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Résumé – Les signaux bivariés occupent une place à part car ils permettent un traitement spécifique tenant compte de leurs
propriétés géométriques. Ils correspondent aux ondes bidimensionnelles caractérisées par leur état de polarisation qui traduit
la covariance entre les deux composantes du signal. Ce travail propose de faire bénéficier la résolution des problèmes inverses
de restauration des signaux bivariés de termes de régularisation portant non seulement sur le signal lui-même, mais aussi sur la
covariance entre composantes. Cet objectif amène à travailler avec le signal analytique et à considérer la présence d’un terme
quartique dans la fonction de coût. Un problème d’optimisation sous contraintes linéaires est formulé. Une méthode ADMM est
proposée impliquant des étapes de mise à jour efficaces. Les simulations numériques illustrent les bonnes performances et la rapidité
de la méthode proposée.

Abstract – Bivariate signals occupy a special place, as they can be processed specifically to take account of their geometric
properties. They correspond to two-dimensional waves characterized by their polarization state, which reflects the covariance
between the two signal components. The aim of this work is to enable the resolution of inverse restoration problems for bivariate
signals to benefit from regularization terms relating not only to the signal itself, but also to the covariance between components.
This objective leads us to work with the analytical signal and to consider the presence of a quartic term in the cost function. An
optimization problem under linear constraints is formulated. An ADMM method is proposed, involving efficient updating steps.
Numerical simulations illustrate the good performance and speed of the proposed method.

1 Introduction
Bivariate signals are involved in many application across var-

ious fields, such as astronomy [2, 3], geophysics [14], oceanog-
raphy [5], and neuroscience [13]. In most of these, the polar-
ization, i.e., the shape of the trajectory drawn by the extremity
of the signal vector (e.g., a segment corresponds to a linear
polarization, a circle to circular polarization, and in general the
instantaneous polarization is elliptical) is a key geometric prop-
erty. For example, gravitational waves, a prominent instance
of bivariate signals, exhibit different polarization properties
depending on the properties of the physical sources, e.g., black-
holes or large masses [7, 2].

The tools to analyze bivariate signals, and polarization prop-
erties in particular, have received growing interest in the last
decades. A series of works [8, 12, 15] have theorized and
adapted various signal processing tools such as instantaneous
frequency, wavelets, and mode decompositions for bivariate
signals. Later, the seminal work of [4] studied the use of instan-
taneous covariance matrices and Stokes parameters. These are
alternative signal representations that can be used interchange-
ably. Each representation provides a different perspective
while still conveying the same essential information on the
polarization state of the signal. In optics or radar signals, these
representations capture the geometrical properties of a wave.
Therefore, when dealing with inverse problems, regularization
in the polarization domain is necessary. The initial work of [3]
formulates the problem for the bivariate signal with known
polarization properties. While the solution to this problem is
fast to compute, it requires the true polarization of the recon-
structed signal to be known in advance, thereby restricting its

applicability. In a recent work [11], this problem is formulated
using a regularization promoting a smooth polarization evo-
lution. This approach however entails two main limitations;
firstly, the cost function used in the optimization problem is
defined in a heuristic manner which is not straightforward to
adapt for generic inverse problems. Secondly, the algorithm
used to solve the problem is based on gradient descent algo-
rithm, which does not exploit the structure of the problem and
whose convergence can be slow in practice.

In this work, we reformulate smoothness priors on the bi-
variate signals and their polarization. This formulation uses
the instantaneous covariance matrices, which leads to a com-
pact formulation of the regularization function. In turn, the
overall problem is a quartic optimization problem. To address
this issue, we propose an appropriate parameter splitting strat-
egy [1] such that the overall problem can be solved efficiently
with an ADMM algorithm. Primal update steps in the algo-
rithm reduce to quadratic convex subproblems, which admit
a closed-form solution fast to compute. The organization of
the paper is as follows; in Section 2, necessary background
and notation related to bivariate signal processing are summa-
rized. Then, we detail the problem definition and the proposed
regularization functions. Section 3 introduces the proposed
parameter splitting strategy and the ADMM algorithm used
to solve the optimization problem considered. Section 4 il-
lustrates the performance of the method with simulations and
discusses the results. Finally, concluding remarks are reported
in Section 5.
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2 Restoration of bivariate signals

