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Résumé — Nous proposons une optimisation jointe des paramétres optiques d’un analyseur de front d’onde et d’un réseau de
neurones utilisé pour analyser le signal et reconstruire le front d’onde. Nous montrons que cette approche permet d’obtenir de
meilleures performances que 1’entralnement du seul réseau de reconstruction.

Abstract — We propose a joint optimization of the optical parameters of a wavefront sensor and a neural network used to decode
the signal and perform wavefront reconstruction. We show that it is possible to achieve better performance with this technique than

training only the reconstruction network.

1 Introduction

Ground-based telescopes suffer from resolution loss due to
atmospheric turbulence. Instead of achieving the diffraction-
limited resolution Ogigraction-limitea = A/ D, the effective reso-
lution is degraded to fyeeing = A/70, Where 7 is the Fried
parameter [6], typically ranging from 3 cm to 15 cm in good
observatories. This results in a resolution loss of 50 to 250
times for an 8 m telescope. To mitigate this, adaptive optics
(AO) is used, consisting of a wavefront sensor (WFS) to mea-
sure aberrations, a deformable mirror (DM) to correct them,
and a control system to compute corrections. This work fo-
cuses on optimizing the WFS and the phase reconstruction
algorithm.

A WFS converts phase distortions ¢(z, y) into an intensity
signal I(¢) measurable by a detector. The transformation de-
pends on the WFS type : Shack-Hartmann WES [[15] measures
the wavefront gradient, Zernike WFS [22] encodes phase as
a sinusoidal signal, and Pyramid WFS [16] relates intensity
and phase via the Hilbert transform. While traditional recons-
truction assumes a linear response, Fourier Filtering WESs
(FFWES), such as the Zernike or Pyramid WFSs, [20, [1]] re-
late the input phase and the intensity in the detector with the
following non-linear relation [4] :

1(9) = |F{F{Le?}y -m}|, (1)

where F{} is the Fourier transform, I, the pupil indicative
function and m is a filtering mask. While these sensors provide
high robustness to noise and linear response for small phases,
their nonlinear response to high amplitudes of phase requires
advanced reconstruction techniques such as iterative solvers
[3]] or machine learning methods.

Neural networks (NNs) have shown promise as wavefront
reconstructors. Previous studies have optimized either the re-
constructor [[10} [21] or the optical parameters of the WFS [7]]
separately. In this work, we propose a co-design method where
the reconstructor and the optical parameters are optimized.
This approach allows the system to adapt its optical design for
better signal codification in the WES, which is tailored to be

decoded by the network. Figure[T|shows the general schematic
used in out system. A similar co-design framework has been
explored in the context of 3D passive imaging, where both op-
tical parameters and image processing algorithms were jointly
optimized to enhance depth estimation from defocus [19].

The masks selected for optimization are the Pyramid and
Zernike WFS masks. The Pyramid mask was chosen due to its
central role as the primary WEFS in the single-conjugate AO
mode of the ELT instrument HARMONI [14]. The Zernike
mask was selected for its growing popularity as a second-stage
WES in extreme AO systems, particularly in the context of
direct exoplanet imaging [13]]. In this study, we utilize WFSs
beyond the small-phase regime, where linear reconstruction
is typically valid. To ensure robustness, we train our system
using full atmospheric turbulence scenarios, covering both
high and low rg, as well as open- and closed-loop data.

2 Methods

2.1 Wavefront sensor modeling

To simulate the wavefront sensor (WFS), we model the elec-
tromagnetic field as a discretized wavefront with a telescope
aperture of 1.5 m and a sensing wavelength of 500 nm [L1]].
Following Eq. (I} the signal is determined by the choice of the
filtering mask m = e'® . For a Zernike wavefront sensor, the
mask consists of a central dot with depth « and diameter S,
approximated as :

Azernike(x7y) ~ % [tcmh (’y (g — m)) + 1:| ,
2

with v > 1 to emulate a discontinuous function. The normal
values for these coefficients are « = 7/2, and 5 = 1 \/D.
For the Pyramid WFS, the mask is a four-sided pyramid with
slopes avand 3 :

Apyramid(zvy) = |OLI| + |By| 3
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FIGURE 1 : Diagram of the system. The input phase ¢ is propagated through the WFS, and the image obtained is the input of the
NN. The design of the NN includes also activation functions and Max-Pooling between every layer. The sizes of the features are

given in height x width x channels.

The normal values for these coefficients are & = 8 = 7/2.
In this work, instead of using the values of «, 5 and -y as fixed,
we optimize them jointly with the reconstruction network,
which will be described in the next subsection.

