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Résumé – De nombreux systèmes réels génèrent des séries temporelles multivariées présentant des propriétés d’auto-similarité
et d’invariance d’échelle. L’estimation des exposants de Hurst est cruciale pour analyser les dépendances à long terme, mais les
méthodes traditionnelles basées sur l’analyse des valeurs propres induisent des distorsions, notamment en présence de variations
d’amplitude d’échelle. Nous proposons une approche améliorant la précision de l’estimation via la diagonalisation conjointe
de matrices aléatoires issues de la transformée en ondelettes. En approximant une matrice de mélange instantanée commune à
plusieurs échelles, notre méthode surmonte les limites des régressions des valeurs propres, assurant des estimations plus fiables. Des
simulations de Monte Carlo confirment sa supériorité sur les techniques conventionnelles en mélange orthogonal et non orthogonal.

Abstract – Estimating Hurst exponents is essential for analyzing long-range dependencies in multivariate time series, which
often exhibit self-similarity and scale invariance. However, traditional eigenanalysis-based methods can introduce distortions,
particularly when scaling amplitudes vary. To address this, we propose a novel approach that improves estimation accuracy by
jointly diagonalizing wavelet random matrices. By approximating a common instantaneous mixing matrix across multiple scales,
our method circumvents the limitations of scale-wise eigenvalue regressions, leading to more reliable self-similarity parameter
estimates. Extensive Monte Carlo simulations demonstrate its advantages over conventional techniques in both orthogonal and
non-orthogonal mixing scenarios.

1 Introduction
Scale invariance. Scale invariance is a key property in many
domains, including physics and engineering. A signal X is
scale-invariant (or fractal) when it exhibits self-similarity
across scales, lacking a characteristic temporal scale. Un-
like conventional statistical models, defined for fixed scales,
such signals are characterized by scaling exponents, which
quantify their behavior across multiple resolutions. A cor-
nerstone model is fractional Brownian motion (fBm) [9],
the only Gaussian, self-similar process with stationary in-
crements. The Hurst exponent H governs its scaling law :
{BH(t)}t∈R

f.d.d.
= {aHBH(t/a)}t∈R, 0 < H < 1. Estima-

ting H is essential in signal processing applications such as
classification, anomaly detection, and system diagnosis. The
wavelet transform provides a powerful framework for extrac-
ting scaling exponents [13].
Multivariate self-similarity. While univariate fBm is well
understood, the increasing availability of multivariate data ne-
cessitates extensions to self-similar processes in higher dimen-
sions. For instance, brain activity time series in neuroscience
span from hundreds (MEG) to thousands (fMRI) of channels.
In econometrics, detecting scaling laws in fractional time series
is key to understanding long-run dependencies, such as cointe-
gration [10]. Operator fractional Brownian motion (ofBm) is
a canonical model for multidimensional scale-invariant struc-
tures in real data [8]. A key difficulty in such datasets is that
multiple distinct Hurst exponents can define large-scale beha-

vior along non-canonical axes, and failing to account for them
can lead to severe estimation biases [2].
Eigenanalysis of Wavelet Random Matrices. Random ma-
trices are fundamental in mathematical physics [5] and high-
dimensional statistics [14]. Wavelet random matrices (WRMs)
extend this framework to multivariate fractal systems, revea-
ling multiple scaling laws as power laws in their eigenspectra,
governed by Hurst exponents ; the authors first introduced
WRMs in [1]. Despite strong asymptotic properties, WRM
eigenanalysis struggles with finite samples, particularly due to
variations in scaling amplitudes. After log-linearization, affine
scaling laws may cross over, biasing Hurst exponent (slope)
estimates. In the case of instantaneously correlated systems,
blind source separation [6] provides inspiration for a solu-
tion. Namely, one can exactly joint diagonalize WRMs at two
scales [3] and, hence, estimate the mixing matrix that distorts
power laws. While effective in specific settings, this method
is limited to two scales and lacks robustness. Furthermore, it
is affected by significant crossover effects over small scales,
impacting Hurst exponent estimation performance.
Goals and Contributions. This work introduces an efficient
method for estimating Hurst exponents in instantaneously cor-
related, multivariate self-similar systems while addressing cros-
sover distortions. Section 2 reviews the operator fractional
Brownian motion (ofBm) model and wavelet eigenvalue-based
estimation. Our first main contribution, detailed in Section 3,
consists in a novel WRM diagonalization method across mul-
tiple scales, leveraging a recently proposed algorithm [12].