2.1 Formulation of the problem
Given a discrete, real, narrow-band, bivariate signal X =

[X[1]⊤, . . . ,X[N ]⊤]⊤ ∈ RN×2 with X[n] = [u[n], v[n]]⊤,
this paper considers the inverse problem of the signal recon-
struction by taking both signal and polarization properties into
account. A generic forward model for signal reconstruction
is:

Y = Φ(X) + ε ∈ RN×D (1)

where Φ denotes the forward model, Y is the noisy mea-
surements and ε = [εd]d∈1,...,D represents the noise with
εd ∼ N (0,Θd). For each measurement device d, the noise εd
is assumed stationary, so that the covariances can be written
Θd = FH∆dF , with F the discrete Fourier transform and ∆d

a diagonal matrix containing the power spectral density (PSD)
of the noise for device d. For known PSDs, the noise can be
whitened in the frequency domain as

∀d ∈ {1, . . . , D}, ỹd = ∆
−1/2
d F [Φ(X)]d + ε̃. (2)

The corresponding fidelity term is fY,Φ(X) =∑D
d=1 ∥∆

−1/2
d F [Φ(X)]d − yd∥22 Reconstructing X from Y

can be formulated as the following optimization problem:

X⋆ ∈ argmin
X

fY,Φ(X) +

R∑
r=1

λrgr(X), (3)

where the data fitting term f includes information about the
acquisition system and the distribution of the noise while the
second term reflects prior assumptions on the signal X such
as smoothness, sparsity or hard constraints. The following
sections details the various proposed regularization penalties.

2.2 Regularizations
Each component of the true bivariate signal X is expected

to vary smoothly with time. This prior leads to regularization
functions which penalize high variations within each compo-
nent. In this work, we choose to use g1(X) = ∥DX∥2F =∑N

n=2 ∥X[n]−X[n− 1]∥22 where D is the discrete finite dif-
ference operator [6]. Similarly, the polarization of the true
signal, thus the corresponding polarizations, smoothly vary.
We represent the polarization by the instantaneous covariance
matrices which read at time n

Σ[n] = Xa[n]Xa[n]
H (4)

where Xa is the analytic version of X, obtained via the linear
transformation

Xa = AX, (5)

where A = F−1∆ω>0F , F ∈ CN×N is the discrete Fourier
transform and ∆ω>0 is a diagonal matrix in which each co-
efficient are 2 for positive frequencies ω > 0, 1 for the DC
component, and 0 otherwise [9]. While this matrix encodes
the correlations between two components, it has a direct con-
nection with the instantaneous polarization. In other words,
its evolution through time encodes the evolution of the polar-
ization properties of the signal [4]. To encode the smoothness

prior, we formulate the second regularization function as:

g2(Xa) =

N∑
n=2

∥Σ[n]−Σ[n− 1]∥2F

=

N∑
n=2

∥Xa[n]Xa[n]
H −Xa[n− 1]Xa[n− 1]H∥2F

=

N∑
n=2

∥XaJnX
H
a∥2F =

N∑
n=2

tr(XH
aXaJnX

H
aXaJn),

(6)

with en the n-th canonical basis vector and Jn = ene
⊤
n −

en−1e
⊤
n−1. In the rest, we re-denote this regularization func-

tion by g̃2(XaX
H
a ) as it is a function of XaX

H
a . This notation

will help to explain the proposed method in Section 3.
The regularization g̃2(XaX

H
a ) is a quartic function of X,

which requires the evaluation of Xa via a dense linear transfor-
mation A. This would require large-scale dense linear systems
of equations to be solved in the inference algorithm. To avoid
this issue, we propose to solve the problem at hand in the
domain of analytic signals. This is made possible by adding
a hard constraint in the overall optimization problem which
appears as an indicator function

g3(X) = ιA(X) =

{
0 if 1

2AX = X

+∞ else.
(7)

The problem considered is of the form (3), with

X⋆ ∈ argmin
X∈CN×2

fY,Φ(X)+λ1g1(X)+λ2g̃2(XXH)+ ιA(X).

