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Résumé – Les performances d’un système radar dépendent directement de la qualité de calibration du réseau d’antennes, puisque
celle-ci influence directement la détection des cibles d’intérêt et donc leur pistage. Cependant, cette calibration peut se dégrader
avec le temps à cause du vieillissement du matériel ou autres effets environnementaux, ce qui justifie l’intérêt porté aux méthodes
d’autocalibration qui permettent de recalibrer le radar en cours de fonctionnement. Cet article présente une nouvelle approche
utilisant un filtre de Kalman pour fusionner des estimations successives de gain, améliorant ainsi l’autocalibration. Cette méthode
permet donc de s’affranchir d’un matériel de calibration coûteux et d’assurer la pérennité des performances du radar. La méthode
présentée est validée par simulation.

Abstract – The performance of a radar system is dependent on the antenna array calibration, since this calibration has a direct
influence on the detection of targets of interest, and hence on their tracking. However, the calibration can degrade over time due to
aging components or other environmental effects, which justifies the interest in autocalibration methods that allow a radar to be
recalibrated during operation. This article presents a new approach to autocalibration using a Kalman filter to merge successive gain
estimates, thus improving autocalibration. This method eliminates the need for costly calibration equipment, and ensures that the
radar’s performance is maintained over the long term. The method presented is validated by simulation.

1 Introduction
Electronically steerable antenna arrays in radar systems are
used to generate directional beams for target detection and
tracking; their performance depends on precise calibration
since even minor discrepancies can degrade the beamform-
ing significantly, causing side-lobe level increases, distorted
beam patterns, or even misaligned beams in extreme cases.
Therefore, calibration is vital for optimizing performance and
ensuring reliable operation.

Traditional methods like factory calibration methods [1, 2]
provide accurate initial settings, but cannot account for compo-
nent degradation over time. Online alternatives offer real-time
adjustments, but are hardware-intensive and thus expensive,
and similarly affected by component aging [3]. This high-
lights the need for more efficient solutions to reduce hardware
reliance and cost while maintaining accuracy throughout the
lifetime of the array.

Autocalibration techniques address these challenges by dy-
namically estimating and correcting errors during normal op-
eration, without the need for designated hardware (other than
good computation units) or extensive downtime [4, 5, 6, 7, 8].
However, these methods tend to lack accuracy. Additionally,
most methods are designed to estimate the array’s gain and
phase error from a completely uncalibrated state. However,
since the these errors can vary slowly over time, previous es-
timates must occasionally be discarded in favor of new ones
to ensure sustained performances over time. This process is
inefficient, as these estimates are typically highly correlated.

This article introduces a data fusion approach to autocali-
bration that leverages a Kalman filter to exploit correlations
in successive complex gain estimates, enhancing precision
without significantly increasing computational complexity as
the Kalman filter is numerically efficient (see Fig. 1). This
technique also allows the concurrent use of different calibra-

tion methods, and it also allows to calibrate only a subset of
the array at a time which is particularly useful for large arrays
or computationally intensive methods in real-time applications.
Any autocalibration method that yields an estimate of the cal-
ibration vector without a steering direction bias can be used,
which usually eliminates any method that does not use one or
more calibration targets.
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Figure 1: Block diagram of the Kalman fusion approach

2 Signal Model
In this paper, scalars are written in lowercase italic, vectors in
lowercase bold and matrices are in capital bold.

Without loss of generality, let us consider an active 1-D
antenna array of M elements with P impinging narrowband
signals. The M × 1 signal vector x(n) at time n is:

x(n) = diag (g)CA (Θ) s(n) +w(n) (1)

Here, s(n) is the vector of shape P ×1 of the complex enve-
lope of the P impinging signals at time n. A (Θ) is the steering
matrix of shape M ×P for directions Θ =

(
θ0 . . . θP−1

)
of

the impinging signals. The vector g is the complex gain error
of the array, and diag (.) is the usual diagonal operator used
in linear algebra. C is the M ×M coupling matrix between
elements of the array and w(n) is an unknown white gaussian
noise vector.
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The goal of autocalibration is to estimate g. To remove
ambiguity, a reference element r is chosen and its gain is
arbitrarily chosen to be one: g[r] = 1.

