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Résumé – Ce travail introduit une nouvelle approche pour récupérer les composantes périodiques des signaux multi-modulés.
Nous proposons un algorithme des moindres carrés alternés conçu pour la récupération des signaux périodiques dans des conditions
stationnaires. L’estimation initiale de cet algorithme est obtenue en appliquant une régression linéaire sur une forme linéarisée du
modèle de signal. De plus, les amplitudes des sources variant dans le temps (généralement associées à l’apparition de défauts)
sont mises à jour de manière adaptative à l’aide d’une technique de descente de gradient. Les résultats de simulation montrent que
notre approche est efficace, atteignant la borne inférieure de Cramér-Rao. Nos travaux actuels présentent des résultats prometteurs
basés sur des données expérimentales issues des signaux de vibration d’un engrenage planétaire, permettant ainsi de décomposer
efficacement le signal afin de localiser et suivre la dégradation de l’engrenage défectueux.

Abstract – In this paper, we investigate a model-based approach for recovering periodic components from multi-modulated
signals. We propose an alternating least squares (ALS) algorithm designed for periodic signal recovery under stationary conditions.
The initial guess for ALS is obtained by running a linear regression algorithm on a linearized form of the signal model. Additionally,
the time-varying source amplitudes (typically associated with fault degradation) are adaptively updated using gradient descent
technique. Simulation results show that our approach is efficient as it attains the Cramér-Rao lower bound. Our current work
demonstrates promising results based on experimental data from planetary gearbox vibration signal, effectively decomposing the
signal to localize and track the degradation of the faulty gear.

1 Introduction
Vibration analysis methods have shown good performance

in detecting various gearbox failures, as the vibration signals
contain critical information regarding the gearbox’s health.
Rotating machine such as planetary gearbox have vibration
signals that exhibit strong modulation characteristics due to
the amplitude modulation effect caused by the gear faults
[11],[6],[14]. The modulating frequencies are closely associ-
ated with the characteristic frequencies of gear faults. More-
over, modulation can be observed in vibration signals under
both healthy and faulty conditions. This is due to manufac-
turing errors, time-varying vibration transmission paths, and
unequally distributed loads, among other factors. These issues
make it difficult to distinguish fault-related modulations from
unrelated ones. Failure to address such challenges can often
mislead the diagnosis and localization of faulty components.
In rotating machine vibration analysis, the main challenge
is isolating a set of signals (known as source separation or
source extraction) related to the system’s moving parts from
the global vibration signal. This challenge has been widely
investigated for decades in fields such as audio processing,
telecommunications. Intensive research has been conducted to
address this issue for linear mixtures, quadratic mixtures, and
polynomial mixtures [2, 3, 4]. In health monitoring, accurately
distinguishing fault-related modulation components from those
unrelated to faults is essential for effective fault diagnosis and
localization in rotating gearboxes. Traditional envelope anal-
ysis, Hilbert demodulation, and empirical mode decomposi-
tion (EMD) methods often struggle to separate modulation
contributions from different system components in gearbox

vibration signals, which can hinder the monitoring of faulty
components [11], [14]. In [12] a source separation method,
using a tachometer and the prior knowledge of the kinematic
gearbox model, has been introduced to estimate and separate
the periodic sources. This method relies on a linearization
step, which results in the estimation of a large and redundant
set of parameters. As a consequence, the method in [12] is
inefficient, with a large loss of performance as compared to
the Cramer Rao Bound (CRB).

In this paper, we propose an improved solution which solves
the previous issue and meets the CRB. Both batch and adaptive
implementations are proposed using alternating least squares
optimization technique.

2 Problem Setup
Without loss of generality, we consider the vibration signal

of a planetary gearbox system with T samples, described by
the following equation [5, 13]:

x(t) = s(t) + n(t) t = 1, · · · , T (1)

s(t) = s1(t)(1 + s2(t))(1 + s3(t)) (2)

which represents multi-amplitude modulations (AM) between
three periodic source signals s1≤i≤3 with estimated (or a priori
known) fundamental frequencies fi, i = 1, · · · , 3, typically
related to the machine’s rotation frequencies. s1(t) represents
the meshing component, s2(t) the modulation at the carrier
plate frequency, and s3(t) the sun gear rotation contribution.
n(t) is an additive white Gaussian noise with zero-mean and
variance σ2

