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Résumé – Cet article présente une étude de plusieurs mécanismes d’attention dans les données RGB et événementielles, en mettant
l’accent sur les métriques d’évaluation de la performance. Nos résultats montrent que les résultats peuvent varier considérablement
en fonction de la métrique d’évaluation. Nous notons également que, bien que l’attention cognitive (déscendante) reste relativement
stable à travers les modalités, l’attention visuelle (ascendante) est fortement influencée par des indices perceptuels propres à chaque
format. Ces résultats mettent en évidence la nécessité d’une exploration rigoureuse dans le choix des métriques d’évaluation lors de
la conception des mécanismes d’attention, dépendamment des applications.

Abstract – This paper presents a study of several attention mechanisms in both RGB and event data, with a focus on the
performance of evaluation metrics. Our results reveal that the performance can vary significantly depending on the evaluation metric.
We also note that while cognitive attention (Top-Down) remains relatively stable across modalities, visual attention (Bottom-Up) is
strongly influenced by perceptual cues unique to each format. These insights highlight the need for rigorous exploration in selecting
evaluation metrics when designing attention mechanisms, depending on specific applications.

1 Introduction
Attention in visual scenes refers to the ability of a system

(biological or artificial) to selectively focus on the most rel-
evant parts of a scene while ignoring less important details.
This process helps reduce information overload and improve
efficiency. Embedded computer vision systems that need to
efficiently process large amounts of visual data (whether RGB
or event) while maintaining high accuracy and reliability can
benefit from attentional mechanisms to help focus on the most
relevant parts of the input data, thereby reducing the computa-
tional load and enhancing performance.

Attention mixes bottom-up visual attention driven by
saliency and top-down cognitive attention driven by the de-
mands of the current task at hand.

The recent concept of Transformer attention provides a com-
putational mechanism to attend selected portions of the input.
Yet, the link between human attention and Transformer atten-
tion remains unclear. Moreover, while a few computational
models for saliency prediction (mostly for RGB data) exist,
relatively little research, to our knowledge, has investigated
cognitive attention using event data despite its promising poten-
tial. We study and compare several human and computational
attention mechanisms in RGB and event data. Through a user
gaze data collection where participants are shown RGB and
event images (pseudo-frames formed with 50ms events accu-
mulation) as visual inputs, we collect gaze data in top-down
and bottom-up settings. Human visual attention was measured
without specific instructions, while cognitive attention was
assessed with task-related directives. The resulting heatmaps
were compared with existing computational models to exam-
ine the alignment between human and computational attention
mechanisms.

In this paper, we take a metric-driven approach to address
this gap. Our central hypothesis is that evaluating attention
mechanisms—whether human or computational—requires a
multifaceted view. No single metric can capture all aspects
of attention behavior. Therefore, we compare attention maps

Figure 1 – Illustration of human attention. (a) Visual attention
in RGB data, (b) visual attention in event data (c) cognitive
attention in RGB data (d) cognitive attention in event data.

using five complementary metrics: Structural Similarity In-
dex (SSIM), Intersection over Union (IoU), Pearson Correla-
tion Coefficient (CC), Similarity Index, and Kullback-Leibler
Divergence (KLD), each highlighting specific aspects of the
comparison.

The paper aims to illustrate the potential for developing
specialized attention models for event cameras in the future,
bridging the gap between neuromorphic sensing and human-
like visual processing systems.

Fig.1 illustrates the Tobii software experiment output for
one of the scenes, showing both RGB and event frames for
visual and cognitive attention. These outputs (modified ) are
later compared to computational models.

2 Comparison metrics
For a comprehensive analysis, we have used 5 different met-
rics, including location-based and distribution-based ones [2].
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Contrary to [2] where saliency maps are in color, our saliency
maps are binary and the location-based metrics differ.

2.1 Location-based metrics
The Structural Similarity Index (SSIM) [10] compares

heatmaps based on structural information by components: lu-
minance (average brightness similarity), contrast (variation
similarity), and structure (texture and pattern alignment be-
tween heatmaps). SSIM is calculated with Eq. 1, where X and
Y represent the input heatmaps to be compared. X̄ and Ȳ are
the mean intensity values of the heatmaps X and Y , respec-
tively. σ2

X and σ2
X denote the variance of intensity values for

X and Y , while σXY is the covariance between the heatmaps.
C1 and C2 are small constant values that prevent division by
zero when the denominator is null.