The N time samples of a given scan are concatenated so
that:

X = diag (g)CA (Θ)S+W (2)

with,

X =
(
x(0) x(1) . . . x(N − 1)

)
(3)

S =
(
s(0) s(1) . . . s(N − 1)

)
(4)

W =
(
w(0) w(1) . . . w(N − 1)

)
(5)

3 Kalman Filter for Calibration
In this section, the method to refine the calibration vector
estimate over time using a Kalman filter is described [9]. The
idea is that once the array is calibrated using a vector h, the
calibrated signal Xc is as follows:

Xc = diag (h)−1 diag (g)CA (Θ)S+W (6)

with (.)−1 the matrix inverse operator.
In an ideal world, h would be equal to g, thus eliminating

the complex gain error completely. However, that is almost
never the case. Therefore, the remaining complex gain error
could be estimated and corrected to improve performances.
The calibration error vector to estimate at calibration step i is:

ei =
g

hi
(7)

Here, the division is an element-wise division. This is also
the vector that is estimated using an autocalibration method.
Let us define yi the estimations of the complex calibration er-
ror vector at calibration step i using the chosen autocalibration
method. Then, the following state-model is defined:{

êi = Fiêi−1 + ui

yi = Diêi + vi
(8)

Here, êi is the Kalman estimate of the calibration error
vector ei at calibration step i. Fi is the evolution matrix, and
Di is the measurement matrix at calibration step i.

The vector ui is the process noise, which is due to the
deviation of the true calibration vector g over time. This noise
is assumed to be white and gaussian with correlation matrix
Qi. Finally, vi is the measurement noise vector, which is
dependent on the characteristics of the chosen autocalibration
algorithm. This noise is assumed to be white and gaussian
with correlation matrix Ri.

The matrices Fi, Di, Qi and Ri are discussed later in this
paper.

From this state model, the usual Kalman filter update and
prediction steps can be taken to estimate the state vector êi,
as shown in Alg. 1. It should be noted that the meaning of
the infinite loop in this algorithm is that these Kalman steps
should be done regularly throughout the lifetime of the radar,
not that all computing resources should be dedicated to this
algorithm.

Here (.)H is the hermitian transpose operator, and IM is the
identity matrix of shape M ×M .

Algorithm 1: Kalman filter algorithm based on the
state model in equation (8)

1 Initialize ê0, P̂0, i = 1
2 while True do
3 Prediction step:
4 êi|i−1 ← Fiêi−1

5 P̂i|i−1 ← FiP̂i−1F
H
i +Qi

6 Estimation with autocalibration: get yi

7 Update step:
8 Si ← DiP̂i|i−1D

H
i +Ri

9 Ki ← P̂i|i−1D
H
i S−1

i

10 êi ← êi|i−1 +Ki

(
yi −Diêi|i−1

)
11 P̂i ← (IM −KiDi) P̂i|i−1

12 i← i+ 1

13 end

3.1 Discussion on the Evolution Matrix
The evolution matrix Fi is used to model the evolution of the
vector ei over time (7). The calibration vector hi, which can be
controlled entirely, influences ei predictably and can therefore
be taken into account in Fi. Conversely, the variations of g
are unpredictable and thus have to be modeled by the process
noise.

Firstly, if the calibration vector changes from hi−1 to hi,
then the calibration error vector ei at calibration step i be-
comes:

ei =
g

hi
⇐⇒ ei =

hi−1

hi
⊙ g

hi−1

⇐⇒ ei = diag
(
hi−1

hi

)
ei−1 (9)

with ⊙ being the element-wise product operator and the divi-
sions between the vectors being element-wise divisions. Thus,
Fi = diag

(
hi−1

hi

)
.

Secondly, if the estimate yielded by the Kalman filter is
used to calibrate the radar, then:

hi =
êi−1

êi−1[r]
⊙ hi−1 (10)

Here, êi−1[r] is the rth element of êi−1. The division by
êi−1[r] ensures that the reference element r of the array has
a fixed complex gain. Then substituting Eq. 10 into Eq. 9
yields:

Fi = diag
(
êi−1[r]

êi−1

)
(11)

In that case,

êi = Fiêi−1 =
(
êi−1[r] êi−1[r] . . . êi−1[r]

)T
(12)

In other words, this choice of Fi ensures that the complex
gain response of each element of the array is êi−1[r] to the
best of the available knowledge.

Lastly, if the calibration vector does not change between
two calibration steps, then Fi = IM .



3.2 Discussion on the Measurement Matrix
In most cases, an autocalibration method yields an estimate
of the calibration error ei directly. In that case, yi = ei + vi,
thus Di = IM .

However, there are some particular cases to consider. First,
some calibration methods allow for the calibration of a subset
of the array [4, 6, 7], which is desirable in some applications,
such as reducing computation times on a very large array. In
that case, Di = J with J a selection matrix of shape S ×M ,
with S the number of selected elements:

J [s,m] =

{
1 if the mth element is the sth selected element
0 otherwise.

(13)
For example, the matrix selecting elements 0, 2 and 5 from

an array of 6 elements is:

J =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 (14)

Furthermore, some calibration methods do not take into
account the effect of coupling between elements (the matrix
C), which might be an issue in some cases. In the Kalman
approach, the effect of coupling can sometimes be accounted
for if C is known, thus compensating for this deficiency of
the chosen autocalibration method. For instance, if the chosen
autocalibration approach uses a single calibration target, then
the actual estimated vector is not g but g′:

g′ = diag (a∗(θ)) diag (g)Ca(θ) (15)

with a(θ) being the steering vector of the array for direction θ,
which is the direction of the calibration target, and (.)∗ is the
complex conjugate operation. diag (a∗(θ)) is here because the
steering phase due to the direction of the calibration target is
compensated for [6, 4, 7].