n. Consider a stationary regime (i.e. frequencies fi
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are invariant) and let Hi be the number of ’active’ harmonics 1

of the i-th source, so that it can be written as:

si(t) =

Hi∑
l=1

sin(2πlfit)wi,l + cos(2πlfit)w̃i,l (3)

where wi,l = ai,lcos(ϕi,l) and w̃i,l = ai,lsin(ϕi,l) are the
harmonic amplitudes (and phases) to be estimated. Given a set
of observations for t = 1, · · · , T , one car rewrite equation (3)
in vector form as:

si = D(fi)wi + D̃(fi)w̃i (4)

where si = [si(1), · · · , si(T )]T , wi = [wi,1, · · · , wi,Hi
]T ,

w̃i = [w̃i,1, · · · , w̃i,Hi ]
T , and

D(fi) =

 sin(2πfi) · · · sin(2πHifi)
...

...
sin(2πTfi) · · · sin(2πTHifi)



D̃(fi) =

 cos(2πfi) · · · cos(2πHifi)
...

...
cos(2πTfi) · · · cos(2πTHifi)


which are the source harmonics dictionaries in stationary

condition. The main focus then is estimating the Fourier coef-
ficients {wi, w̃i} of each source and tracking their variations,
given the signal x(t) and the sources’ fundamental frequen-
cies 2. Note that, in practice, the number of active harmonics
Hi is unknown and is replaced at first by an overestimation,
Hmax, as shown next.

3 Maximum Likelihood (ML) Solution
with ALS Optimization

3.1 Cramer Rao Bound
Under the assumption that n(t) is Gaussian, it is straightfor-

ward to write the likelihood function of the data and to derive
an explicit expression for the Cramer Rao Lower Bound. 3 The
estimation error of the source’s parameters vectors, denoted θ,
is measured via its variance 4 [8]. Let’s denote the parameters
vector as follows:

θ =
[
wT

1 , w̃
T
1 ,w

T
2 , w̃

T
2 ,w

T
3 , w̃

T
3

]T
= [θT

1 ,θ
T
2 ,θ

T
3 ]

T (5)

The problem at hand is fully identifiable, thereby the variance
of any unbiased estimator θ̂ of θ has a theoretical limit called
Cramer Rao Bound (CRB):

V AR(θ̂) ≥ CRB(θ) = F (θ)−1 (6)

where F (θ) is the Fisher Information Matrix (FIM) which
(i, j)-th entry, in this Gaussian noise case, is given by [9]:

Fi,j(θ) =
1

σ2
n

[
∂µ(θ)

∂θi

T ∂µ(θ)

∂θj

]
(7)

1. In practice, the vibration signal periodic sources have a finite number
of harmonics, effectively contributing to the considered signal.

2. The frequencies are determined based on a measure of shaft rotation
speed and machine’s kinematic model.

3. When the Gaussian hypothesis is not valid, the algorithm of this paper
is still applicable, but it will no longer provide the Maximum Likelihood
estimate.

4. Here we consider only unbiased estimators.

where µ(θ) = s = [s(1), · · · , s(T )]T is the T dimensional
mean vector. The derivatives involved in (7) are straightfor-
ward and are omitted in this presentation. In the sequel, the
CRB is used as a benchmark to illustrate the efficiency of our
estimator.

3.2 Alternating Least Squares
We propose handling the nonlinear model in (2) by leverag-

ing an alternating least squares (ALS) approach to minimize
the objective function:

argmin
θ

T∑
t=1

||x(t)− ŝ1(t)(1 + ŝ2(t))(1 + ŝ3(t))||22 (8)

where ŝi = Diŵi + D̃i
ˆ̃wi. Note that (8) represents the ML

estimator in the white Gaussian noise case.
Rather than solving for all θi jointly, the ALS method al-

ternates between minimizing the least squares error for each
sources’ parameters individually. By doing so, one reduces the
non-linear optimization problem into a set of quadratic least
squares (LS) problems (with closed form solution) [1]. For an
observed data vector x = [x(1), · · · , x(T )]T , the ALS algo-
rithm proceeds iteratively, updating the parameters θ1≤i≤3 at
each step using the closed-form analytical solution of the LS
problem, as follows:

