto \log I(x) \equiv \log Q_{\ell}(x)$

Modélisation du Soleil calme

Cascades Poisson Composées (CPC) Version générale

On introduit un motif géométrique $f(\mathbf{x})$:

$$Q_{\ell}(\mathbf{x}) = \frac{\prod_{(x_i,r_i)} W_i^{f((\mathbf{x}-\mathbf{x}_i)/r_i)}}{E\left[\prod_{(x_i,r_i)} W_i^{f((\mathbf{x}-\mathbf{x}_i)/r_i)}\right]}$$

En prenant le logarithme :
$$\log Q_{\ell}(\mathbf{x}) = \sum_{(x_i,r_i)} \log W_i \cdot f\left(\frac{\mathbf{x}-\mathbf{x}_i}{r_i}\right) + K$$

\implies superposition d'objets transparents en 3D !

f(x) permet d'introduire de l'anisotropie et de la régularité.
(⇒ effets visuels 2D)

< ロ > < 同 > < 回 > < 正 > < 正

Modélisation du Soleil calme

Du 1D au 3D (voire plus...)

・ロト ・回ト ・モト ・モト

크

Exemples 2D

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

・ロ・ ・回・ ・ヨ・ ・ヨ・

3

Modélisation du Soleil calme

Exemples 2D

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

・ロト ・回ト ・モト ・モト

Exemples 2D

Modélisation du Soleil calme

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

・ロ・ ・ 日・ ・ 田・ ・ 田・

3

Animation multifractale (en espace et en temps !)

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

<ロ> (四) (四) (注) (注) (注) (注)

Propriétés d'invariance d'échelle

Conclusion

Le but de tels modèles est de **capturer les principales propriétés** statistiques d'une grande classe d'images : il n'y a à priori pas d'ambition de générer des images réalistes à partir de réalisations aléatoires.

Les cascades de Poisson composées capturent de nombreuses propriétés des images naturelles :

- interprétation physique (superposition d'objets 3D),
- non Gaussiennes,
- invariance d'échelle,
- multifractales (ordres supérieurs),
- cohérence avec diverses observations expérimentales,
- cohérentes avec les modèles de la littérature.

[IEEE Trans. PAMI'07]

Modélisation d'images de Soleil calme dans l' extrême UV

Pierre Chainais, Emilie Koenig,

Université Clermont-Ferrand II

LIMOS UMR 6158 - France

V. Delouille, J.-F. Hochedez,

Royal Observatory of Belgium

Bruxelles, Belgique

Observatoire Royal *de* Belgique

イロト イヨト イヨト イヨト

Question à 1 Milliard de Dollars !

Que verrait une mission d'observation à haute résolution ?

Faut-il la financer ? (...1 Milliard de Dollars...)

<ロ> (四) (四) (注) (注) (注) (注)

Modélisation du Soleil calme

Un cycle solaire à $\lambda = 19.5$ nm vu par E.I.T. (Extreme UV Imaging Telescope) 1996-2005

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

・ロト ・回ト ・ヨト ・ヨト

3

Modélisation du Soleil calme

Le soleil calme

Le Soleil calme

Definition:

pas de région active visible, ressemble à un fond turbulent...

イロン イヨン イヨン イヨン

3

Propriétés du Soleil calme

 $1/\|\mathbf{k}\|^{\eta}$ with $\eta\simeq 2.9$

 $I(x, y) \ge 0$ (~ lognormal)

・ロト ・回ト ・ヨト ・ヨト

3

 \Rightarrow invariance d'échelle : extrapolation aléatoire sous-pixel ?

Programme de travail

- Analyse multifractale : caractérisation multiéchelle des images,
- Identification d'un modèle multifractal,
- **③** Capacité à reproduire à résolution arbitraire ?
- Capacité à proposer une extrapolation sous-pixel respectant l'invariance d'échelle ?

Lois d'échelle des fonctions de partition

$$S_{DWT}(q,j) = rac{1}{N_j} \sum_{k=1}^{N_j} |d(j,k)|^q \sim 2^{j\zeta(q)}$$

[Voir cours de Patrice Abry]

Modélisation du Soleil calme

Resultats de l'analyse multifractale Identification d'un modèle stochastique

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

・ロト ・回ト ・ヨト ・ヨト

æ

Resultats de l'analyse multifractale

・ロト ・回ト ・ヨト ・ヨト

3

Resultats de l'analyse multifractale

Les images de Soleil calme sont multifractales

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

・ロン ・回 と ・ ヨン ・ ヨン

3

Resultats de l'analyse multifractale

Un modèle stochastique multifractal : FI-CPC

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

(ロ) (同) (E) (E) (E)

Modélisation du Soleil calme

Fractionnally integrated compound Poisson cascades Construction

- Identifier le paramètre de Hurst $H = \zeta(1)$, et poser $\tau(q) = \zeta(q) - qH$,
- Identifier une CPC ayant les mêmes $\tau(q)$, $\Rightarrow \text{ e.g., } \tau(q) = 1 \frac{(1+T)^q}{(1+qT)} \quad (\text{for } q \le q_+^*)$ $avec \ T = 0.85,$
- Synthèse numérique de CPC,
- Filtrage $\propto 1/||k||^H$ des CPC, \Rightarrow spectre Fourier $\propto 1/||k||^{2+2H+\tau(2)}$ et $\zeta(q) = qH + \tau(q)$.

イロト イポト イヨト イヨト 二日

Modélisation du Soleil calme

Comparaison visuelle

Quiet Sun

frac. int. CPC

・ロト ・回ト ・ヨト ・ヨト

æ

3

Perte d'information due à une résolution insuffisante

3

Perte d'information due à une résolution insuffisante

3

Perte d'information due à une résolution insuffisante

Modélisation du Soleil calme

3

Perte d'information due à une résolution insuffisante

3

Perte d'information due à une résolution insuffisante

Perte d'information due à une résolution insuffisante

3

Perte d'information due à une résolution insuffisante

Modélisation du Soleil calme

Vers une meilleure résolution virtuelle...

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Modélisation du Soleil calme

Vers une meilleure résolution virtuelle...

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Interpolation : aucune information supplémentaire

Extrapolation aléatoire invariante d'échelle

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Extrapolation aléatoire invariante d'échelle

Image augmentee

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Extrapolation aléatoire invariante d'échelle

Image augmentee

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Extrapolation aléatoire invariante d'échelle

Image augmentee

Peyresq 23 juillet 2008 P.

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Extrapolation aléatoire invariante d'échelle

Image augmentee

Peyresq 23 juillet 2008 P

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Modélisation du Soleil calme

Zoom x 8192 depuis Peyresq...

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Zoom x 8192 depuis Peyresq...

Zoom x 8192 depuis Peyresq...

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Modélisation du Soleil calme

Zoom x 8192 depuis Peyresq...

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

◆□ > ◆□ > ◆臣 > ◆臣 > ○

3

Modélisation du Soleil calme

Zoom x 8192 depuis Peyresq...

Modélisation du Soleil calme

Zoom x 8192 depuis Peyresq...

Peyresq 23 juillet 2008 P. Chainais - LIMOS Université Blaise Pascal / Clermont II

<ロ> (四) (四) (注) (注) (注) (注)

Modélisation du Soleil calme

Zoom x 8192 depuis Peyresq...

Peyresq 23 juillet 2008

P. Chainais - LIMOS Université Blaise Pascal / Clermont II

Modélisation du Soleil calme

Zoom x 8192 depuis Peyresq...