1

mailto:herwig.wendt@irit.fr
mailto:gdidier@tulane.edu
mailto:marcus.carlsson@math.lund.se
mailto:erik.troedsson@math.lund.se
mailto:patrice.abry@ens-lyon.fr


This approach advances WRM-based estimation by mitigating
crossover effects. Section 4 presents an extensive numerical
study, showing improved finite-sample performance over stan-
dard eigenanalysis and exact joint diagonalization [2]. Finally,
Section 5 discusses implications and future research directions.

2 Multivariate self-similarity

2.1 Operator fractional Brownian motion
We recall the definition and key properties of ofBm [8].
Let BH,Σ(t) =

(
BH1(t), . . . , BHM

(t)
)
t∈R denote an M -

dimensional fBm with Hurst exponents H = (H1, . . . ,HM ),
where 0 < H1 ≤ · · · ≤ HM < 1. The covariance matrix
Σ has entries (Σ)`,`′ = σ`σ`′ρ`,`′ , with variances σ2

` and
correlation coefficients ρ`,`′ . OfBm is the Gaussian, stationary-
increment process BP,H,Σ(t) = PBH,Σ(t), where P is an
invertible M ×M matrix that mixes the fBm components,
thus altering the scaling coordinates. It satisfies the operator
self-similarity relation

{BP,H,Σ(t)}t∈R
f.d.d.
= {aHBP,H,Σ(t/a)}t∈R, ∀a > 0, (1)

where the matrix Hurst exponent is H = P diag(H)P−1,
and aH =

∑∞
k=0(logk a)Hk/k!. When the demixed process

P−1BP,H,Σ(t) = BH,Σ(t) has uncorrelated entries, the pro-
cess is instantaneously correlated. Hereinafter, we focus ex-
clusively on such cases, setting Σ = I .

2.2 Wavelet analysis of ofBm
Multivariate Wavelet Transform. Let ψ represent a mother
wavelet, which is a real-valued function that satisfies the condi-
tion

∫
R ψ

2(t) dt = 1. For each k, j ∈ N, the multivariate
discrete wavelet transform of the sequence {BP,H,Σ(t)}t∈R
is given by D(2j , k) = (D1(2j , k), . . . , DM (2j , k)), where
D`(2

j , k) = 〈2−j/2ψ(2−jt − k)|BP,H,Σ,`(t)〉 ∈ R for
` ∈ {1, . . . ,M}. For a detailed overview of wavelet trans-
forms, see [11]. The wavelet coefficients {D(2j , k)}k∈Z can
be proven to satisfy, for every fixed octave j, the operator
self-similarity relation [2]

{D(2j , k)}k∈N
f.d.d.
= {2j(H+ 1

2 I)D(1, k)}k∈N. (2)

Eigenanalysis. Starting from the measurements of BP,H,Σ,
the wavelet random matrix (WRM) at octave j = j1, . . . , j2 is
represented by the symmetric M ×M matrices

S(2j) =
1

nj

nj∑
k=1

D(2j , k)D(2j , k)T , (3)

where n denotes the sample size and nj ' n/2j corresponds
to the number of wavelet coefficients available at scale 2j .
In [2] it was shown that, except for the trivial case P = I ,
estimation based on the entrywise multiscale behavior of S(2j)
generally introduces arbitrarily large bias.

Alternatively, consider the eigen-decompositions of the ran-
dom matrices in (3), S(2j) = UjΛ(2j)UTj , j = j1, . . . , j2,
where Λ(2j) = diag(λ1(2j), . . . , λM (2j)) is the diagonal
matrix of eigenvalues of S(2j), and the orthogonal matrix

Uj ∈ RM×M contains the eigenvectors of S(2j) as columns.
It was established in [2] that

λm(2j) ≈ ζm · 2j(2Hm+1), (4)

in the large-sample and large-scale limits, as n, j →∞, where
ζm > 0 are the scaling amplitude constants. Consequently,
the Hurst exponents (H1, . . . ,HM ) can be efficiently estima-
ted with the wavelet estimator (Ĥ1, . . . , ĤM ) defined by the
weighted log-eigenvalue regression :

Ĥm=
1

2

 j2∑
j=j1

wj log2 λm(2j)− 1

, m = 1, . . . ,M, (5)

where the weights wj satisfy the conditions
∑
j jwj =

1 and
∑
j wj = 0 (cf. [13]). Under mild assump-

tions, it was demonstrated in [2] that (Ĥ1, . . . , ĤM )
P→

(H1, . . . ,HM ) as n, j → ∞, with asymptotically Gaus-
sian fluctuations.