Algorithm 1: ALS (Alternating Least Squares)
Input: Initial data x, number of iterations epochs
Initialization: Randomly initialize parameters θ
k ← 0
while k ≤ epochs do

k ← k + 1
θ
(k)
1 ← A#

1 b1, ŝ1 = [D1, D̃1]θ
(k)
1

θ
(k)
2 ← A#

2 b2, ŝ2 = [D2, D̃2]θ
(k)
2

θ
(k)
3 ← A#

3 b3, ŝ3 = [D3, D̃3]θ
(k)
3

end
Return θ(k)

where ()# denotes the Moore-Penrose pseudo inverse and:

A1 =diag ((1 + ŝ2)⊙ (1 + ŝ3)) [D1, D̃1] (9)
b1 =x (10)

A2 =diag ((1 + ŝ3)⊙ ŝ1) [D2, D̃2] (11)
b2 =x− ŝ1 ⊙ (1 + ŝ3) (12)

A3 =diag ((1 + ŝ2)⊙ ŝ1) [D3, D̃3] (13)
b3 =x− ŝ1 ⊙ (1 + ŝ2) (14)

where diag(x) is the diagonal matrix with vector x as main
diagonal and ⊙ refers to the elementwise multiplication.

3.3 Algorithm’s initialization
Random initialization leads from time to time to ill conver-

gence (i.e. convergence to local minima). Hence, to overcome
this issue and to enhance the convergence rate too, we replaced
the random initialization by the weights given by LASSO ap-
plied to a linearized form of (2). The LASSO-like objective
function is defined as follows:

argmin
w

1

2

∑
t

||x(t)−Dw(t)||22 + λ||w||1 (15)
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where D represents the dictionary containing all possible com-
binations of the sources’ harmonics according to the model
(2) (see [12] for details), w denotes the modulated harmonic
weights of the sources, and λ is the ℓ1-norm regularization
penalty coefficient, which ensures the selection of the most
significant source harmonics. Indeed, in practice, the number
of harmonics is unknown, and so we build the dictionary D
with an over-estimated number of harmonics for each source.
However, the authors of [12] demonstrate that this approach
does not achieve the theoretical Cramér-Rao bound, exhibiting
a significant performance gap with the CRB, which will also
be shown later. This result is not surprising, as this method es-
timates a quite large and redundant number of parameters, i.e.,
a total of 2H1(1 +H2)(1 +H3) weight coefficients instead
of 2(H1 +H2 +H3) weight coefficients for our method.

3.4 Adaptive algorithm
When material degradations start occurring, the number of

harmonics and their amplitudes and phases vary over time, in
a continuous pattern[5]. Health monitoring and abnormalities
detection require considering an adaptive process to estimate
these time-varying parameters, initialized with the closed-form
solution provided by LASSO or ALS at the initial time step.

Many possible solutions can be chosen for the adaptive algo-
rithm. In this work, we have considered using a gradient-like
method, namely ADAM optimizer 5 (see [10] for the algo-
rithm’s details), applied on a mini-batch of observations of
size N , i.e. xt = [x((tN + 1), · · · , x((t + 1)N)]T , and ini-
tialized with the parameter value at the previous iteration.

Our adaptive algorithm is summarized in the following table:

Algorithm 2: Time-varying Parameters Estimation
Input: Observations x0,x1, . . . ,
Initialize: θ0 = ALS(D,x0),
for t ≥ 1 do

θt = ADAM(θt−1,D,xt)
end
Return: θt

Algorithm 3: Time-varying Parameters Estimation
Input: Observations x0,x1, . . . ,
search f1(t = 0)

for t ≥ 1 do
f1(t) = ADAM(f1(t− 1),D,xt)

end
Initialize: θ0 = ALS(D,x0),
for t ≥ 1 do

θt = ADAM(θt−1,D,xt)
end
Return: θt

4 Simulation results

4.1 Synthesized data
To assess the performance of the proposed approach and

compare it against the Cramer Rao theoretical limit, we con-
sider a synthetic signal x sampled at fs = 1000 Hz with

5. ADAM stands for Adaptive Moment Estimation.

Figure 1 – Our approach-based ALS performance against the
CRB with low level of SNR over 100 run.

