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Résumé – De nouvelles conditions de cohérence des données (DCC) adaptées à la tomographie par fluorescence X (XFCT) et
intégrant explicitement l’auto-absorption sont introduites. Ces DCC permettent d’estimer le centre de rotation à partir d’une seule
paire de projections séparées d’un demi-tour et acquises par deux détecteurs opposés. Elles permettent une compensation partielle
d’un déplacement rigide de l’échantillon. Cette méthode de calibration est analytique et ne nécessite aucun marqueur.

Abstract – A novel set of data consistency conditions (DCCs) tailored to X-ray fluorescence computed tomography (XFCT) is
proposed, explicitly accounting for self-absorption. These DCCs enable estimation of the center of rotation from a single pair of
projections separated by half a rotation and acquired from opposing detectors. They also allow for partial compensation of a rigid
displacement of the sample. This method offers a marker-free, analytical calibration strategy for XFCT.

1 Introduction
In X-ray fluorescence computed tomography (XFCT), three-

dimensional elemental distributions are reconstructed from
sets of two-dimensional fluorescence projections. However,
reconstruction quality can be compromised by inaccuracies
in geometric calibration. This calibration involves the precise
determination of the acquisition geometry, and various meth-
ods have been developed for X-ray transmission computed
tomography (XTCT) setups, ranging from simple parallel-
beam configurations to more complex divergent geometries.
In typical XFCT setups, XTCT data can be acquired simul-
taneously, enabling calibration based on transmission data.
However, this approach becomes unreliable when beam attenu-
ation is insufficient, resulting in low contrast in the XTCT data.
Consequently, calibration techniques that rely on the XFCT
data become necessary.
Marker-based alignment methods prove an effective approach
[6], but these require insertion of physical markers into the
sample. Alternatively, heuristic methods originally developed
for XTCT — such as reprojection-based sample motion cor-
rection [2] and autofocus techniques for center-of-rotation
estimation [5] — have demonstrated effectiveness in XFCT
calibration [1].
Analytical XTCT calibration approaches, particularly those
based on the Helgason–Ludwig data consistency conditions
(DCCs) [8], have been employed for identifying sample mo-
tions [7] and determining the center of rotation [3], but they
fail to account for attenuation effects specific to XFCT. To
the best of the authors’ knowledge, no analytical calibration
method exists that is specifically tailored for XFCT.
The major obstacle in developing such methods lies in incor-
porating attenuation effects, especially since attenuation maps
are typically unknown — except at the incoming beam energy
when XTCT data is acquired. To address this limitation, a
novel set of DCCs tailored to dual-detector XFCT setups is
proposed, explicitly incorporating attenuation effects. By cor-
relating fluorescence data acquired from oppositely positioned

detectors, this approach facilitates determination of the center
of rotation and constrains sample motion.
This paper presents a center-of-rotation determination and
motion correction methodology for XFCT based on newly
formulated XFCT-specific DCCs. In contrast to traditional
transmission-based calibration approaches, this method ac-
counts for attenuation. Validation through simulations demon-
strates the effectiveness of this method.

2 Definitions and Notation

2.1 Geometry
Two-dimensional fluorescence projections are acquired by

deconvolving off-axis spectral measurements, avoiding detec-
tion of the transmitted beam. To localize the fluorescence
signal within the sample, collimators may be used [4], though
higher spatial resolution is typically achieved with a pencil
beam setup. To minimize scattered photon detection, detectors
are generally placed at a 90◦ angle relative to the incident
beam. In systems with linearly polarized light, such as those at
synchrotron facilities, scatter suppression is further enhanced
when detectors lie in the plane of polarization.
In this work, a dual-detector configuration is considered, al-
though the proposed method extends to any number of oppo-
sitely placed detector pairs. Two point detectors are positioned
far away at 90◦ on either side of the incident beam, as illus-
trated in figure 1. Denoting the center of rotation by c⃗, the
clockwise rotation of a point q⃗ by an angle θ about this center
is given by:

Rθ(q⃗) =

[
cos θ sin θ
− sin θ cos θ

]
(q⃗ − c⃗) + c⃗ (1)
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Figure 1 – Dual-detector XFCT system. An X-ray pencil beam
propagates in the t-direction and scans the sample along the
s-axis, covering all points q⃗. Two point detectors, (+) and
(−), are positioned far from the sample, perpendicular around
the beam. The sample rotates clockwise by an angle θ.