2.2 Neural network reconstructor

We use a Convolutional Neural Network (CNN) for wavefront
reconstruction. The network, as shown in Fig. [I] processes a
100 x 100 grayscale image using four convolutional layers with
32, 64, 128, and 256 filters, applying GELU activation and
max-pooling for downsampling after each layer. An adaptive
average pooling layer extracts global features, followed by
a fully connected layer that maps them to the first Nzemike
Zernike modes.

2.3 Dataset

To generate the dataset to train the system, we take advan-
tage of the fact that the wavefront has a known power spectral
density (PSD), which we can use to generate an arbitrarily
large number of samples. The PSD of the wavefront can be
constructed by combining the PSD of the atmosphere, which
follows a Kolmogorov distribution [9]], the PSD of the defor-
mable mirror, which corresponds to a high-pass filter [17],
that allows us to generate open and closed loop data, and the
PSD of the temporal errors, since there is wind moving the
atmosphere and the AO loop takes time between making a
measurement and sending the corrections to the DM [17]. To
generate each wavefront sample, we start by generating a grid
of complex Gaussian random variables in the spatial frequency
domain. This random field is then modulated by the square
root of the combined PSDs, which include contributions from
the atmospheric turbulence, deformable mirror dynamics and
temporal lag. The wavefront sample can be obtained as the
real (or imaginary) part of the inverse Fourier transform of the
resulting spectrum. Once a wavefront is generated, it is pro-
pagated through the WFS to produce the input image for the
neural network, while the ground truth is obtained by compu-
ting the Zernike decomposition of the wavefront. The dataset
contains wavefronts with ry between 5 - 20 cm, wind speeds
ranging from -15 to 15 m/s in any direction, open loop, clo-
sed loop and intermediate residuals, photon noise considering
between 10% and 10° photon per frame and detector noise

between 0 and 3 e~ /pixz/ frame. We generated a test dataset
that contains 256 samples that will be used to compare the
different scenarios after the training.

2.4 Joint Optimization and Training

Instead of training the WFS and the reconstructor separately,
we perform a co-optimization, allowing the WES mask parame-
ters and the neural network weights to evolve simultaneously.
The loss function used was a modified version of the mean
squared error (MSE) between the ground truth 2z and the es-
timated values Z for the N Zernike coefficients, in which we
normalized by the rg value of the sample (the strength of the
turbulence increases as o decreases), to improve the generali-
zation and robustness of the NN. For each sample in the batch,
the loss function is computed as

1 2\2
,C:TONZ(Z—Z)‘ 4)
N

Given that we have a fully differentiable model for the
optical system, it is possible to use the same back propagation
algorithm to perform the optimization for both the NN and the
filtering mask. In this work, the model is trained using Adam
optimizer [8]]. The training strategy consisted of 30 000 epochs
with batches of 64 images each and a learning rate of le — 4

for both the reconstruction network and optical parameters.

3 Training the Zernike wavefront sen-
sor

We trained three models. In the first, the reconstruction network
was trained with a fixed mask of « = w/2and 5 = 1\/D,
while in the second, it was trained with a fixed mask with
B = 2X/D. In the third case, both the network and the phase
mask parameters were optimized together. Figure [2] shows the
results from these runs, in which blue and orange curves show
the fixed optical parameters, and the green curve is the run
where the optical parameters were optimized along with the
network.

From Fig. 2] we observe that both fixed-parameter configu-
rations show similar loss evolutions, with the 2)\/D diameter
offering only a slight improvement. In contrast, co-optimizing
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FIGURE 2 : Evolution during training of the Zernike wavefront sensor. In blue and orange the optical parameters are fixed and the
network trained. In green both the network and the optical parameters of the regular Zernike WFS are trained. In red, an extra free
parameter was added that does not correspond to regular Zernike masks. Left panel : loss evolution through the epochs ; middle left
panel : diameter evolution of the Zernike dot; middle right panel : depth evolution of the Zernike dot. The blue and orange curves
overlap ; right panel : evolution of the parameter . Blue, orange and green overlap

the optical parameters with the network led to a significant loss
reduction, particularly around epoch 5 000, where the diameter
and depth of the mask evolved rapidly.

The optimized diameter converged to over 14 A/ D, far ex-
ceeding the conventional values (1 - 2 A/ D) typically used for
small-phase regimes [2]]. These small values are suitable for
nearly diffraction-limited star images, but the signal saturates
quickly with larger amplitudes of phase. The optimizer en-
larged the dot diameter to match the average size of the star
during the training, which included both open- and closed-
loop phases, and therefore increasing the dynamic range of the
Sensor.

While conventional Zernike WFSs set the depth to o = 7/2
for a signal proportional to the sine of the phase, a different
depth introduces a cosine component. Traditional linear re-
construction can’t use this, but a non-linear reconstruction can
leverage both.