T = 200, 000 samples. The signal consists of M1 = 3 carrier
harmonics with a fundamental frequency f1 = 99 Hz. The
first modulated source, s2, contains M2 = 3 harmonics with
a fundamental frequency f2 = 1 Hz, and the second modu-
lated source, s3, has a fundamental frequency f3 = 2.83 Hz
and contains also M3 = 3 harmonics. To evaluate the robust-
ness of the approach against the noise, white Gaussian noise
has been added to the simulated signal s such that the input
signal-to-noise ratio varies from -5 dB to 10 dB.

Figure 1 shows the results of running LASSO on our model
with a sparsity penalty. The mean square error (MSE) of
the source parameters exhibits a large gap from the CRB.
However, using LASSO as an initialization for ALS later leads
to a good match with the CRB. In addition to the statistical
efficiency of our solution, it also demonstrates robustness to
harmonic number overestimation errors. Indeed, the plots in
Figure 1 have been obtained with an overestimated number of
harmonics M = 5 (for all sources) while the exact number
was M = 3.

In our second experiment, we generate data with variable
harmonic amplitudes and phases for both the carrier and the
modulations, then run our tracking (adaptive) algorithm. ALS
is first applied to an initial batch of data before attempting to
track the parameters. The performance evaluation for SNR =
10 is shown in Figure 2, where we present the results over time.
We conclude that starting with an optimal initialization using
ALS allows for an easy gradient descent. In the figure, we ob-
serve that some parameters are initially set to zero during the
first time steps (source 3), illustrating a situation of harmonic
number overestimation. However, over time, they gradually in-
crease due to degradation, and our tracking algorithm captures
this behavior. This is crucial to system health monitoring.

4.2 Planetary gearbox vibration analysis
In this section, we examine the ALS approach to analyze

vibration signal recorded during a fatigue test on a helicopter
planetary gearbox. The test was designed to investigate the
phenomenon of fatigue cracking in a planet gear. The sam-
pling frequency is fs = 11583 Hz. The characteristics of the
planetary gearbox are as follows: the ring gear has 99 teeth, the
planet gear has 35 teeth, the sun gear has 27 teeth, and there
are 4 planet gears. Only the last 7 days have been loaded, dur-
ing which we have 526 files of 100-second data acquisitions
each. For more details on the dataset, refer to [7]. Our focus is
to individually estimate the meshing signal s1 and the planet
carrier related signal s2 and the planet gear related signal s3.
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Figure 2 – Tracking of source parameters over time with
SNR = 10 dB. Each plot shows the tracking of five har-
monics of the considered source.

Figure 3 – The root-mean-square (RMS) of the estimated
sources s1, s2, s3. The modulation signal s1 exhibits a mono-
tonic trend correlated with the increasing planetary gear degra-
dation, especially in the final measurements, where an artificial
crack is introduced along the planetary gear. In contrast, the
meshing and modulation signal s2 fluctuate over time without
a clear monotonic pattern.

We set the number of overestimated harmonics for each source
si to 15. The vibration signal model of such planetary gearbox
is the same given by (2).We performed ALS on our dataset,
analyzing the measurements from 1 to 526 with an increment
of 10. We then calculated the root mean squares (RMS) of
the sources si≤i≤3, as shown in Figure 3. The RMS of the
meshing source s1 and the carrier plate signal s2 fluctuates.
However, the RMS of the planet signal exhibits a monotonic
behavior, which informs about an occurrence of fault in the
planet gear that matches with the planet introduced crack. The
crack increases drastically in the last days, as the HUMS23
Team [7] made the crack more severe during that period. With
our simple proposed method, one can easily track the defective
part while monitoring its degradation over time.

5 Conclusion
In this study, we present a simple approach of a mult-

modulation decomposition using an alternating least squares
approach, providing a vibration signal and a set of system
rotation frequencies. The extracted sources have crucial infor-
mation about the related components, which could aid in early
fault detection and localization. A synthetic signal was used
to illustrate the statistical efficiency of the proposed approach,
i.e., it attains the theoretical CRB limit. Additionally, we ran

a use-case application with a planetary gearbox, where we
successfully identified the defective part as the planet gear
and tracked its degradation over time. However, further de-
velopment is needed to extend this method to non-stationary
vibration signals (e.g., variable speeds and loads). This will
require incorporating a frequency estimation and tracking step
alongside amplitude estimation in the nonlinear model to dy-
namically adapt to changing conditions.
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