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Résumé – La normalisation du rang stable des couches linéaires dans les réseaux neuronaux a récemment été associée à
leur capacité de généralisation ainsi qu’à la stabilité des réseaux de neurones récurrents. Cela a été appliqué aux couches non
convolutionnelles. Cependant, l’application du SRN aux réseaux convolutionnels n’est pas triviale, car elle nécessite de calculer les
vecteurs singuliers dominants de la matrice circulante associée au noyau. Dans ce travail, nous passons en revue les approches
précédentes en soulignant certaines limitations, et nous proposons une analyse du problème, montrant qu’il est faisable pour
certaines valeurs du rang stable cible. Enfin, nous proposons une approximation du problème sous la forme d’une minimisation sur
une sphère.

Abstract – The normalization of the stable rank of linear layers in neural networks has been linked recently with their ability
to generalize and with the stability of recurrent neural networks. This has been applied in practice for non-convolutional layers.
However, the application of SRN to convolutional networks is not straightforward, as it requires computing the leading singular
vectors of the circulant matrix associated to the convolution kernel. In this work we review previous approaches pointing out some
limitations, and propose an analysis of the problem, showing that it is feasible for certain values of the target stable rank. Finally,
we propose an approximation of the problem as a minimization on a sphere.

1 Introduction
Stable rank normalization has recently gained attention in

deep learning for controlling the behavior of neural networks ,
such as improving their generalization ability [4, 6] and sta-
bility [1, 7]. The stable rank was first associated with the
generalization error bound for neural networks in [4]. The
authors in [6] proposed normalizing the stable rank as a way to
control the network generalization, and found an explicit opti-
mal solution to the Stable Rank Normalization (SRN) problem.
The SRN algorithm was then used for the linear layers of neu-
ral networks, together with Spectral Normalization (SN) [3],
and it was empirically shown that controlling the stable rank
and operator norm of each layer of the network improves gen-
eralization behavior and classification performance [6].

Controlling the stable rank also benefits the stability of
recurrent convolutional neural networks, which are often
used in video processing tasks such as denoising and super-
resolution [1, 7]. Recurrent neural networks are prone to
instabilities during inference, which can result in divergence
for long signals [7] where some pixel values blow up, despite
the model’s stable behavior on short training sequences. It
is argued that layers with smaller stable rank lead to better
stability at inference time [7].

The SRN algorithm was originally only used for linear lay-
ers, because the size of the underlying linear mapping for a
convolutional layer can be intractable. The authors in [7] pro-
posed to adapt SRN for linear layers to convolutional layers
(named SRN-C), leveraging the equivalence between matrix
multiplication and kernel convolution [2]. However, this adap-
tation is not as straightforward as presented. In this paper, we
first show that the stable rank property is not preserved by the
original SRN-C algorithm and analyze in detail the stable rank
normalization problem for convolutional kernels. We show

that, with a correctly specified desired stable rank value, the
problem is solvable.

In the rest of the paper we first introduce the related concepts
to SRN, analyze the original SRN-C algorithm, leading to a
reformulation of the problem, which we study in detail.

2 Stable Rank Normalization
Stable Rank of a matrix. The stable rank of a matrix W is
a continuous, scale-invariant relaxation of the standard matrix
rank [6, 5], defined as the ratio of the squared Frobenius norm
to the squared spectral norm:

srank(W ) =
∥W∥2F
∥W∥22

=

∑p
i=1 σ

2
i (W )

σ2
1(W )

, (1)

where p is the rank of W , and σi are the singular values of W .

Stable Rank Normalization. The stable rank normalization
(SRN) problem is stated as follows [6], given a matrix W ∈
Rm×n with rank p, we look for an approximation Ŵk:

arg min
Ŵk∈Rm×n

∥∥∥W − Ŵk

∥∥∥2
F

(2)

s.t. srank(Ŵk) = r, λi = σi, ∀i ∈ {1, · · · , k},

where, 1 ≤ r < srank(W ) is the desired stable rank, k denotes
the number of singular values preserved, and λi and σi are
the singular values of Ŵk and W , respectively. It essentially
seeks a matrix: 1) with a pre-specified stable rank value r;
2) that preserves the k largest singular values; 3) and that ap-
proximates well the given matrix W in the sense of Frobenius
norm. The optimal solution for the above problem is explicitly
given by [6], which we will describe in the next subsection.
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This problem can be regarded as a generalization of rank-k
approximation of a matrix, which approximates a given matrix
W as a sum of k rank-1 matrices that are associated to the first
largest singular values of W .

