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Résumé – Dans cet article, nous développons l’intérêt des modèles continus parcimonieux pour la regression logistique à noyau
dans le cadre de classification binaire. Contrairement à la logistique ridge regression, notre méthode ne nécessite pas autant de
paramètres que d’observations. Notre classifieur se base sur des avancées récentes dans l’étude de modèles pénalisés grâce à la
norme de variation totale qui nous permet d’obtenir une estimée avec peu de paramètres, intrinsèque à la parcimonie de la fonction
cible. Cette technique est particulièrement intéressante quand la taille de échantillon est très grande. Notre estimée est obtenue
grâce à une descente de gradient sur l’espace des mesures discrètes, et plus particulièrement à une descente de gradient conique
particulaire. Nous présentons ici une étude méthodologique des différences et avantages entre la régression ridge à noyau et notre
technique, appelée ici Beurling Logistic ou BLogistic.

Abstract – In this article, we investigate the benefits of continuous sparse models for the kernel logistic regression in binary
classification. Contrary to kernel ridge logistic regression, our method does not fit a parameter whose size grows linearly with the
number of data. Our classifier is based on recent advances in total variation norm regularization and enables us to directly estimate
fewer parameters, intrinsic to the sparsity of the target function. This technique is particularly interesting when the sample is
large. Our estimate is conducted via a gradient descent on the space of discrete measure, referred to as the conic particle gradient
descent in the literature. We present a comprehensive methodological study of the differences and advantages between kernel
ridge regression and our technique, referred to as the Beurling Logistic or BLogistic.

1 Introduction
Classification is a standard task in supervised learning, where
one aims at predicting labels y from features x. Logistic re-
gression [10] is by and large the most frequently used model
to estimate the probability of a binary response. Under this
model, there exists a function f⋆ such that

P(Y = y | X = x) = σ(yf⋆(x)) (1)

where x ∈ X is a feature in real some feature space X ⊂ Rd,
y ∈ {−1,+1} the response variable and σ is the sigmoid
function σ(t) := log(1+exp(−t)). Considering now that we
observed a set of features (zi)1≤i≤n = (xi, yi)1≤i≤n ∈ X ×
{−1,+1} for a linear model fθ(x) = ⟨θ, x⟩ and minimizing
the empirical logistic loss

Ln(fθ) :=
1

n

n∑
i=1

σ(yifθ(xi)) , (2)

one obtains the standard logistic estimator. In high-
dimensions, when d is large, sparsity promoting regulariza-
tion such as the ℓ1-norm are often used to gain in general-
ization and select relevant predictors [7], which leads to the
logistic lasso estimator

min
θ

{
Ln(fθ) + λL1(θ)

}
, (3)

where λL1(θ) is the LASSO regularizing term.
An extension to non-parametric models is often done by

considering the kernel logistic regression. In this setting, the
learned function is fh(x) = ⟨h, φ(x)⟩ where h ∈ H is an el-
ement of some HilbertH (called Reproducing Kernel Hilbert

Space or RKHS) and φ : X → H is the so called feature
map. To obtain a tractable estimator, one considers the logis-
tic kernel ridge regression which reads

min
h∈H

{
Ln(fh) + λL2(h)

}
, (4)

where λL2(h) is the kernel RIDGE regularizing term. In this
case, the solution reads

hridge =

n∑
i=1

θiφ(xi) , (5)

where θ ∈ Rn [6]. When the sample size n is large, this esti-
mator reaches its limits, while having as many parameters (θi)
as the sample size. In that case, we should want an estimator
composed with less parameters, by transposing the real case
and the LASSO ideas, the solution that we consider here is to
change the penalization term to

min
h∈H

{
Ln(fh) + λL1(h)

}
, (6)

where λL1(h) denotes an ℓ1 penalization term.
Those kinds of model have already been studied [8] and are

known as off-the-grid methods. An interesting feature is that
the sample size n does not governs the size of the estimator.
This technique allows to find an estimator with eventually far
less parameters

f̂λ =

p∑
i=1

aiφ(ti) , (7)

where the (ai, ti)1≤i≤p are the amplitude and position param-
eters of the estimator.

