
Estimating a graph’s spectrum via random Kirchhoff forests

Simon BARTHELMÉ1 Fabienne CASTELL2 Alexandre GAUDILLIÈRE3 Clothilde MELOT2 Matteo QUATTROPANI4

Nicolas TREMBLAY1,5

1CNRS, Univ Grenoble-Alpes, Grenoble-INP, GIPSA-lab, Grenoble, France
2Aix-Marseille Univ, I2M, Marseille, France

3CNRS & Aix-Marseille Univ, I2M, Marseille, France
4Department of Mathematics & Physics, Università di Roma Tre, Rome, Italy

5Department of Mathematics & Statistics, UiT the Arctic University of Norway, Tromsø, Norway

Résumé – Pour des matrices de grande taille, la décomposition spectrale exacte est trop coûteuse, et on ne peut calculer toutes les valeurs
propres. Un objectif plus modeste consiste à approcher la loi empirique des valeurs propres, pour connaı̂tre approximativement leur répartition.
Les approches classiques utilisent des estimateurs de Monte Carlo pour obtenir une estimation des moments de la loi des valeurs propres. Dans cet
article, nous introduisons une nouvelle approche pour ce problème, basée sur des forêts aléatoires sur graphes dites forêts de Kirchhoff. Nous
montrons comment certaines observables de ces forêts peuvent être exploitées pour obtenir des estimateurs de la densité spectrale empirique de
laplaciens de grands graphes. Si la précision souhaitée de l’estimation n’est pas trop importante, notre approche ouvre la voie à des estimations
spectrales de graphes en temps sous-linéaire en le nombre de liens.

Abstract – Exact eigendecomposition of large matrices is very expensive, and it is practically impossible to compute exact eigenvalues. Instead,
one may set a more modest goal of approaching the empirical distribution of the eigenvalues, recovering the overall shape of the eigenspectrum.
Current approaches to spectral estimation typically work with moments of the spectral distribution. These moments are first estimated using Monte
Carlo trace estimators, then the estimates are combined to approximate the spectral density. In this article we show how Kirchhoff forests, which
are random forests on graphs, can be used to estimate certain non-linear moments of very large graph Laplacians. We show how to combine these
moments into an estimate of the spectral density. If the estimate’s desired precision isn’t too high, our approach paves the way to the estimation of
a graph’s spectrum in time sublinear in the number of links.

1 Introduction
Computing the exact eigenvalue decomposition of a large symmetric
matrix L ∈ Rn×n has cost O(n3) in general, and becomes quickly
out of reach for matrices with n > 104. In some cases, all that is
needed is an estimate of the p largest or smallest eigenvalues, and this
can be achieved using a variety of Krylov subspace methods [15]. In
other cases, what is required is an estimate of the distribution of all
eigenvalues, an important quantity in various applications [17].

Specifically, letting λ1 . . . λn stand for the eigenvalues of L, the
goal is to estimate :

c(τ) =
1

n

n∑
i=1

I(λi ≤ τ) (1)

for all τ . Here c(τ) measures the fraction of eigenvalues that are
smaller than the threshold τ .

In what follows, it is useful to think of the function c(τ) as the
cumulative density function of the empirical distribution of the eigen-
values, i.e. the discrete measure

µ =
1

n

∑
i

δλi . (2)

To estimate the c.d.f. c(τ), the standard approach is to first estimate
moments of the empirical distribution (the estimation step) then to
reconstruct the cumulative density function from the estimated mo-
ments (the reconstruction step).

In the existing literature, the estimation step takes advantage of the
fact that moments of the empirical measure µ correspond to traces of
powers of L :

µ(λj)
def
=

∫ j

λjdµ(x) =
1

n

∑
i

λj
i =

1

n
Tr(Lj) (3)

Work partially funded by the ANR project GRANOLA (ANR-21-CE48-0009)
and the European Union (Marie Curie project Rand4TrustPool, 101148828).

Computing Tr(Lj) is expensive in general, but stochastic trace es-
timators [17, 11] like the Hutchinson-Girard estimator can be used.
For any random vector z with E(z) = 0 and E(zzt) = I , we have :

E(ztLjz) = Tr(Lj) (4)

and in this way traces can be computed by taking successive matrix-
vector products starting from a random vector z.

In the reconstruction step, one tries to reconstruct the cdf of µ from
knowledge of its p first moments. Various techniques are available,
the most effective are Jackson-Chebyshev expansions [6] and the
stochastic Lanczos quadrature [4]. The cost of these techniques scales
with the cost of a matrix-vector product Lz, which itself scales with
|E|, the number of edges of the graph. For the very sparse systems
that arise from discretising Partial Differential Equations, they are
very effective, but in denser systems they can be quite costly.