SSIM(X,Y ) =
(2X̄Ȳ + C1)(2σXY + C2)

(X̄2 + Ȳ 2 + C1)(σ2
X + σ2

Y + C2)
(1)

The Intersection over Union (IoU) (or Jaccard index) mea-
sures the overlap between two sets or regions (Eq. 2). The
value ranges from 0 to 1.

IoU(X,Y ) =
|X ∩ Y |
|X ∪ Y |

=
|I|
|U |

(2)

2.2 Distribution-based metrics
The Pearson Correlation Coefficient (CC) measures the

linear relationship between the heatmaps (Eq. 3). It reflects
how well the intensity values in one heatmap correspond to
the values in another heatmap.

CC(X,Y ) =

∑
i(Xi − X̄)(Yi − Ȳ )√∑

i(Xi − X̄)2
√∑

i(Yi − Ȳ )2
(3)

Here, Xi and Yi represent the intensity values at the i-th pixel
in the two heatmaps. A value of CC(X,Y ) = 1 indicates
perfect positive correlation, -1 is a perfect negative correlation,
and 0 means no correlation.

The similarity (SIM) metric [8] measures the degree of over-
lap between two heatmaps X and Y by summing the minimum
value at each corresponding pixel position (Eq. 4). Both maps
are normalized such that the sum of all pixel values equals 1 to
ensure that SIM ranges between 0 and 1 (1 indicates a perfect
match and 0 means no similarity between heatmaps).

SIM(X,Y ) =
∑
i

min(Xi, Yi) (4)

The Kullback-Leibler Distance (KLD) [7] [9] quantifies the
dissimilarity between two probabilities distributions X and Y
by averaging their Kullback-Leibler divergences DKL relative
to their mean distribution, as in Eq. 5.

KLD(X,Y ) =
1

2

[
DKL

(
X||X + Y

2

)
+DKL

(
Y ||X + Y

2

)]
(5)

Note that we define and use a new metric, KL Similarity
KLS(X,Y ) = 1−KLD(X,Y ), instead of the standard KL

divergence. This formulation ensures consistency across all
metrics, aligning them such that higher values indicate greater
similarity. Complementary to the 5 comparison metrics, we
calculated a combined score that represents the average of
min-max normalized [1] metric values to summarize the data
trend.

3 Attention maps
The comparison between the several attention metrics has

required the collection of human gaze data with an eye tracker
and to adapt of computational models. The study has been
carried out using the Stereo Event Camera Dataset for Driving
Scenarios (DSEC) [5]. DSEC includes synchronized record-
ings from two standard RGB cameras and two event cameras.
In this work, we do not utilize the stereo information. This
dataset enables direct comparison between RGB and event
data.

3.1 Human gaze data collection
Data collection was performed using a Tobii Pro Nano

eye tracker in conjunction with Tobii Pro Lab software 1.The
software was used to present stimuli, run the experiment, and
generate fixation heatmaps.

Participants: A total of 24 volunteers participated: 16
males (66.7%) and 8 females (33.3%) aged between 18 and 40
years old (average 24 years, std 5.05 years). Most participants
– 19 out of 24 (79%) – are glass wearers. None of the partici-
pants had prior experience with eye tracking or vision-related
tasks and had never been exposed to event data. Additionally,
they were asked about their driving experience: 17 participants
(70.8%) had a valid driving license, and 7 participants (29.2%)
had not. This information is important since drivers may visu-
ally explore a driving scene differently from non-drivers.
Stimuli distribution: The gaze data collection sessions con-
sisted of two parts in sequence: Task 1 for visual attention and
Task 2 for cognitive attention (see details below). We used 20
pairs of images from 20 scenes, which amount to a total of 40
stimuli: 20 RGB images and 20 event images (pseudo-frames
made of 50ms events accumulation). The 20 scenes were split
into four parts 1, 2, 3, and 4, which makes, considering the
RGB and event modalities, the following eight subsets each
containing five images: R1, R2, R3, and R4 for RGB images,
and E1, E2, E3, and E4 for event images. The eight subsets
have been carefully distributed among participants and tasks
for Task 1 and Task 2, as we wanted each participant to be
exposed to only half of the stimuli to ensure that no individ-
ual saw the same scene in both RGB and event modalities,
avoiding potential bias in the gaze such as looking at already
familiar objects on a stimuli. The 24 participants were divided
into four groups: A, B, C, and D, and performed tasks as
follows:

— A: Task 1 on R1 ∪ E1, then Task 2 on R2 ∪ E2
— B: Task 1 on R2 ∪ E2, then Task 2 on R1 ∪ E1
— C: Task 1 on R3 ∪ E3, then Task 2 on R4 ∪ E4
— D: Task 1 on R4 ∪ E4, then Task 2 on R3 ∪ E3