(8)
This is a constrained non-convex quartic problem, which does
not admit a closed-form solution. We assume that the data
fidelity term fY,Φ(X) is equivalent to fAY,Φ(AX) when re-
formulated in the analytic signal domain. This is verified if
AΦ(X) = Φ(AX) which is often the case in applications of
bivariate signal processing. For example, in Section 4, we
use the forward model of gravitational waves, Φ(X) = XF,
which verifies this assumption.

3 Variable splitting and ADMM
The problem (8) is prone to an ADMM approach (See

Alg. 1). The resulting variable splitting strategy is twofold.
The first applies to the quartic regularization term to simplify
it to a quadratic one. In particular, we replace g̃(XXH) with
g̃2(Z2X

H) which is quadratic w.r.t. X and the splitting vari-
able Z2. The second divides the objective functions into cer-
tain blocks so that the corresponding subproblems are cheap
to solve. Specifically, two more auxilary variables Z1 and Z3

respectively replaces X as f(Z1), g1(Z1) and ιA(Z3). This
is heavily inspired by a classical optimization scheme called
(regularized) consensus optimization [1] in which the global
variable X is replaced by the auxilary variables Zi’s for each
block of the objective function. After splitting, (8) becomes

X⋆ ∈ argmin
X∈CN×2

Zi=X,
i∈{1,2,3}

fY,Φ(Z1) + λ1g1(Z1) + λ2g̃2(Z2X
H) + ιA(Z3)︸ ︷︷ ︸

L(X,Z1,Z2,Z3)

.

(9)
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Algorithm 1: ADMM for Eq. (9)
Input: Y
Initialize randomly: X(0),

{
Z

(0)
i ,U

(0)
i

}
1≤i≤3

for k = 1, 2 . . . until convergence do
// Primal parameter update

X(k+1)=argmin
X

L(X,Z
(k)
1,2,3)+

ρ
2

3∑
i=1

∥∥∥Z(k)
i −X+U

(k)
i

∥∥∥2

F

// Dual parameter updates

Z
(k+1)
1 =argmin

Z1
L(X(k+1),Z1,Z

(k)
2,3)+

ρ
2

∥∥∥Z1−X(k+1)+U
(k)
1

∥∥∥2

F

Z
(k+1)
2 =argmin

Z2
L(X(k+1),Z

(k+1)
1 ,Z2,Z

(k)
3 )+ ρ

2

∥∥∥Z2−X(k+1)+U
(k)
2

∥∥∥2

F

Z
(k+1)
3 =argmin

Z3
L(X(k+1),Z

(k+1)
1,2 ,Z3)+

ρ
2

∥∥∥Z3−X(k+1)+U
(k)
3

∥∥∥2

F

// Multiplier updates
U

(k+1)
i =U

(k)
i +Z

(k+1)
i −X(k+1), for i∈{1,2,3}

end
returnX(k)

This divide-to-conquer strategy permits to split the overall
problem into subproblems that admit closed-form solutions.
For example, the problem composed by f and g1 often leads
to signal filtering which can be implemented efficiently either
in time or frequency domain. Similarly, separating quadratic
input parameters in g̃2 leads to solving quadratic problems
w.r.t. X or Z2 instead of a quartic one. Finally, solving for
Z3 boils down a projection onto the space of analytic signals
which can be efficiently implemented. The update step for X
at iteration k requires to solve a sparse linear system:(

λ2

N∑
i=2

JtZ
(k)
2 (Z

(k)
2 )HJ⊤

t + 3ρI

)
︸ ︷︷ ︸

Mx

X =

3∑
i=1

ρ(Z
(k)
i −Ul

i)︸ ︷︷ ︸
bx

(10)
where Mx is a triangular matrix. Similarly, the Z2-
update is obtained by solving Mz2Z2 = bz2 with
Mz2 =

(
λ2

∑N
i=2 JtX

(k+1)(X(k+1))HJ⊤
t + ρI

)
and bz2 =

ρ(X(k+1) +Ul
2). The solution to Z3-update is independent

from ρ and a projection onto the analytic signal subspace, i.e.,
Z3 = projA(X +U

(k)
3 ) = 1

2A(X +U
(k)
3 ). Finally, the up-

dates on Z
(k+1)
1 take the form of the Tikhonov regularization,

which can be often interpreted as a spectral filtering. This will
be exemplified later in Section 4 for simulation results.