1

mailto:antoine.simoes@ec-lyon.fr
mailto:yohann.de-castro@ec-lyon.fr


Recently, optimization methods of (9) have been proposed
through the lens of Wasserstein gradient flows on the space of
measures. In particular, L. Chizat [4] developed an algorithm
called conic particle gradient descent which has global con-
vergence of the projected gradient flow [4, Theorem 4.1] and
local convergence of the projected gradient descent. In this
article, we will focus on the so-caled BLogistic estimator (9)
and its benefits when compared to RIDGE estimator (4).

As we have seen, on one hand, for real case studies and
high dimensional problems, the LASSO (3) provides an alter-
native to ℓ2 penalization in order to have a low dimensional
estimator [7]. On the other hand, there exist works on kernel-
based methods that ensure convergence and statistical error
bounds [9] under Tikhonov regularization (4). Statistical er-
ror bounds have also been studied under L1 regularization on
the space of measures point of view [8] with a will of hav-
ing an estimator composed of few parameters for the case of
large samples; there are also studies about implementation [3]
which prove the convergence of the gradient flow. But all of
these works focused on the mean square error loss and we
provide in this work a study of the logistic loss with L1 regu-
larization for kernel-based methods.

In this article, we develop the idea of sparsity in some
kernel-based model via a representative measure set. Then
we show in a toy model the interest of the kernel logistic
regression via conic particle gradient descent algorithm that
we improve. Finally, we obtain a new estimator that admits
less parameters and provides a closer estimation of our Bayes
function.

2 Conic Particle Gradient Descent

2.1 Sparse hypothesis and ℓ1-regularization
A standard hypothesis of real-valued high dimensional prob-
lem is the sparsity of the parameter. This hypothesis assumes
a low dimensional solution to the problem. The RKHS equiva-
lent to the real sparsity is a little more complex and we the ker-
nel mean embedding function (KME). Under some assump-
tions of integrability over φ, for every µ ∈ M(X ) we can
define the KME as

Φ(µ) =

∫
x∈X

φ(x)dµ(x) (8)

This mathematical object is well studied throught the knowl-
edge of properties on the kernel [1]. That mapping leads
to a sense of sparsity for f ∈ H if we can write f =
Φ(

∑p
j=1 ajδtj ) where δt denotes a Dirac in t. This writing

embodies perfectly the sense of sparsity as we define earlier,
such a function can be written f =

∑p
j=1 ajφ(tj) for some

signed amplitudes a. This leads to the folowing hypothesis of
sparsity

Hypothesis 1 (H1). We assume that f⋆ is p⋆-sparse:
∃(a⋆j )1≤j≤p⋆ ∈ Rp⋆

, (t⋆j )j , µ
⋆ :=

∑p⋆

j=1 a
⋆
jδt⋆j : f⋆ =

Φ(µ⋆) .

Under Hypothesis 1, the Kernel Ridge Logistic (KRL) and
its representer theorem seems to be exceeded. Their estima-
tor having n parameters, the parameters of the weight ai over
each observation and it never tries to match any kind of spar-
sity such as the number of Dirac in the Bayes function. The

objective here is to find a new way to catch the right number
of Dirac p⋆, their position and amplitude in order to obtain
really few parameters. In the real case, some results achieve
that switching from a ℓ2 penalization to a ℓ1 penalization im-
plies some sparsity on the estimator [7]. Finding an ℓ1-norm
in this Hilbert space is possible thanks to the KME and the
Total Variation (TV) norm in the measure set, from those two
remarks we get the kernel logistic regression with ℓ1 penaliza-
tion model as

minimize
f∈H

J(f) := R(f) + λΩTV (f) (9)

where R(f) = 1
n

∑n
i=1 log(1 + exp(−y⟨f, φ(x)⟩H) is a the

logistic risk term, ΩTV (f) := inf{∥µ∥TV | µ ∈ M(X ) :
f = Φ(µ)} an ℓ1 penalization term as in Beurling work
[2] and λ the penalization parameter. This function ΩTV is
also called in the literature as the variation norm and there
exists statistical guarantees under Hypothesis 1 [8] for the
mean square error loss. Indeed, under additional assumptions
of sources separation (which just mean that the t⋆j are not
too close) and that there exists some observation sufficiently
close, we can obtain a control on the error of estimation of a⋆i
and t⋆i of the order of

√
p⋆λ, for λ of the order of 1/

√
n. It

means that we are able to find the position t⋆i and that we put
mass around this position that is close to a⋆i . These guarantees
ensure that one can find an estimator with as few as of f⋆.