Lipschitz constant. The Lipschitz constant L is a key con-
cept for stability in dynamic systems and neural networks. For
a function h, the Lipschitz constant is defined as the smallest
value L, s.t. ∥h(x) − h(y)∥ ≤ L∥x − y∥, for any x, y in the
domain of h. When L < 1, the function f is called contrac-
tive. For a neural network consisting of l layers with weights
Wk, k = 1, . . . , l and ReLU activation function, the Lipschitz
constant satisfies L ≤ Πl

k=1∥Wk∥. Prior work has proposed
constraining the spectral norm of each layer to ensure the net-
work being contractive and enforce stability [3]. However,
such constraints can be too restrictive because the upper bound
can be much larger than the true Lipschitz constant. Instead,
minimizing the stable rank of the weight matrices provides a
more flexible mechanism for improving stability. Lower stable
rank implies that the energy of the operator is concentrated in
fewer directions, which in turn reduces the amplification of
hidden feature perturbations and encourages contraction [1, 7].
A more practical estimate of its behavior is the empirical Lip-
schitz constant. It has been shown experimentally that lower
stable rank leads to a smaller empirical Lipschitz constant [6].

2.1 Application to neural networks
Linear Layer. The stable rank was associated in [4] with the
generalization error bound of neural networks leading to the

error bound O
(√∏d

i ∥Wi∥22
∑d

i=1 srank(Wi)

)
. Inspired

by this result, [6] proposed applying SRN to each linear layer
of a neural network alongside spectral normalization (SN) [3].
The resulting algorithm first applies spectral normalization by
dividing the weight matrix by its largest singular value, then
solves SRN based on the SN-normalized weight matrix. When
applied to neural networks, only the largest singular value is
preserved, i.e., k = 1 in (2). The close form solution to SRN
for a spectral normalized (σ1 = 1) matrix W is given by [6]
(note ∥S1∥F = σ1 = 1):

Ŵk = S1 +

√
r − 1

∥S2∥F
S2, (3)

where S1 = u1v
T
1 , u1, v1 are the leading singular vectors

of W , and S2 = W − S1. The SRN algorithm requires
decomposition of the matrix into two matrices S1 and S2,
through singular value decomposition,

Convolutional Layer. While most architectures employed in
vision are CNN-based, SRN is not directly applicable to a con-
volutional layer, as the size of the underlying linear mapping
(represented as a doubly circulant matrix) is too big. Let us
denote the circulant/doubly circulant matrix that corresponds
to a kernel a in convolution as C(a). Indeed, for a kernel a that
convolves with an input feature map (min, N,N) to produce
an output features map (mout, N,N), the corresponding linear
operator C(a) is of size mout ·N2 ×min ·N2. Some methods,
such as [3], reshape the convolutional kernel into a matrix as
an approximation. However, this does not properly normalize

the operator norm or the stable rank of the linear mapping
associated with the kernel [2, 7].

The authors in [7] proposed to adapt the SRN for linear
layers to convolutional layers by introducing SRN-C, a method
that leverages the equivalence between matrix multiplication
and kernel convolution [2]

vec(v) = C(a)vec(u) ⇐⇒ v = a ∗ u,
vec(u) = C(a)T vec(v) ⇐⇒ v = aT ∗ u,

(4)

where vec(·) denotes the vectorization of a feature tensor. This
equivalence makes the computation practical. The SRN-C
algorithm follows an analogous procedure to SRN, but uses
a decomposition of the kernel a instead of the associated ma-
trix C(a). The output is given as a weighted sum of kernels

â = a1 + γ(r)a2, (5)

where a1 = ∇ã

(
uT
1 (ã ∗ v1)

)
, a2 = a − a1 and γ(r) is the

scaling factor determined by the stable rank value r. The vec-
tors u1, v1 are computed using the power iteration with (4),
thus they are the singular vectors of the underlying linear map-
ping. The algorithm leverages the fact that the power iteration
method does not require to explicitly construct the underlying
linear operators. The definition of a1 will be discussed next.