Evaluating the test dataset, it gives the results presented in
table[I] in which it is possible to confirm the improvement of
the loss function when the optical parameters were optimized
along with the network. The table also includes reference
values for the loss for the two masks using state-of-the-art
(SOTA) linear reconstruction techniques [18]], in which it is
possible to observe that the co-optimization performed better
than the SOTA methods.

Manufacturing a 14)\/D diameter mask is feasible using
standard photolitographic reactive ion etching techniques [12],
similar to those for regular Zernike masks. The A/ D value
represents an angular size, allowing the physical spot size to
be adjusted by the F-number of the beam.

4 An extra free parameter for the Zer-
nike wavefront sensor

To have a differentiable model of the mask of the Zernike
wavefront sensor, we had to approximate it using a tanh func-
tion, with a ~ factor high enough to emulate a discontinuity.
Since we had a parametric model and optimization algorithm
that could optimize the optical parameters of a WFS, we let
the system evolve not only the diameter and the depth but
also this extra factor. Figure [2{shows in red the results of the
training using the extra parameter. It is possible to observe in
the loss evolution that adding this free parameter improved

the performance of the system. The value of this parameter
converged to around v = 0.03, therefore the approximation
for the Zernike mask of v >> 1 does not hold anymore and the
resulting mask no longer resembles a standard Zernike WFS.
Also, the diameter and the depth converged to values much
greater than before. Again, it is important to remark that the
Zernike WFS is designed to work with small amplitudes of
phase, and the training done here was done with a wide variety
of wavefronts. When evaluating the test dataset in table[I] this
training resulted in a lower loss when compared to the pre-
vious trainings of the Zernike WFS. This suggests that adding
degrees of freedom in the WFS can have a significant impact
on the overall wavefront reconstruction process.

5 Training the Pyramid wavefront sen-
sor

The usual design of the Pyramid WFS consists of a glass
pyramid that separates the light into four distinct pupils. It has
been shown that it is possible to use a flattened version of the
Pyramid [3]], in which the pupils overlap. These overlapped
pupils can bring benefits, such as signal coming from the
interference of the pupils and a smaller detector footprint.

To test the Pyramid wavefront sensor, we ran two trainings :
in the first only the reconstructor was trained, and in the second
the angle of the pyramid was allowed to change, which could
result in overlapping pupils. When the optical parameters were
allowed to evolve, the system always converged to an overlap
of around 90% of the pupils. This was independent of the
starting conditions, as we ran several iterations of the second
training, and it always converged to that value. Nevertheless,
the overall performance of this optimized system is similar
to the classic version of the Pyramid, in which the pupils are
0% overlapped. It is interesting to note that the PWFES, with
and without optimization of the optical parameters, did not
outperform all the other models on the test dataset, as can be
observed in table[I] given that the Zernike with the extra free
parameter had a lower total loss.
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TABLE 1 : Evaluation of the test dataset. Top : different training
scenarios ; bottom : State-of-the-art linear reconstruction

Training configuration Loss
Zernike WES no optical evolution 8 = 1A/D | 0.122
Zernike WFS no optical evolution 5 =2X/D | 0.105
Zernike WES with optical evolution in «, 3 0.047
Zernike WFS with optical evolution in v, 3,y | 0.016
Pyramid WES no optical evolution 0.022
Pyramid WFS with optical evolution in «, 3 0.021
Linear reconstruction

Zernike WFS 5 =1X/D 0.119
Pyramid WFS 0.058

6 Conclusion

In this work, we proposed a co-optimization framework where
both the wavefront sensor and the neural network reconstructor
are trained together. The system adapts the optical parameters
of the WEFS to improve the signal for the neural network, lea-
ding to a better reconstruction. This joint optimization results
in improved performance compared to a fixed WFS with a
separately trained neural network. For the Zernike wavefront
sensor, we found that the optimal values for depth and width
are vastly different from the usual design values, with the dia-
meter of the dot 7 times larger than previously found values,
and the depth a value different than 7 /2, which indicates that
the reconstruction algorithm is taking advantage of the non-
linear response of the Zernike WFS when the phase shift is a
different value. For the Pyramid wavefront sensor, it showed
that the current design of four distinct pupils is already close to
the optimal solution, but it is possible to overlap the pupil up
to 90% and achieve a similar performance, with a significant
reduction in the footprint of the detector. Finally, we showed
that adding an extra parameter to the Zernike mask allowed the
system to better adapt to the wide variety of wavefronts used
in the training, yielding a new mask that could even compete
with the Pyramid WES as a first-stage WFS. Future work will
focus on testing these WES in closed-loop AO configuration,
and adding extra free parameters to the filtering masks of the
WES.
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