Then, some simple algebraic manipulations yield:

g′ = diag (diag (a∗(θ))Ca(θ))g (16)

It is worth noting that if C = IM , then g′ = g, as expected.
Finally, this expression can be used in D:

D = Ωdiag (diag (a∗(θ))Ca(θ)) (17)

with Ω being IM or J depending of the situation, as described
previously.

3.3 Process Noise and Measurement Noise Ma-
trices

The correlation matrices of process noise Qi and measurement
noise Ri should be chosen appropriately.

Ideally, Qi should be chosen using known hardware data or
statistical data. Alternatively, a good approximation could be
Qi = σ2

QIM with σQ a hyper-parameter to be determined.
Similarly, Ri should be chosen using statistical data of

the calibration error of the chosen autocalibration method, or
Ri = σ2

RIM with σR another hyper-parameter to be deter-
mined.

4 Simulation Results
Simulations are done using Python (v3.13.2), as well as the
libraries NumPy (v2.1.3) and Matplotlib (v3.10.1) for data
array manipulations and data plots, respectively.

In the simulations, the complex gain ei of an array of M =
128 elements is estimated using the autocalibration methods
described in [6] with P = 1 target. These successive gain
estimations are then fused using the method described in this
article. The calibration error is then compared to the results
of the autocalibration method without fusion (discard-and-
replace method), which consists of discarding the previous
calibration hi and estimating the complex gain vector to find
hi+1.

The signal-to-noise ratio (SNR) is approximately 10 dB
after pulse compression which is quite high but necessary for
the chosen autocalibration method. A lower SNR is not an
obstacle as long as the chosen autocalibration method can
function at the given SNR. For each radar echo, N = 4096
samples are taken.

The process noise and measurement noise matrices are cho-
sen arbitrarily:

Qi = 0.1IM and Ri = 2IS (18)

In addition, the Kalman filter is initialized as follows:

P̂0 = 10IM and ê0 =
(
1 1 . . . 1

)T
(19)

Here, (.)T is the transposition operator. This choice of noise
matrices and initialization is not particularly efficient, and a
better one could be found. However, it is sufficient as a proof
of concept. Finally, the 0th element of the array is chosen as
a reference element and an arbitrary real coupling matrix is
chosen, and used when specified:

C =



1 0.7 0.5 0 · · · 0

0.7 1 0.7
. . .

0.5 0.7 1
. . .

...
. . . . . . . . .

0 1


(20)

The simulation results are shown in Fig. 2. Only the phase
error is displayed, since this error is usually the parameter
of interest in an autocalibration problem. The vector g is
changed slightly half-way through the simulation by adding an
additional uniform phase to g. This is done to show how the
Kalman filter responds to such a changes in the target vector.
The discard and replace method is not impacted by this change
since it does not keep track of previous calibration vectors.

As shown in Fig. 2, the Kalman fusion approach yields
a lower or equal Root Mean Square Error (RMSE) than the
discard-and-replace method. In addition, it also yields a lower
RMSE when there is coupling, which is expected since the
base method does not take coupling into account (see Fig. 2b
and Fig. 3).

Furthermore, the number of selected elements S (matrix
J) has an influence on the performance of the algorithm. A
low number of selected elements yields a lower quality esti-
mate (S = 32 in Fig. 2), while a high number of selected
elements S yields a better estimate (S = 128 in Fig. 2), but
it also increases the computation time for two reasons: the
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Figure 2: RMSE of the phase error as a function of the number
of calibration steps for the discard and replace method and the
Kalman fusion approach and different values of S. A Monte-
Carlo averaging is done over 30 simulations.
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Figure 3: Radiation pattern (dB) of the array calibrated with
a discard-and-replace approach (gray), and with the Kalman
filter approach (black) for S = 32 selected elements with
coupling.

autocalibration algorithm needs to estimate a higher number of
parameters, and the computational cost of the Kalman filter’s
update step increases with the size of the measurement vector
yi non-linearly because of the computation of S−1

i .
The better estimate obtained with the Kalman fusion ap-

proach ensures lower side-lobe levels, and reduces the impact
of coupling between elements (see Fig. 3).

5 Conclusion
The results of this study demonstrate that the proposed data
fusion approach using a Kalman filter improves measurably
the accuracy of autocalibration in antenna arrays by using the

correlations in successive complex gain estimates. Addition-
ally, this approach allows for the concurrent use of multiple
calibration methods and supports the calibration of subsets of
the array, making it particularly effective for large arrays and
real-time applications. These findings highlight the potential
of the Kalman filter-based technique to optimize radar sys-
tem performance and ensure reliable operation for the entire
lifetime of the radar at a low cost.
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