In what follows we describe a graph-theoretic approach for this
problem that is based on a specific random process called the “Kirch-
hoff forest”. Kirchhoff forests are a certain kind of random forests on
graphs, with a range of applications in randomised linear algebra and
graph signal processing [13, 8, 2]. We follow the same idea of esti-
mating expectations under the empirical distribution µ, followed by a
reconstruction step. However, our method is conceptually different
from the literature : instead on relying on the computation of quadra-
tic forms ztLjz which prevents existing methods to improve the |E|
term in the total computation cost, our method is based on sampling
random forests of the graph and, under certain assumptions, scales
in O(n) rather than |E|. The downside of this is that, at this stage,
our method is only competitive if one only needs a medium-accuracy
estimation of the graph’s spectrum.

Section 2 introduces Kirchoff forests and how they can be used to
estimate certain spectral expectations. Section 3 outlines the recons-
truction method. Section 4 gives some numerical results illustrating
how our method outperforms the state-of-the-art if one only requires
medium accuracy.

1

mailto:simon.barthelme@gipsa-lab.grenoble-inp.fr
mailto:fabienne.castell@univ-amu.fr
mailto:alexandre.gaudilliere@math.cnrs.fr
mailto:clothilde.melot@univ-amu.fr
mailto:matteo.quattropani@uniroma3.it
mailto:nicolas.tremblay@cnrs.fr

100 101 1020.0

0.5

1.0

cd
f

true cdf
1 moment
2 moments
3 moments

FIGURE 1 : (Left) Illustration of a rooted spanning forest on the
5x5 grid graph, containing 4 trees, the smallest of which is a trivial
tree of size 1. Each tree contains a distinguished node called the root.
Kirchhoff Forests (KFs) produce random rooted spanning forests with
distribution given by eq. (7). (Right) Illustration of a cdf estimation
of a graph’s spectrum, using our KF-based algorithm (for l = 1, 2, 3
moments), on a Barabasi-Albert graph, with n = 103 and d̄ = 20.

2 Forests for moment estimation
In what follows we assume that L is the Laplacian matrix of a weigh-
ted, undirected graph G = (V, E) with n nodes and |E| edges :

L = D −A (5)

where A is the adjacency matrix and D the degree matrix. See [3]
for how to extend this to diagonally-dominant L. We denote by µ(f)
the expectation of function f under the empirical spectral measure :

µ(f) =
1

n

∑
i

f(λi) (6)

Kirchhoff forests are random spanning forests on graphs that are
particularly easy to sample, and enable efficient estimators of various
quantities tied to the graph Laplacian [3, 13, 9].

In the context of graph theory, a spanning forest is a subgraph
of G, made up of disjoint trees (acyclic subgraphs), and such that
every node belongs to the forest (the spanning part). The concept is
illustrated on fig. 1 (left).

A Kirchoff Forest (KF) is a distribution on rooted spanning forests.
A forest is said to be rooted if every tree has a distinguished node
called the root (see fig. 1). If the tree contains a single node, then the
root of the tree is the node itself. KFs are defined by the following
probability mass function :

pq(ϕ) =
|R(ϕ)|q

Zq

∏
ij∈E(ϕ)

wij (7)

Here ϕ is a forest with edge set E(ϕ) and roots R(ϕ). Zq is a nor-
malisation constant, and q is a parameter that governs the average
number of roots in the random forest. Large values of q favor a large
number of roots. In fact, as shown in [1] :

E(|R(ϕ)|) =
n∑

i=1

q

q + λi
= n µ(q/(q + ·)) (8)

[3] used this relationship to define inverse trace estimators. Here we
go further and show how to estimate various non-linear expectations
under µ. KFs have the advantage of being easy to sample. A basic
way to sample a KF is via an adaptation of Wilson’s algorithm for
Uniform Spanning Trees (see [13]). The algorithm constructs trees
branch-by-branch by successive aggregation of loop-erased random
walks. Wilson’s algorithm for a KF with parameter q runs in time
O
(

|E|
q

)
. In our simulations, we use a more sophisticated version,

due to [1], the so-called Coupled Forests (CF) algorithm. The CF
algorithm produces a continuous sequence of random variables ϕq ,
for q ∈ [qmin, qmax], where each ϕq is a KF with parameter q. These
random variables are coupled (non-independent) but generating the
whole family can be done in time O

(
|E|

qmin

)
, the same as generating

the most expensive member. Unfortunately, the CF algorithm is too
complex to be described fully here. We refer the reader to [1] and to
our implementation in KirchhoffForests.jl1. Sampling such a CF is the
main building block of our proposed algorithm, and we will typically
do so for qmin set to a fraction of the average degree of the graph
qmin = d̄/α, requiring a total n-linear computation cost of O (αn).