1. Software version 24.21.435(x64), OS Windows 10.
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User experiment setup: Each session began with a cali-
bration process to ensure that the hardware was adjusted to
each participant, as variations in height and seating posture
affect the gaze angle. Each participant was sitting on average
70cm distance from a 1980x1080 screen. Calibration included
looking at 5 exploding dots (in the center and corners), which
is a typical Tobii Task Manager calibration process. After
the calibration process, each participant was shown a shuffled
stimulus set consisting of 5 RGB images and 5 event-framed
images. As described earlier, visual attention is unconscious
and stimuli-driven. In the first part dedicated to visual at-
tention, participants were asked to freely observe each photo
for 7 seconds since studies in the literature [4] show that 5-7
seconds is typically enough to capture initial visual attention
patterns. In the second half, subjects were exposed to cog-
nitive attention tasks. Since top-down cognitive attention is
task-driven, participants were given the task to count out loud
four-wheeled vehicles (cars, trucks, and buses) in the scene.
The experiment observer wrote down the numbers, pretending
that the counted numbers were the key element of the experi-
ment, which encouraged participants to maintain a consistent
cognitive effort across all trials. Similarly to the previous task,
each stimulus was presented for 7 seconds and consisted of
5 RGB images and 5 event images. Each participant spent
around 3 to 5 minutes in total on the experiment, depending
on the calibration time and reading speed for instructions.

3.2 Saliency maps from Itti-Koch model
Saliency maps were generated with the Python library

PySaliencyMap 2. The Itti-Koch model extracts intensity, color,
and orientation features using Gaussian pyramids and Gabor
filters. Then, it computes center-surround contrasts to high-
light differences across spatial scales, followed by normaliza-
tion. The final salience maps are obtained by combining these
processed features.

3.3 Transformer feature maps
To compare human cognitive attention with Transformer-

based attention, we used the DETR model [3]. Specifically,
we extracted output feature maps from its Transformer archi-
tecture, which consists of an encoder with self-attention and a
decoder incorporating both self-attention and cross-attention.
The model, trained on ImageNet, was used to detect vehicles
in RGB frames from the DSEC dataset.

For this purpose, we use a Transformer implementation
by Facebook Research Group 3 that generates predictions and
allows to visualize the attention of the model.

However, Transformers trained on event-based data lack
the original decoder component of the Transformer architec-
ture. When using RVT model [6] in our experiments – aiming
to extract the same Transformer feature maps as in DETR
– we encountered some challenges. In DETR, the feature
maps resemble attention maps, highlighting detected objects.
RVT diverges by employing a multi-stage encoder that inte-
grates Transformers with both local and dilated global self-

2. https://github.com/akisatok/pySaliencyMap, ac-
cessed in February 2025.

3. URL: https://colab.research.google.com/github/
facebookresearch/detr/blob/colab/notebooks/detr_
attention.ipynb, accessed in February 2025.

Figure 2 – Sample input data (first column) and their corre-
sponding binarized heat maps collected from participants’ gaze
tracks (second and third columns) and generated with saliency
and Transformers models (last two columns).

attention for spatial feature interaction, eliminating the need
for a decoder altogether. To address this challenge, we opted
to consider the model’s output directly to generate the atten-
tion maps.We created a binary mask by initializing an image
with all pixels set to 0 and assigning a value of 1 to pixels
within the predicted bounding boxes. Fig.2 illustrates a visual
representation of attention maps across different modalities for
a single scene.

4 Results and discussion
The main results of the study are given in Fig. 3 and Tab. 1

with the detailed metrics values.
While SSIM yields high performance, IoU on the other side

shows relatively poor performance. SSIM good performance
could be explained by its sensitivity to local structure and lu-
minance patterns. It indicates that the local structures between
compared heatmaps are quite similar.

The poor IoU performance suggests that even though the
local structures might be similar, the predictions and ground-
truths do not overlap well, especially in binary maps where
small differences can affect significantily the IoU score.

SSIM CC IoU SIM KLS

Human attention in RGB: TD vs BU 0.7628 0.5048 0.1600 0.0321 0.9968
Human attention in Event: TD vs BU 0.7143 0.4238 0.1305 0.0301 0.9934
Human BU attention: RGB vs event 0.6808 0.4318 0.1401 0.0402 0.9978
Human TD attention: RGB vs event 0.8261 0.6104 0.2064 0.0306 0.9996

RGB: Human BU vs Itti-Koch saliency 0.9040 0.3960 0.2559 0.0152 0.9955
Event: Human BU vs Itti-Koch saliency 0.8724 0.3079 0.1936 0.0352 0.9744
RGB: Human TD vs DETR attention 0.8502 0.3115 0.2151 0.0170 0.9971
Event: Human TD vs RVT output 0.9398 0.4997 0.3487 0.0224 0.9916

Table 1 – Averaged performance of metrics.