2.2 Sample Maps
2.2.1 Fluorescence Map

The intensity of a fluorescence line from an element Z
emitted at point q⃗, denoted by f

(Z)
line (q⃗, θ) [cm−1], resulting

from an incident beam of energy E0, is given by:

f
(Z)
line (q⃗, θ) = ρ(Z)(R−θ(q⃗))σ

(Z)
line (E0) (2)

where ρ(Z)(q⃗) [g/cm3] represents the spatial distribution of
element Z, Rθ(q⃗) is the rotation matrix defined in equation
1, and σ

(Z)
line (E0) [cm2/g] denotes the effective fluorescence

cross-section corresponding to the specified element and emis-
sion line at energy E0. Explicit reference to the element and
fluorescence line are omitted hereafter for brevity.

2.2.2 Attenuation and Transmission Maps

The attenuation map µ(q⃗, E) [cm−1] describes how both
the incident beam and fluorescence intensities are modulated.
It must be known at the excitation energy E0 and all relevant
fluorescence energies. Transmission between any two points
follows the Lambert-Beer law, governed by the cumulative
attenuation between them. Accordingly, two complementary
transmission maps are defined: the first describes the probabil-
ity of the incident beam reaching a point q⃗, while the second
represents the probability that fluorescence emitted from q⃗
reaches the (±) detector. These are respectively given by:

Tin(q⃗, θ) := exp

[
−
∫ ∞

0

µ(R−θ(q⃗ − t′t̂), E0)dt
′
]

(3a)

T
(±)
out (q⃗, θ) := exp

[
−
∫ ∞

0

µ(R−θ(q⃗ ± s′ŝ), Ef )ds
′
]

(3b)

where t̂ and ŝ denote unit vectors along the incident and de-
tection directions, respectively. The outward transmission is
evaluated at a specified fluorescence energy Ef . Here, the
detectors are modeled as point-like and positioned sufficiently
far from the sample, such that the cone of detected fluores-
cence can be approximated by a single ray perpendicular to
the incident beam.

2.3 Projection and moment definitions
Given the prior definitions and specified parameters — in-

cluding the incident energy E0, element Z, fluorescence line,

and corresponding fluorescence energy Ef — and defining the
incident beam intensity as I0, the corresponding fluorescence
projections are given by:

p(±)(s, θ) = I0

∫ ∞

−∞
Tin(q⃗, θ)f(q⃗, θ)T

(±)
out (q⃗, θ)

∣∣∣
q⃗=sŝ+tt̂

dt

(4)
interpretable as an attenuation-adjusted 2D Radon transform
of I0f(q⃗, θ). The model’s dependence on Rθ(q⃗) again un-
derscores the need for precise center-of-rotation calibration.
The n-th order (normalized) moments corresponding to these
projections are defined as:

J (±)
n (θ) :=

∫∞
−∞ snp(±)(s, θ)ds∫∞
−∞ p(±)(s, θ)ds

(5)

3 DCCs and Calibration

3.1 Exploitable symmetries
Two symmetries underpin the proposed new set of DCCs.

First, we consider a virtual detector on which the projections
of points q⃗ are denoted by P(q⃗), and the center of rotation
as sc, as illustrated in figure 2. This leads to the rotational
symmetry

P (Rθ(q⃗)) = 2sc − P (Rθ+π(q⃗)). (6)
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Figure 2 – Projection of the center of rotation sc and point q⃗,
denoted P (q⃗), on a virtual transmission detector with center
s = 0 before (a) and after (b) a π-rotation.