Eq (8) shows that certain observables of KFs are spectral expec-
tations of the form µ(f). Our idea is to estimate a large set of such
expectations, specifically,

h(q, k) = µ

((
q

q + ·

)k
)

(9)

for q ∈ [qmin, qmax], k ∈ 1, 2, . . . , l. In practice we use a discrete
grid of values of q and l is small (typically l = 3 in our experiments).
All these expectations yield information about µ, and can be used for
reconstruction.

To estimate these quantities, we use the following fact : define

Kq = q(qI +L)−1;h(q, k) =
1

n
Tr(Kk

q) (10)

and for a given KF ϕq , the following matrix :

M(ϕq) = [I(rϕq (i) = j)]i∈V,j∈V (11)

where rϕq (i) is the root of node i in the forest (the root of the tree i
belongs to). Authors in [1] have shown that

E (M(ϕq)) = Kq. (12)

In particular this implies eq. (8), which gives an unbiased estimator
for h(q, 1) (simply count the number of roots). To generalise, we use
the following lemma :

Lemma 2.1. Let X(1), . . . ,X(k) random i.i.d. matrices with expec-
tation E(X) = M . Then

E
(
Tr
(
X(1) . . .X(k)

))
= Tr

(
Mk

)
(13)

Proof.
E
(
Tr
(
X(1) . . .X(k)

))
= E

 n∑
i=1

∑
j1...jk−1

X
(1)
i,j1

X
(2)
j2,j3

. . .X
(k)
jk−1,i


=

n∑
i=1

∑
j1...jk

M(i, j1) . . .M(jk−1, i) = Tr(Mk).

Applying this lemma to M(ϕq) defined in eq. (11), we obtain :

Theorem 2.2. Let ϕ(1)
q . . . ϕ

(k)
q be k independent KFs with parameter

q. Let ρk = r
ϕ
(k)
q

◦ r
ϕ
(k−1)
q

· · · ◦ r
ϕ
(1)
q

the composition of the root

maps, and h̃(q, k) = 1
n

∑n
i=1 I (ρk(i) = i). Then :

E
(
h̃(q, k)

)
=

1

n
Tr(Kk

q) = h(q, k) (14)

Given k realisations of the KF ϕq , h̃(q, k) is computable at cost
O(kn). In addition, one can show that Var(h̃(q, k)) ≤ h(q, k)/n,
thus ensuring fast convergence of the estimation.

Our overall framework is as follows : pick a logarithmic grid for q,
of size nλ, ranging from qmin = d̄/α (α = 100 in our experiments)
to qmax = 2dmax. Recall that d̄ (resp. dmax) refers to the mean
(resp. maximun) degree of the graph. Note that 2dmax is a classical
upper bound for λmax, obtained from applying the Gershgorin circle
theorem to L. We run l iterations of the Coupled Forests algorithm,
to obtain a first estimate of h(q, k) for k in 1 . . . l at each value of q
in the grid. We replicate the whole process s times to obtain several
Monte-Carlo estimates that we finally average. At the end of the day,
we obtain (very) precise estimates of h(q, k) for all values of q in the
nλ-sized grid and for k ∈ [1 . . . l], for an overall computation cost of
O ((α+ nλ)sl n). Several avenues are open to further improve the
variance of these estimates, by adapting techniques from [13, 14] for
instance. We now move on to explaining how these estimates can be
used for reconstruction of the spectral cdf c(τ).

1available here : github.com/dahtah/KirchhoffForests.jl

2

github.com/dahtah/KirchhoffForests.jl

3 Reconstruction
At the end of the first phase, we have collected estimates of h(q, k)
for several values of q and k. All of these contain some information
about µ the spectral density of L, but extracting and combining that
information is not trivial. We will outline a procedure that we call
“fixed-q” estimation, which gives good results in practice. However,
we do not wish to claim that it is in any way optimal ; the question of
optimally combining the results of the estimation phase is unsolved
as yet. The starting point of the fixed-q procedure consists in noticing
that if we define :

xi =
q

q + λi
(15)

then :

h(q, k) =
1

n

∑(
q

q + λi

)k

=
1

n

∑
xki (16)

which are the classical moments of the empirical distribution of the
xi’s. We note this measure

νq =
1

n

∑
i

δxi (17)

Since we have access to the moments of νq , we can apply the standard
toolset of classical moment theory to form an approximation. In our
numerical simulations we rely on a maximum entropy estimator,
defined below. This allows us to form an estimator ν̂q based on the
estimated moments h̃(q, 1) . . . h̃(q, l).