2.2 Analysis of the SRN-C
The kernels produced by the analogue proposed in [7] do

not verify the conditions of (3) S1 := u1v
T
1 ̸= C(a1). The

problems comes from the step

a1 = ∇ã(u
T
1 (ã ∗ v1)). (6)

Ideally, this step should yield a kernel that can produce the
rank-1 matrix u1v

T
1 corresponding to the maximum singular

value of the true linear mapping. However, we argue that:

1. When writing out the gradient term on the right-hand
side, a Jacobian matrix appears, meaning the result is
no longer exactly uvT ;

2. The circulant matrix generated by the resulting kernel
does not have rank 1;

In practice, we implemented this algorithm using PyTorch and
applied it to a kernel of shape (1, 1, 3, 3), i.e. a 3 × 3 kernel
and one input/output channel. The input image size is N ×N ,
thus resulting in a matrix of shape N2 × N2. The desired
stable rank is controlled by β ∈ (0, 1), targeting a stable rank
βN2. As expected, the matrix corresponding to the computed
a1 does not have a maximum singular value of 1, whereas
it ideally should; the final normalized kernel does not have
spectral norm 1, and the stable rank differs from the target
value βN2. 1

3 Stable Rank Normalization for Cir-
culant Matrices

The original SRN-C algorithm missed an important point,
whether the normalized matrix is still circulant. Furthermore,

1. Experiments are available at https://github.com/d-zhe/
srnc.
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if it is circulant, can it be represented by a kernel that has the
same shape as the original one?

For sake of simplicity let us restrict ourselves to 1-d kernels.
We define the Stable Rank Normalization Problem for convo-
lutional kernels as follows. Assume that we have a circulant
matrix C(a) that is generated by a kernel a ∈ Rq. The prob-
lem concerns finding a circulant matrix C(x) satisfying the
following conditions:

— Staying as close as possible to the given matrix C(a) in
terms of the Frobenius norm;

— Being generated by a kernel x that has the same length q
as a (the same support set after padding zeros to match
the signal to be convolved);

— Meeting the desired stable rank value r;
— Preserving the largest singular value.

Mathematically, the problem is formulated as follows if the
kernel is assumed to have length q (this can be generalized to
high dimension):

minimize
x∈Rq

∥C(x)− C(a)∥2F

subject to srank(C(x)) = r

σx
max = σa

max,

(7)

where σx
max and σa

max are the largest singular value of the
matrices C(x) and C(a).

We will first show that, if the stable rank r is chosen properly
the problem (7) is feasible. Then we propose a practical way
to find the solution and show numerical results.
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Figure 1 – The eigenvalues of Bk for frequency 0 ≤ k ≤
N − 1 over the sphere. λmin(Bk) ≤ gk(x) ≤ λmax(Bk), and
maxk gk(x) equals 3 in this case. Consequently, r ≥ N

3 .

3.1 Feasible Set
For circulant matrices, the singular values can be com-

puted from the Discrete Fourier Transform (DFT). Let us
consider the DFT matrix F = [f0, f1, · · · , fN−1], where
fk = (ξklN )Nl=0,··· ,N−1, ξ = exp( 2πiN ), is the k-th column. For
a kernel x = (x0, . . . , xN−1), the eigenvalues of its circulant
matrix are given by λ = Fx and therefore the singular values
are the magnitudes

λl =

N−1∑
k=0

xkξ
lk
N , σl = |λl|, l ∈ {0, 1, · · · , N − 1}. (8)

Let us denote the l-th squared eigenvalue gl(x) = σ2
l =

|
∑q−1

j=0 xjf
j
l |2, and represent the stable rank of a circulant

matrix associated with a kernel x by f(x) = srank(C(x)).
Then the constraints in (7) can be rewritten as follows:

f(x) =

∑
i σ

2
i

maxl σ2
l

=
N∥x∥2

maxl gl(x)
= r (9)

σx
max =

√
max

l
gl(x) = σa

max ≜ M (10)

⇐⇒ ∥x∥2 =
rM2

N
, max

l
gl(x) = M2. (11)

This shows that the feasible set consists of points on a sphere

of radius
√

rM2

N that satisfy maxl gl(x) = M2. Equivalently,
we can

— first find a vector x that verifies the stable rank condition
over the unit sphere ∥x∥ = 1,

— then scale it to the desired radius x̃ =
√

rM2

N x so as to
preserve the largest singular value.

The stable rank function f(x) is continuous w.r.t. x, there-
fore, when the desired stable rank value r is assigned appro-
priately, there must be a point on the unit sphere such that
f(x) = r. The stable rank of any matrix W ∈ RN×N satisfies

1 ≤ srank(W ) ≤ N,

the maximum value f(x) = N can be easily reached, for
example, taking x = (t, 0, · · · , 0), t ∈ R. However, the mini-
mum value of f(x) is not obvious.