2.2 Conic Particle Gradient Descent
We study Conic Particle Gradient Descent (CPGD) [3] in the
case of the logistic loss. Its interest relies on the idea that we
are looking for estimator in the close form f̂λ =

∑p
i=1 aiφ(ti)

for some p, (ai), (ti) as the sought after solution shares this
description by atomic measures. This close form seems to be
reasonable since we are looking for such a Bayes function and
that represents function that admits a sparse measure represen-
tation. For a certain p fixed, the problem can now be seen as
a R2p problem, the parameter being (ai)1≤i≤p and (ti)1≤i≤p

and then we can rewrite the J function as a R2p function

Fp

(
(ai, ti)1≤i≤p

)
:= J

(
Φ(

p∑
i=1

aiδti)
)
, (10)

and, for fixed p, the minimization of this function can be
solved by a Gradient Descent algorithm while we can com-
pute its gradient.

Proposition 2.1 (∇al
Fp,∇tlFp)

With the same notation as above, we get

∇al
Fp((aj , tj)j) =

1

n

n∑
i=1

− yik(xi, tl)σ
(
− yi

p∑
j=1

ajk(xi, tj)
)
+ λϵl

∇tlFp((aj , tj)j) =

1

n

n∑
i=1

− yial∇tk(xi, tl)σ
(
− yi

p∑
j=1

ajk(xi, tj)
)
,

(11)

where ϵl corresponds to the sign of the l-th particle and
k(x1, x2) = ⟨φ(x1), φ(x2)⟩ denotes the kernel of the RKHS
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H. Since we consider a signed particle, we have aj that are
signed and we may want the particle to keep a sign fixed dur-
ing the algorithm in order to avoid oscillation around 0 and
to simplify the computation of the gradient of the amplitude.
In order to conserve a fixed sign for all particles, we will con-
sider some mirror descent on the amplitude. This leads to the
following retraction on our parameters

al ← al exp(−∇al
Fp(ai, ti))

tl ← tl −∇tlFp(ai, ti)/al
(12)

the exponential term in the retraction of the amplitude comes
from the mirror descent as in [5] and the will of a fixed sign
for a precise particle along the algorithm. For the position
retraction, we divide the gradient by the amplitude because of
the conical geometry studied in [5], [3].

Figure 1: Figure of evolution of the CPGD (λ = 10−4)

This figure represents the evolution and movement of par-
ticles along CPGD where colours become more and more in-
tense after each step. We initialize CPGD with randomly cho-
sen particles, work only with a gaussian kernel and let the
CPGD running 103 iterations.

Definition 3 (Residual). We name residual a rescaled version
of the gradient of the loss risk term, that gives us

η(µ) =
Φ⋆∇RΦ(µ)

λ
, (13)

where Φ⋆ is the dual operator of Φ, which can be computed
in closed form .

For this theory, a solver is a critical point, and so, the residual
over this point has to respect the nullity of the sub-differential.
The derivative of the risk term is the residual; the derivative
of the TV-norm penalization term is well known as {±1} de-
pending on the sign of a particle and [−1, 1] where there is no
particles for a particular measure.

Proposition 3.1 (KKT condition)
Let µ be sparse measure µ =

∑p
i=1 aiδti , we denote T =

{t1, .., tp} and T+ = {ti | ai > 0, i ∈ {1, .., p}} (resp. T− =
{ti | ai < 0, i ∈ {1, .., p}) the set of position of the positive
particles (resp. the set of position of the negative ones). If
the measure µ satisfies the optimization problem 9, then it
satisfies the following conditions:

η(µ)(t) = 1, ∀t ∈ T+

η(µ)(t) = −1, ∀t ∈ T−

η(µ)(t) ∈]− 1, 1[, ∀t /∈ T

(14)

The Gradient Descent is such as a particle that fall into the
attraction basin of a Dirac will move in this direction and try
to match a trade-off between the real particle and the mass we
can accept to put on the particle that is limited by the ℓ1-norm
of penalization.

This leads us to the following algorithm

Algorithme 1 : Conic Particle Gradient Descent
input : Parameterize the regularization parameter λ

Initialization of the particles: (ai), (ti) ;
while not stopping_criterion do

compute ∇al
Fp,∇tlFp

Actualisation of the particles according to the
parameter retraction

Refresh the stopping_criterion
end

with the retraction as we define in 12.