Second, assuming that the detectors are placed symmetri-
cally around the center of rotation — or can be approximated
as such — there is a symmetry between the detectors for the
outward transmission map, given by:

T
(±)
out (q⃗, θ) = T

(∓)
out (Rπ(q⃗), θ + π) (7)

A rotation by π in the sample frame maps the (∓) detector onto
the (±) position, thereby swapping the outward transmission
for all points q⃗ to the detectors.

3.2 DCCs and center-of-rotation determination
The difference in incoming transmission to a point q⃗ be-

tween π-separated pairs is defined as:

D(q⃗, θ) := Tin(q⃗, θ)− Tin(Rπ(q⃗), θ + π) (8)



When rearranged to express Tin(q⃗, θ), this relation can be sub-
stituted into equation 4, yielding two separate integrands. The
integrand D(q⃗, θ)f(q⃗, θ)T

(±)
out (q⃗, θ) may be neglected in two

cases: (i) when attenuation of the incident beam is negligi-
ble, resulting in negligible values for D(q⃗, θ); or (ii) when the
integrand is approximately odd, as is the case, for example,
for samples exhibiting radial symmetry. In such cases, the
combination of equations 4, 6, and 7 leads to the following
set of DCCs, which relate the projections observed by the two
detectors:

p(±)(s, θ) = p(∓)(2sc − s, θ + π) (9)

Consequently, substituting this result into equation 5 yields

J (±)
n (θ) = (−1)n

n∑
k=0

(
n

k

)
(−2sc)

kJ
(∓)
n−k(θ + π), (10)

of which the n = 1 case yields a key calibration result, allow-
ing for an explicit determination of the center of rotation:

sc =
1

2

[
J
(+)
1 (θ) + J

(−)
1 (θ + π)

]
(11)

3.3 Sample Motion
Up to this point, sample motion has not been considered. To

distinguish between true and measured quantities, measured
values are denoted with an asterisk (*). The measured values
differ from the true values due to projection-dependent sample
motion, denoted by m⃗(θ), as illustrated in figure 3. Such
motions shift the measured projections by ∆s(θ), yielding a
relation between the true and measured values of the first-order
moment given by:

J (±)
n (θ) =

n∑
k=0

(
n

k

)
[−∆s(θ)]kJ

∗(±)
n−k (θ) (12)

which follows from applying these shifts to the projections
in equation 5. Substituting this result into equation 10 and
solving for n = 1, gives

sc =
1

2

(
J
∗(+)
1 (θ) + J

∗(−)
1 (θ + π)

− [∆s(θ) + ∆s(θ + π)]
)
. (13)
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Figure 3 – At angle θ, the phantom’s translation m⃗(θ) shifts
all point projections P (q⃗) by P (m⃗(θ)).

The sample motion is defined as a shift relative to some
fixed point, whose projection offsets the entire fluorescence
signal. Importantly, a constant component in these offsets is in-
distinguishable from a shift in the center of rotation. Therefore,

the center of rotation and the motion must be defined jointly:
the motion is expressed relative to a center of rotation such
that it is evenly distributed around it. The center of rotation is
then given by:

sc =
1

4π

∫ 2π

0

(
J
∗(+)
1 (θ) + J

∗(−)
1 (θ + π)

)
dθ (14)

and the sums of the pair-wise shifts by:

∆s(θ)+∆s(θ+π) = J
∗(+)
1 (θ)+ J

∗(−)
1 (θ+π)− 2sc (15)

Thus, a constraint is obtained on the shifts ∆s(θ) rather than a
full description. However, by distributing these shifts evenly
between both terms, they may be approximated as:

∆s(θ) = ∆s(θ + π) ≈ 1

2
[∆s(θ) + ∆s(θ + π)] (16)

Although the approximation does not hold in general, applying
the correction consistently reduces the relative mean squared
error (MSE) of the shifts, as shown in equation 17. Here,
MSE(s)

i and MSE(s)
cor denote the pre- and post-correction errors,

respectively, with the individual errors defined as the magni-
tudes of the residual shifts. Under pure noise and sufficient
angular sampling, the correction yields a 50% reduction in
MSE. Furthermore, if the shifts originate from random motion,
the pairwise sums should fluctuate around zero without sys-
tematic trends. Deviations from this behavior indicate sample
drift and offer a metric for its quantification.