The map from λ to x given by 15 is nonlinear, and it sends all the
eigenvalues that are small (compared to q) to x ≈ 1, and all those
that are very large to x ≈ 0. In theory, the map is invertible and
we could recover an estimate of µ from ν̂q by a change of variables.
However, we only have access to a few (estimated) moments of νq
and the change of variables may be unstable. What we do instead is
simply form a pointwise estimate at the point where the map 15 has
highest slope (in magnitude) : for λ = q. Noting that the cdf in q is
c(q) = µ([0, q]) = 1− νq([0,

1
2
]), we set

c̃(q) = ν̃q

([
0,

1

2

])
.

We collect these estimates for all values of q in the grid, yielding an
estimate of the overall cdf c(τ). An example is shown in fig. 1 (right).

Maximum entropy estimator. Let us now explain how νq can be
approximated from knowledge of its k first moments. Our approach
is inspired by the maximum-entropy principle, a widely-used heuris-
tic for problems of this type [12]. The maximum entropy principle
suggests that when all that is known about a certain distribution are
a fixed number of moments, then a reasonable estimate of the unk-
nown distribution is the distribution with maximum entropy that has
compatible moments. Importantly, for fixed q, we have a lower bound
on xi, xi ≥ q

q+λmax
≥ q

q+2dmax
(see eq. (15)). This implies that

the distribution νq has support on [q
q+2dmax

, 1], and we can use this
information to constrain our problem further.

The maximum-entropy distribution with support on [a, b] and mo-
ments m = [m1 . . .ml]

t is given by :

argmin
ν∈P[a,b](m)

KL(ν, ν0) (18)

where KL(ν, ν0) is the KL divergence with respect to the uniform
measure on [a, b], and P[a,b](m) is the set of probability measures on
[a, b] compatible with the moment constraints (i.e. such that ν(xj) =
mj for j ∈ 1 . . . l). As is well-known ([5], ch. 12), the solution of eq.
(18) belongs to an exponential family of the form :

qβ(x) = exp(βtv(x)− ψ(β)) (19)

where v(x) = [xi]ni=1 and ψ(β) = log
∫ b

a
exp

(
βtv(x)

)
dx. The

optimal β can be found by solving :

β⋆ = argmin
β∈Rs

ψ(β)− βtm (20)

Given the solution β⋆, we can estimate ν([a, 1
2
]) as∫ 1

2
a

exp(βt
⋆v(x)− ψ(β⋆))dx.

Now, there are a number of statistical and numerical issues to deal
with. First of all, computing ψ(β) involves an intractable integral
that we approximate by Gauss-Legendre quadrature ([7], ch. 6). More
importantly, the moments are only known approximately. We define
a confidence ellipsoid B of the form :

B =

{
m′ ∈ Rl such that

l∑
i=1

v−1
i

(
m′

i −mi

)2 ≤ 1

}
where vi is an upper-bound on the variance of the estimate mi. When
solving eq. 20, we interrupt the optimisation once the moments corres-
ponding to the iterate βt are in B. In addition, a vector of estimated
moments m can fall outside the set of valid moments Ml([a, b])
[18]. For instance, for all probability distributions, we always have
ν(x2) ≥ ν(x)2, but estimated moments may havem2 < m1 because
of the noise. To deal with this, we proceed as follows :

1. We first test that the estimated moments are in Ml([a, b]). If
they are, we proceed with the maximum entropy estimate.

2. Otherwise, we project the estimated moments m on Ml([a, b])
(which is a form of denoising). We then apply maximum entropy to
the denoised moments.

Step 1 involves checking classical admissibility conditions for
truncated moment sequences, as described for instance in [16], p. 230.
It involves checking that two specific matrices formed from m are
positive-definite. The denoising in Step 2 can be carried out via a
reformulation as a semidefinite program, too involved to be described
here, see [18] or [10].