As KLD quantifies the difference between two probability
distributions, our KLS high score indicates that the distribution
of saliency values is similar across the predictions and the
ground truths.

The very low SIM score means that there is near to no
agreement when the distributions are compared directly as
described earlier (Eq. 4). This reinforces the idea that the
distributions of predicted salient areas do not closely match
the ground truths, despite possible structural similarities.
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Figure 3 – Heatmaps comparison with 5 different metrics: SSIM, CC, IoU, SIM, KLS.

The CC metric yields moderate results, potentially captur-
ing a level of similarity that lies between exact spatial overlap
(as measured by IoU) and broader distributional differences
(as measured by KLD and SIM). This suggests that while cer-
tain aspects of the overall distribution are reasonably aligned,
notable discrepancies remain in critical regions.

Overall the high SSIM indicates that on a structural level,
the predicted saliency maps captured some of the essential
patterns and edges. However, the low IoU tells us that when it
comes to the exact placement or extent of the salient regions,
the prediction is lacking.

The disparity observed in distribution-based metrics further
confirms that the overall distribution of salient pixels even if
similar (high KLS), is not matching well with the ground truth
(low SIM).

5 Conclusion
This study provides an analysis of the performance of eval-

uation metrics when comparing attention mechanisms in both
RGB and event data, specifically human visual attention, hu-
man cognitive attention, and computational models. The find-
ings highlight several differences in performance depending
on the evaluation metric.

This study suggests that the choice of metrics should be
examined carefully depending on the applications. For ap-
plications where the exact location and extent of the salient
region is crucial, a low IoU and distribution discrepancies
(KLS, SIM) are concerning. However, if the task can tolerate
some spatial misalignment as long as the local structure is
maintained, a high SSIM might be a positive sign. This work
lays the foundation for future research in neuromorphic vision,
where event cameras and bio-inspired attention models could
enhance real-time processing in robotics, autonomous vehicles,
and surveillance applications.

Acknowledgements: This work was supported by the
project NAMED (ANR-23-CE45-0025-01) of the French Na-
tional Research Agency (ANR).The authors would like to
thank Teresa Colombi for the constructive discussions.

References
[1] Peshawa Jamal Muhammad Ali. Investigating the im-

pact of min-max data normalization on the regression
performance of k-nearest neighbor with different similar-
ity measurements. ARO-The Scientific Journal of Koya
University, 10(1):77–83, 2022.

[2] Zoya Bylinskii, Tilke Judd, Aude Oliva, Antonio Tor-
ralba, and Frédo Durand. What Do Different Evaluation
Metrics Tell Us About Saliency Models? IEEE TPAMI,
41(3):740–757.

[3] Nicolas Carion, Francisco Massa, et al. End-to-end ob-
ject detection with transformers. In ECCV. Springer,
2020.

[4] S. Egner, S. Reimann, R. Hoeger, and W. H. Zange-
meister. Attention and information acquisition: Com-
parison of mouse-click with eye-movement atten-
tion tracking. Journal of Eye Movement Research,
11(6):10.16910/jemr.11.6.4, 2018.

[5] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and
Davide Scaramuzza. Dsec: A stereo event camera dataset
for driving scenarios. IEEE RAL, 6(3), 2021.

[6] K. Gregor, I. Danihelka, A. Graves, D. Rezende, and
D. Wierstra. Draw: A recurrent neural network for image
generation. In ICML, 2015.

[7] David Pinto, José-Miguel Benedí, and Paolo Rosso. Clus-
tering narrow-domain short texts by using the kullback-
leibler distance. In International Conference on Intel-
ligent Text Processing and Computational Linguistics,
pages 611–622. Springer, 2007.

[8] Michael J Swain and D H Ballard. Color indexing. Inter-
national Journal of Computer Vision, 7(1):11–32, 1991.

[9] Flemming Topsøe. Some inequalities for information
divergence and related measures of discrimination. IEEE
Transactions on Information Theory, 46(4):1602–1609,
2000.

[10] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: From error visibil-
ity to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

4


	Introduction
	Comparison metrics
	Location-based metrics
	Distribution-based metrics

	Attention maps
	Human gaze data collection
	Saliency maps from Itti-Koch model
	Transformer feature maps

	Results and discussion
	Conclusion