3 Estimation by multiscale demixing

3.1 Approximate demixing of WRMs
Although the scale-wise eigenanalysis-based estimation is very
robust, a key conceptual difficulty arises from the fact that it
orders the eigenvalues at each scale independently by ma-
gnitude. Due to discrepancies in scaling amplitudes (linear
coefficients in a log-log plot), this can lead to the crossover
effect, i.e., the incorrect permutation of log-scaling curves
stemming from eigenvalue ordering. This introduces slope es-
timation biases when used in (5). This situation is illustrated
in Fig. 1 (left column). Here, we propose a new estimator for
(H1, . . . ,HM ) that leverages the fact that, by linearity, if we
knew the true mixing matrix P , we could demix and reco-
ver the scaling relation of the fBm components entry-wise,
BH,Σ(t) = P−1BP,H,Σ(t). In a finite-sample setting, our key
idea is to jointly diagonalize the matrices S(2j) approxima-
tely, using a single nonsingular estimation P̂ for the unknown
matrix P . This yields the factorization

S(2j) = P̂ Λ̂(2j)P̂T . (6)

In (6), Λ̂(2j) is an approximately diagonal matrix whose dia-
gonal entries approximately reproduce the scaling (4),

Λ̂mm(2j) ≈ ζ̌m2j(2Hm+1), ,m = 1, . . . ,M. (7)

To construct the wavelet estimator for (H1, . . . ,HM ), we
thus replace the scale-wise eigenvalues λm(2j) in (5) with
Λ̂mm(2j). As a key advantage, if P−1P̂ ≈ I , the approach (6)
preserves the ordering of scaling laws by approximately resto-
ring the scaling relations of the individual fBm components.

3.2 Multiscale estimation of mixing matrix
The key step in the proposed approach is to construct an accu-
rate estimate of the mixing matrix P , or its inverse V = P−1,
up to nonidentifiability by scaling and permutation factors [6].
In [3], this was attempted via the exact diagonalization of two
WRMs S(2j) at different scales j = J1, J2. While this method
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FIGURE 1 : Log-scaling plots for eigenvalues λm(2j) (EIG, left column), and Λ̂mm(2j) for 2DM (column 2 to 4) and JDM
(column 5 to 7) computed for (J1, J2) = (1, 12), (1, 6), (6, 12) (sub-column 1 to 3), respectively. From top to bottom : ξ3 =
(0.25, 0.5, 0.75, 1), respectively for amplitude of 3rd fBm component (before mixing). Rms values for two scaling ranges are given
in each subplot. Best, second best and third best results for each row are marked blue, red, green, respectively.

has shown good performance for several instances of scaling
systems, it is limited by relying on only two scales of analysis,
which may result in poor Hurst exponent estimates, especially
when scaling laws cross over. Here we propose a more robust
approach estimate P as an approximate diagonalizer for a set
of WRMs S = {S(2J1), . . . , S(2J2)} for a range of scales.
The problem of jointly diagonalizing a set of matrices has
been extensively studied, and several algorithms have been
proposed [6]. One possibility is to define the demixing matrix
V̂ = P̂−1 as the minimizer of a functional

fS(V ) =
1

2

J2∑
j=J1

∑
i6=j

∣∣(V S(2j)V T )ij
∣∣2 (8)

that penalizes the magnitude of off-diagonal matrix, as V̂ =
argminV fS(V ). To avoid the trivial solution V = 0, and to
fix the arbitrary scaling, V is further constrained to have unit
column norm, i.e., V is a matrix on the oblique manifold.
This approach was, for example, considered in [4], where
expressions for the gradient, ∇fS|V , and Hessian operator,
HS|V (W ), were obtained and used in a trust region algorithm
for solving (8). Here, we propose using these expressions
in a conjugate gradient (CG) algorithm with a multiplicative
change of basis and Newton step size recently put forth in
a similar context in [12]. To this end, we adopt it for no-
northogonal matrices V on the oblique manifold as follows,
making use of the projection operator into the tangent space
ΠV (X) = X − V diag(diag(V TX)) :

Initialization (i = 0) : Set S0 = S and V0 = I .
Compute initial search direction R0 = −ΠV (∇fS0 |I)

and perform steps 4 to 7 (gradient descent step).

1. Set R̃i−1 = (I + λi−1Ri−1)−1Ri−1 given Ri−1, Si.

2. Compute gradient ∇fSi |I and ∇̃fSi |I =ΠV (∇fSi |I)
3. Update search direction using Daniel’s rule for nonlinear

conjugate gradient, Ri = ΠV (−∇̃fSi |I + βi−1R̃i−1),

where βi−1 =
〈∇̃fSi |I ,HSi |I(R̃i−1)〉
〈R̃i−1,HSi |I(R̃i−1)〉 [7].