4 Experimental results
For the illustrative results, we consider the following linear

forward model of the gravitational waves [3]:

Y = XF+ ε (11)

where F = [f1| . . . |fD] ∈ R2×D is the linear projection model
that depicts the behaviours of different antennas and the noise
in each channel/antenna d, denoted by εd, is assumed to be
colored but known up to its power spectral density ∆d.

In the experiments, the bivariate signals are randomly gen-
erated by using the model in [4, (1.57)] using smooth polar-
ization parameters. The generated signals are narrow-band,
AM-FM-PM signals with the main carrying frequency linearly
increasing in [25, 100] Hz. The forward model matrix F is

Figure 1 – The proposed method with different parameter
configurations: MLE solution i.e., λ1,2 = 0 (top), covari-
ance i.e., λ1 = 0 (second row) and time smoothing i.e., λ2 = 0
(third row), the proposed method i.e., λ1,2 > 0 (bottom)

Table 1 – Runtime (sec) for varying sample size N .

N MLE STS Prop. method

512 0.0003 3.48 1.78
1024 0.0004 3.90 2.38
4096 0.0013 6.20 6.91

Figure 2 – Reconstruction SNR of the different methods.

3



entry-wise sampled from i.i.d normal distributions. To gen-
erate noise εd, we randomly sample its amplitude αd[f ] ∼
U(0, σ) and its phase φd[f ] ∼ U(0, 2π) for each frequency
f . The noise is then obtained as εd = F−1{αd exp(jφd)}.
The corresponding spectral whitening operator reads Td =
diag(αd)

−1 where diag generates a diagonal matrix whose
diagonal are given by the input vector. The range of pa-
rameter σ is set to {10−1, . . . , 101} and the simulations are
repeated for several realizations of N = 512, 1024, 4096.
The hyperparameters λ1 ∈ {10−1, 1, 10, 102, 103} and λ2 ∈
{102, 103, 104, 105, 106} are set by a grid-search. The pro-
posed method is compared with the denoising approach pro-
posed in [11] refered as Stokes and signal smoothing (STS).
The algorithm in [11] requires a noisy version of the bivariate
signal as input thus we pass the maximum likelihood solution
for the forward model in (11) (λ1,2 = 0). Finally, we com-
pare these approaches in terms of runtime and reconstruction
SNR i.e., r-SNR(·) = 10 log

∥X∥2
F

∥X−·∥2
F

.
Fig. 1 illustrates the restoration performance of the proposed

method for different parameter configurations, namely covari-
ance smoothing (λ1 = 0), time smoothing (λ2 = 0), MLE
(λ1,2 = 0) and the proposed method with all regularizations ac-
tivated (λ1,2 > 0). The best performances are achieved by reg-
ularizing both in signal and polarization domains (r-SNR=8.53
dB) whereas smoothing only in time domain (r-SNR=5.59 dB)
or only in polarization (r-SNR=7.07 dB) is not sufficient. In
addition, Fig. 2 shows that the covariance smoothing is more
relevant in high SNR regimes whereas in low SNR regime,
time smoothing is more relevant. Moreover, the proposed
method usually performs better than the STS method, while
taking comparable or less amount of time to reach to solution
(see Table 1).

5 Conclusion
A new formulation is proposed to take the polarization prop-

erties into account for solving inverse problems involving
bivariate signals. This formulation admits an efficient ADMM
algorithm where each step has a closed-form solution and can
be calculated with fast algorithms. The existing method [11]
relies on an algorithm based on gradient descent, while the
proposed approach exploits the quartic structure of the prob-
lem. As a result, the proposed method yields superior signal
restoration results, while scaling comparably with existing
algorithms. In the future, we plan to adapt suitable hyperpa-
rameter tuning methods [10] for selecting λ1 and λ2 and apply
this approach for real-life problems such as the reconstruction
of gravitational waves [2].
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