MSE(s)
i − MSE(s)

cor

MSE(s)
i

=
1

2
+

∫ 2π

0
∆s(θ)∆s(θ + π)dθ

2
∫ 2π

0
∆s2(θ)dθ

(17)

4 Simulation
Simulations were conducted using the corrct package

[9]. Projections from both detectors covered a full 2π rotation
with 720 angular and 256 translational steps, sampled sym-
metrically about the center of rotation. The incident beam
energy was set to 20 keV. Sample motion combined random
noise with a structured component modeled as a sum of sine
functions with random phases, frequencies, and amplitudes.
The sample, based on the Shepp–Logan phantom, contains
four material phases (Fig. 4). Incoming attenuation reached
up to 22%, sufficient even for XTCT alignment.
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Figure 4 – Sample composition and phase definitions used in
the phantom. Phases 0–3 correspond to air, calcium carbonate,
calcium oxide, and ferric oxide, respectively.



5 Results
Results for center-of-rotation estimation in the motionless

case are shown in figure 5. The individual moments J (±)
1 (θ)

and their sum violate the Helgason–Ludwig conditions due to
the unaccounted attenuation. The residual between the true and
estimated center of rotation sc is negligible when incoming
attenuation is removed. The Fe signal exhibits greater devia-
tion than Ca, attributed to its outer-shell distribution, which
amplifies the difference in incoming transmission (equation 8)
and reduces its negligibility. This deviation is independent of
the element type or fluorescence energy and instead governed
by spatial distribution.
Figure 6 shows motion estimates based on the Ca Kα signal.
The estimates are π-periodic, as expected from equation 16.
Although individual estimates may under- or over-shoot the
ground truth, applying the correction reduces the MSE by 45%
in this case. Performance depends strongly on the degree of
π-periodicity: perfect periodicity yields perfect correction;
odd periodicity yields none. Simulations with random motion
confirm an average MSE reduction of 50%, consistent with
equation 17. Adding Poisson noise has no impact, provided it
does not significantly distort the moment.
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6 Discussion
The accuracy of the center-of-rotation estimation using equa-

tion 11 is validated in figure 5. The residual between the esti-
mated and true center of rotation is attributed to incident beam
attenuation. This residual — which is largely symmetric over
the domain — further reduces when averaged over multiple
angular pairs, particularly in cases where incoming beam at-
tenuation is already too low for reliable XTCT alignment.
In the presence of sample motion, deviations between individ-
ual pair-wise estimates and their mean reflect motion-induced

shifts, assuming these dominate the effect of incoming atten-
uation. For purely random motion, this approach reduces the
MSE by 50%, with variable improvement for other types of
motion.
Notably, averaging the summed moments across the full do-
main — irrespective of the π-shifts — still yields the correct
center of rotation, as shown by equation 14. Thus, standard
Helgason–Ludwig transmission calibration remains valid for
the summed signal, though it requires full-domain data and
does not allow for estimation of shifts.

7 Conclusion
A novel set of XFCT-specific data consistency conditions

(DCCs) is proposed and validated through simulation, account-
ing for self-absorption and operating under weak constraints
on incoming beam attenuation. These DCCs enable determina-
tion of the center of rotation using a single pair of projections
acquired from opposing detectors and separated by half a ro-
tation. Additionally, the DCCs can be used to estimate and
correct for sample motion, achieving up to a 50% reduction
in mean squared error for random motion, with performance
varying across different motion types.
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