4 Numerical experiments
Fig. 1 (right) illustrates a spectrum cdf estimation for a realization
of a random Barabasi-Albert graph, with our method. We observe
how the estimation improves as l increases. Let us now compare our
method to the state-of-the-art. The three methods we compare are :

• poly : a polynomial approximation method with Jackson-
Chebychev damping coefficients, as in [6]. Moment estimation step :
estimate the first p moments of L by averaging {xtLix}i∈[1..p] over
r random vectors x at an overall cost of O(rp|E|) (|E| is equal to
the number of non-zero entries of L). Reconstruction step : for each
value of the grid over λ on which the cdf estimation is to be made, a
precise linear combination of these estimates is computed, based on
the Jackson-Chebychev approximation of the step function.

• slq, short for Stochastic Lanczos Quadrature (see for ins-
tance [4]). Moment estimation2 step : for r independent realizations of
a random vector x, this method starts by creating a p× p tri-diagonal
Lanczos matrix based on x and its p successive left-multiplication
by L. This is done with an overall cost of O(rp|E|). Reconstruction
step : these r matrices are then diagonalized and results averaged.

• forests : our method. Moment estimation step : the moments
{h(q, k)}k=1..l for nλ values of q spaced between d̄/α and 2dmax

are estimated for an overall cost of O(αln) to sample the l coupled
forest + O(nλln) for the computation of the l-th order roots at each q
of the grid of size nλ . This is repeated s times to obtain Monte-Carlo
averages, yielding an overall cost of O((α+nλ)sln). Reconstruction
step : as described in Section 3.

Note that the reconstruction cost of each method is independent
of n, and thus negligible asymptotically in n : in the following, we
do not take into account its computation cost as we want to show
trends in large n. Also, note that in the above, s and r are similar
“Monte-Carlo parameters”, and p and l are similar “moment-order
parameters”. For different sizes n of graphs, different types of graphs,
and the parameter choices α = 100 and nλ = 15, we plot in Fig. 2

2not truly a moment estimation step, but close enough to keep this term

3

n = 1000

n = 5000

n = 10000

2d Grid

1 10 100 1000
time

10 2

100

er
ro

r

1 10 100 1000
time

10 2

100

er
ro

r

1 10 100 1000
time

10 2

100

er
ro

r

Sparse ER

1 10 100 1000
time

10 2

100

er
ro

r

1 10 100 1000
time

10 2

100

er
ro

r

1 10 100 1000
time

10 2

100

er
ro

r

Sparse BA

1 10 100 1000
time

10 2

100

er
ro

r

1 10 100 1000
time

10 2

100

er
ro

r

1 10 100 1000
time

10 2

100

er
ro

r

Dense ER

1 10 100
time

10 2

100

er
ro

r

1 10 100
time

10 2

100

er
ro

r

1 10 100
time

10 2

100

er
ro

r

Dense BA

1 10 100
time

10 2

100

er
ro

r

1 10 100
time

10 2

100

er
ro

r

1 10 100
time

10 2

100

er
ro

r

FIGURE 2 : Estimation error versus computation time for 3 types of methods : forests (ours, in solid blue), poly (dotted orange), and
slq (dashed green). The dotted horizontal blue line is the result of our reconstruction algorithm if we feed it the exact moments (rather than the
KF-estimated ones). Each column is for a different type of graph : ER stands for Erdös-Renyi, BA for Barabasi-Albert, “sparse” means average
degree of 20, and “dense” means average degree of n/10. Each line is for a different value of the number of nodes in the graph. For each graph
and each value of n, the time axis is normalized by the time of computation of the corresponding matrix-vector multiplication Lx. Results are
averaged over 50 realizations of all three methods (that are all stochastic), and 10 realizations of each graph (for the 4 random graphs of the list).

1000 5000 10000
n

1

10

100

tim
e

1000 5000 10000
n

1

10

100

tim
e forests

poly
slq

FIGURE 3 : Computation time required to reach a 2% error
versus the number of nodes, for all three methods. Left : sparse BA
graph. Right : dense BA graph. The time axis is normalized by the
time of computation of the matrix-vector multiplication Lx.