To minimize the f(x) in (9), as the numerator is fixed, we
have to maximize the denominator on the unit sphere:

max
∥x∥2=1

max
l

gl(x), (12)

where gl(x) =
(
xT cosl

)2
+
(
xT sinl

)2
= xTBlx, with

cosTl = [cos (j · θl)]q−1
j=0 , sinTl = [sin (j · θl)]q−1

j=0 ,

θl =
2πl

N
, Bl = cosl cos

T
l +sinl sin

T
l

The quadratic form gl(x) is bounded by the minimum and
maximum eigenvalues on the unit sphere. The matrix Bl is
the sum of two rank-1 matrices, thus the rank of it is at most 2.
In fact, we have Tr(Bl) = Tr(cosl cos

T
l ) + Tr(sinl sin

T
l ) =

∥ cosl ∥2 + ∥ sinl ∥2 = q. Thus, the maximum eigenvalue over
all Bl must be reached for a rank-1 matrix. In all cases, l = 0
(DC) are l = N

2 (Nyquist, even N ) gives the desired results
that

max
∥x∥2=1

max
l

gl(x) = max
l

λmax(bl) = ∥ cosl ∥2 = q.

In conclusion, when the prescribed stable rank r satisfies
N
q ≤ r ≤ N , the feasible set of the optimization problem (7)

is non-empty, provided that the length of the kernel is q.
In Figure 1 we show an example for a kernel with q = 3

coefficients applied to signals of length N = 64. The Fig-
ure shows the two leading eigenvalues of Bl for every fre-
quency l. In our case, the maximum value is 3, attained by
x = (1, 1, 1)/

√
3, and at the frequency at k = 0 (cos θk =

1) or x = (1,−1, 1)/
√
3, k = 32 (cos θk = −1). This

result coincides with the intuition that the signal should con-
centrate the energy as much as possible on one single fre-
quency. For example, if we take θl = 2πl

N = 0, (l = 0),
then x is a truncated signal that has only one frequency: x is
xk = exp (i2πf0k/N), l = 0, 1, 2; f0 = 0 (DC).
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3.2 Approximating the Constraint
Following the idea to first find a point on the unit sphere

that satisfies the stable rank constraint, we have to solve this
equation

max
0≤k≤N−1

|
q−1∑
j=0

xjf
j |2k = max

0≤k≤N−1
gk(x) = N/r (13)

on the unit sphere Sq−1 = {x : ∥x∥2 = 1} for a valid stable
rank value r. For a fixed k0, gk0(x) = N/r is solvable on the
sphere, depending on the max and min eigenvalues of Bk0 .
However, argmaxk gk(x) = k0 does not necessarily hold.
If fact, {x ∈ Sq−1 : maxl gl(x) = N

r } =
⋃

l{x ∈ Sq−1 :

gl(x) =
N
r , gk(x) ≤ gl(x)}. Thus, solving (13) is difficult.

We define the function glse(x) to approximate maxl gl(x) =
maxl x

TBlx by log-sum-exp function, with parameter α > 0:

glse(x) =
1

α
log

(
N−1∑
l=0

exp
(
αxTBlx

))
. (14)

The optimization problem (7) can be rewritten as

min
x∈Rq

N∥x− a∥2

s.t. max
l

gl(x) = M2 and ∥x∥2 =
rM2

N
.

(15)

By penalizing the equality constraint, with changing the vari-
able onto the unit sphere and approximating by flse, we obtain

min
∥x∥=1

h(x) = (glse(x)−N/r)
2
+λN∥

√
rM2

N
x−a∥2. (16)

3.3 Numerical Experiments
We solve the optimization problem on the unit sphere (16)

by Riemannian gradient descent. Starting from a point z0 on
the sphere, for each iterates zt, we have

dt = ∇h(zt) compute the Euclidean gradient (17)

d̃t = dt − ⟨dt, zt⟩zt project onto the tangent space (18)

zt+1 =
zt − ηd̃t

∥zt − ηd̃t∥
update and normalize (19)

The procedure is implemented using PyTorch for computing
gradient easily. For q = 3, we plot the trajectory and the
distance and the stable rank of the iterates in Figures 2 and 3.
This solves the problem a = (1, 0, 0), N = 64, α = 10, λ =
0.1, starting from a random point on the sphere. The step size
is fixed as η = 1e− 5.

4 Conclusion
Smaller stable rank helps improve the generalizability of net-

works [6] and stabilize the recurrent networks [1, 7]. However,
the adaptation of the SRN algorithm from matrices to tensors
is not obvious [7]. This work presents the problem of SRN-C,
which aims at normalizing the stable rank for kernels, and
discusses the feasibility of the posed problem. The problem
is feasible when the desired stable rank r is properly chosen.
While without explicit solution to it, it brings difficulty to be
applied to CNNs. The future work includes 1) considering
2-d kernels; 2) relaxing the problem; 3) apply to CNN-based
networks with inexact solution.
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