4 Simulated data
We did the simulation in a toy model in order to highlight the
remarks we made earlier.

Figure 2: Observation and Bayes function

On Figure (2), we print out the observations that we sim-
ulate and the Bayes function we try to learn (represented by
the four target points out of the data). For the rest of the ar-
ticle, blue colour corresponds to negative particles and red to
positive ones .

First of all, f⋆ is written as the sum of four Dirac, the 4
triangle that we see in the coordinates (±1,±1) and we take
n = 3000 observations. In that case, we obtain the limit of the
capacity of the classical kernel logistic ridge regression while
it manages matrices of unreasonable size during computation.
Secondly, the observation set X is composed of a reunion of
two discs and those two discs are close enough of the Diracs
to feel the impact of them on the observation but such that
they don’t include those Diracs.

We can represent the Bayes function in the toy model and
the function we learn thanks to CPGD in figure (3).

We clearly see the four Dirac that corresponds to the t⋆i
through the gaussian kernel on the lefter plot. We recognize
those area in the BLogistic function while we can’t recognize
anything pattern in the KRL model. This incapacity of KRL
to match the function reflects the dependency of the estimator
that we get through the representer theorem.

In all simulation, we use a fix number of iteration as the
stopping criterion but we may think for other one. The interest
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Figure 3: Probability to obtain 1 or−1 for the Bayes function
f⋆ on the left, the estimator obtaines after the CPGD algo-
rithm on the middle and Kernel Ridge Logistic on the right

of this algorithm remains to be with a lot less parameters and
to match directly to the Bayes function.

4.1 Death and birth of particles
According to the algorithm, some particles tend to die along
CPGD. Indeed, the gradient pushes the amplitude to zero.
Since, at each step we need to compute some Gram matrix
of the kernel for all the particles together, we added a condi-
tion in our algorithm to detect if some particle is going to die
or not. This condition corresponds to the study of the second
term in a Taylor approximation of the method. We can see this
criterion on the residual with the KKT condition. For some
particle, if the algorithm tends to decrease a small amplitude
where the residual has already a value between−1 and 1, that
correspond to a particle which doesn’t succeed in the task of
finding a Dirac.

The criterion to detect a dying particle relies on a Taylor
formula, we only can remove particles one by one but since
the condition is quite cheap to verify we can look at each step
if a particle verifies it or not.

At the opposite, there exists a risk that any particle aggre-
gate around a Dirac and that we didn’t detect it. In order to
verify if we explore the whole possible set, which could be
possible by initialize a lot of particle in a grid sufficiently
small but that would be horribly expensive in computation
and memory. We implement a condition to see if the actual
exploration is sufficient.

The idea is the following, we draw at random some new
possible position and for each of them we look if the resid-
ual respects the KKT condition (14). If yes, the particle is
not necessary but if the residual has a absolute value larger
than 1, we create there a particle of the same sign as the resid-
ual. This condition gives a way to create new particles such
that we ensure a loss diminution and so without any risk of
non-converging algorithm. At this step we can draw as many
particle as we want but that will increase the cost of this op-
eration since we have to verify each particle independently
but an exploration is mandatory to ensure the detection of all
Dirac. It is where the algorithm suffer from the curse of di-
mension, since with a larger dimension gets the probability
for a random particle to fall near enough to a Dirac become
less probable. Since this computation is more expensive, we
processed it only at fixed epochs.

5 Conclusion
This article deals with the over dependency of KRidge on the
observation. Thanks to a new penalization and ideas devel-
oped in BLASSO, we study a new estimator that decrease sig-

Algorithme 2 : Conic Particle Gradient Descent
with dying and birth of particle

input : Parametrize the regularization parameter λ

Initialization of the particles: (ai), (ti) ;
while not stopping_criterion do

compute ∇al
Fp,∇tlFp

Actualisation of the particles according to the
parameter retraction

Remove a dying particle if needed
At fixed epochs see if there is new born particles
Refresh the stopping_criterion

end

nificantly the number of parameters, and, in some critic cases
may improve the distance to the target function. We used
CPGD to solve our model and ensure its sparsity. In future
works, we would like to develop either the theoretical aspect
of the model with developing a certificate for its convergence
either in the algorithmic aspect with the creation smarter stop-
ping criterion and imagine a way to merge two close enough
particles.
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