the reconstruction error of the cdf versus the computation time of
each method. For poly and slq, we show the results for r = 5
and p ∈ [1, 2, 5, 10, 25, 50] (each value of p giving a data point in
the error-computation time axes of the figure) as we have observed
in our examples that performance stabilizes quickly in r. Regarding
our method, it would seem sensible to fix the Monte-Carlo parameter
s as above and make the moment parameter l vary. However, we
are confronted with an important limitation of our method as it is
currently : whereas the moment estimation step could work with in-
creasing l’s, the reconstruction step starts to show signs of instability3

for l ≥ 4. We thus only plot results for l = 3 and s ∈ [1, 3, 5, 10, 20].
Even with this small, fixed value of l, we observe that if one accepts

a moderate precision in the estimation, then our method can provide
significant performance improvements. Note that this happens even
though the error reconstruction is necessarily lower bounded – here
by the horizontal blue lines – as opposed to the other two methods
for which the error decreases continuously with p. For instance, if
one accepts a 2% reconstruction error, Fig. 3 shows the time needed
to reach that error versus the number of nodes for sparse and dense
graphs. As expected from the previous theoretical time analyses of
each method, the time to reach a given error is linear in the number
of edges4 |E| for poly and slq and sublinear in |E| (in fact, linear
in n) for our method – which is, we believe, remarkable.

5 Concluding remarks
This is a first communication on a new and promising class of methods
to estimate a graph’s spectrum. Whereas state-of-the-art methods are
classically based on successive matrix-vector multiplications Lx

3inherited from well-known instabilities of maximum-entropy algorithms
4The time to compute Lx is linear in |E|

(and as such cannot pretend to go beyond a linear cost in |E|), our
results, by subtly subsampling the graph in several random spanning
forests, pave the way to sublinear-time (in |E|) spectrum estimation.
We experimentally confirm this at least when moderate precision is
enough, and when both the lowest λ for which one wants an estimate
of the cdf (in our experiments, we chose d̄/α with α = 100) and
the grid-size chosen for the spectrum’s estimate, nλ (equal to 15 in
our experiments), are independent of n. Current work in progress is
devoted to stabilizing the reconstruction algorithm and go beyond
l = 3 in order to increase our method’s precision.

References
[1] L. Avena and A. Gaudillière. Two Applications of Random Spanning

Forests, Journal of Theoretical Probability, 2017.
[2] L. Avena, F. Castell, A. Gaudillière, and C. Mélot. Intertwining wavelets

or multiresolution analysis on graphs through random forests, Applied
and Computational Harmonic Analysis, 2020.

[3] Barthelmé, Tremblay, Gaudillière, Avena and Amblard. Estimating the
inverse trace using random forests on graphs, GRETSI, 2019.

[4] T. Chen, T. Trogdon and S. Ubaru. Analysis of stochastic Lanczos
quadrature for spectrum approximation. ICML Proceedings, 2021.

[5] T. Cover and J. Thomas. Elements of Information Theory. Wiley, 2005.
[6] E. di Napoli, E. Polizzi and Y. Saad. Efficient estimation of eigenvalue

counts in an interval. Numerical Linear Algebra with Applications, 2016.
[7] G. Golub and G. Meurant. Matrices, moments and quadrature with

applications. Princeton University Press, 2009.
[8] Jaquard, Amblard, Barthelmé, Tremblay. Random Multi-Type Spanning

Forests for Synchronization on Sparse Graphs. arXiv :2403.19300, 2024.
[9] Jaquard, Fanuel, Amblard, Bardenet, Barthelmé, Tremblay. Smoothing

Complex-Valued Signals on Graphs with Monte-Carlo. ICASSP, 2023.
[10] J-B. Lasserre. A semidefinite programming approach to the generalized

problem of moments. Mathematical Programming, 2008.
[11] P-G. Martinsson and J. Tropp. Randomized numerical linear algebra :

Foundations and algorithms. Acta Numerica, 2020.
[12] L. Mead. Maximum entropy in the problem of moments. Journal of

Mathematical Physics, 1984.
[13] Y. Pilavci, P-O. Amblard, S. Barthelmé and N. Tremblay. Graph tikho-

nov regularization and interpolation via random spanning forests. IEEE
transactions on Signal and Information Processing over Networks, 2021.

[14] Pilavci, Amblard, Barthelmé and Tremblay. Variance Reduction for
Inverse Trace Estimation via Random Spanning Forests. GRETSI, 2022.

[15] Y. Saad. Numerical methods for large eigenvalue problems. SIAM, 2011.
[16] K. Schmüdgen. The Moment Problem. Springer, 2017.
[17] A. Weiße, G. Wellein, A. Alvermann and H. Fehske. The kernel polyno-

mial method. Reviews of modern physics, 2006.
[18] Y. Wu and P. Yang. Optimal estimation of Gaussian mixtures via denoi-

sed method of moments. The Annals of Statistics, 2020.

4

	Introduction
	Forests for moment estimation
	Reconstruction
	Numerical experiments
	Concluding remarks