4. Compute Newton step-size λi = − 〈∇̃fSi |I ,Ri〉
〈Ri,HS|I(Ri)〉 .

5. Update matrix set Si+1 = ((I + λiRi)Si(I + λiRi)
T .

6. Update estimate Vi+1 = (I + λiRi)Vi and column-
normalize.

7. If not converged, set i = i+ 1 and go back to 1).

4 Numerical results
Monte Carlo Simulation. We apply the log-regression es-
timator in (5) through three different methods : the standard
scale-wise eigenanalysis (EIG), demixing based on exact dia-
gonalization of two scales as described in [3] (2DM), and the
proposed multiscale demixing approach (JDM). These me-
thods are evaluated over NMC = 100 realizations of an ofBm
process with n = 216, M = 3 and H = (0.6, 0.7, 0.9). To
enhance clarity in the log-log plots, and without affecting the
generality of the analysis, we analyze the increment process
of the ofBm. The mixing matrix is constructed as P = PαA,
where Pα is a random orthonormal matrix that is modified
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such that the last column forms an angle α = 66◦ with the
second-to-last column, remaining orthogonal to all other co-
lumns, and A = diag(1, 1, ξ) modifies the scaling amplitude
ζ3 in (4) and hence the crossover of eigenvalues λm(2j) ; we
study the cases ξ3 = (0.25, 0.5, 0.75, 1).
Estimation. For the analysis, we use a Daubechies wave-
let with two vanishing moments and scaling range (j1, j2) =
(2, 12) for the regressions (5). For demixing (2DM and JDM),
three different choices (J1, J2) = (1, 12), (1, 6), (6, 12)
are compared. The conjugate gradient (CG) algorithm is
run for 1000 iterations on normalized matrices, S̃(2j) =
S(2j)/‖S(2j)‖. Performance is evaluated based on the mean,
standard deviation (std), and root mean squared error (rms)
calculated across realizations.
Performance for eigenvalue based estimation. Fig. 1 (left
column) displays log-log plots of λm(2j) for four different sca-
ling amplitudes (from top to bottom), the average estimations
for each Hm,m = 1, . . . ,M , and the rms values (averaged
over m). The scaling behavior is clearly affected by the in-
consistent ordering of eigenvalues across scales (referred to as
crossover), occurring both at finer scales (j ≈ 3) and at coarser
scales (j ≈ 11 to j ≈ 5 from top to bottom). This results in
significant bias in the estimation, as indicated by large rms
values up to approximately 0.1, with the exception of the first
row, where the crossover happens at the largest scales.
Performance comparison for demixing. Fig. 1 presents
log-log plots of Λ̂mm(2j) after demixing using 2DM (columns
2 to 4) and JDM (columns 5 to 7) for three different scale pairs,
(J1, J2). The best, second best, and third best results, based on
rms values, are highlighted with blue, red, and green frames,
respectively. The results show that both 2DM and JDM effec-
tively produce straight scaling laws for Λ̂mm(2j), free from
crossovers, across all scaling amplitudes. However, a closer
examination reveals that the estimates forH and rms values ob-
tained with 2DM are generally worse than those from JDM in
nearly all scenarios. In contrast, the JDM method consistently
yields nearly unbiased estimates for H , with rms values signi-
ficantly smaller than those from EIG and 2DM. Specifically,
rms values are approximately 0.016 for all scenarios when
(J1, J2) = (1, 12) or (1, 6), which is up to six times smaller
compared to EIG and 2DM. When only the large scales are
used for demixing ((J1, J2) = (6, 12)), the rms values are
slightly larger but still outperform those of the other methods.

Overall, these findings demonstrate that the proposed JDM
method showcases significant advantages over EIG and over
2DM, ensuring robust and improved performance for challen-
ging data scenarios.

5 Conclusions
We introduced a multiscale demixing approach (JDM) for esti-
mating Hurst exponents in multivariate self-similar processes,
addressing issues arising from eigenvalue crossover and incon-
sistent ordering across scales. By applying approximate joint
diagonalization of multiple wavelet random matrices, through
a conjugate gradient algorithm, the proposed method effecti-
vely reconstructs the underlying scaling laws while preserving
their relative ordering. Monte Carlo simulations demonstrated
that JDM consistently outperforms both the standard eigena-
nalysis method and the two-scale demixing method, yielding

nearly unbiased Hurst exponent estimates with significantly lo-
wer root mean squared errors. This highlights the robustness of
the approach, particularly when a broad range of scales is utili-
zed for demixing. These findings suggest that JDM provides
a powerful alternative for multiscale analysis of self-similar
processes. Future work includes extending this approach to
more complicated instances of multivariate self-similarity –
e.g., non-instantaneous correlations –, and studying the perfor-
mance of the methodology in neuroscientific modeling.
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