AutoMashup: Automatic Music Mashups Creation

Marine DELABAERE'* Léa MIQUEU/** Michael MORENO'** Gautier BiGo1is! Hoang DUONG! [Ella FERNANDEZ'
Flavie MANENT' Maria SALGADO-HERRERA! Bastien PASDELOUP' Nicolas FARRUGIA! Axel MARMORET!

IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-29238, Brest, France

*Equal contribution

Résumé — Nous présentons AutoMashup, un systéme de création automatique de mashups basé sur la séparation de sources,
I’analyse musicale et I’estimation de compatibilité. Nous proposons d’utiliser COCOLA pour évaluer la compatibilité entre pistes
séparées, et explorons dans quelle mesure des modeles audio généralistes préentrainés (CLAP et MERT) peuvent estimer cette
compatibilité sans apprentissage supplémentaire. Nos résultats révelent que la compatibilité est asymétrique — elle dépend du role
attribué a chaque piste (voix ou accompagnement) — et que les modeles étudiés ne reproduisent pas la cohérence obtenue avec
COCOLA. Ces observations soulignent les limites actuelles des représentations audio généralistes pour I’estimation de compatibilité
musicale dans les mashups.

Abstract — We introduce AutoMashup, a system for automatic mashup creation based on source separation, music analysis, and
compatibility estimation. We propose using COCOLA to assess compatibility between separated stems and investigate whether
general-purpose pretrained audio models (CLAP and MERT) can support zero-shot estimation of track pair compatibility. Our
results show that mashup compatibility is asymmetric — it depends on the role assigned to each track (vocals or accompaniment)
— and that current embeddings fail to reproduce the perceptual coherence measured by COCOLA. These findings underline the

limitations of general-purpose audio representations for compatibility estimation in mashup creation.

1 Introduction

Music mashups are musical works that combine elements —
typically vocal and instrumental stems — from two or more
pre-existing recordings to create a new, coherent composition.
A common form involves overlaying the isolated vocals of one
song onto the instrumental backing of another. Mashups have
become increasingly popular in contemporary music culture,
particularly in DJ performances and online communities [10].
However, producing high-quality mashups is far from trivial:
it requires not only technical skills (e.g., editing, beatmatch-
ing, pitch shifting) but also a deep understanding of musical
compatibility — how harmony, rhythm, and structure inter-
act across songs [1]]. As a result, mashup creation remains
largely inaccessible to beginners, despite the growing interest
in creative music recombination.

Hence, several systems have been proposed to assist or auto-
mate mashup creation [3 17,16, [15]]. In this paper, we present
“AutoMashup,” a new tool to automatically create mashups,
using a modern pipeline that includes source separation, using
Demucs [13], and high-level musical information — such as
tonality, structure, beats — using Allinl [7].

We also propose using a novel deep learning model to
automatically select coherent song pairs for mashups: CO-
COLA [2]]. COCOLA is designed for accompaniment com-
patibility, which closely aligns with our task and correlates
well with perceptual evaluations[ﬂ However, because CO-
COLA requires access to both songs for each evaluation, its
use implies a combinatorial cost when searching across large
song libraries. To address this, we investigate whether general-
purpose audio models — CLAP [16] and MERT [8] — can

1. Empirically, we observed a strong correlation between COCOLA scores
and subjective mashup quality.

support zero-shot compatibility estimation. While promising
in principle, our results show that these models fail to capture
the musical coherence required for effective mashups.

The remainder of this paper is structured as follows. Sec-
tion 2] reviews existing research on mashup generation and
compatibility modeling. Section [3]introduces AutoMashup,
the mashup generation tool we use in this study. Section [4]
presents our methodology for evaluating song selection using
CLAP, MERT, and COCOLA scores. Section E] reports our
experimental results, followed by a conclusion discussing cur-
rent limitations and future research directions. Finally, all the
code cna be found on our companion GitHub repository

2 Related Work

Several systems for automatic mashup creation have been
proposed in recent years [3} [17, |6, [15]], and many share de-
sign principles with AutoMashup. Most of these systems
rely on a combination of tempo synchronization, key match-
ing, and segment-level alignment — for example, overlaying
chorus sections or aligning verse boundaries — when com-
bining tracks [3} [17]. These techniques aim to ensure what
Brgvig-Hanssen and Harkins describe as musical congruence
[L], where rhythm and harmony are closely aligned to produce
perceptually coherent results — even when there is deliberate
stylistic or semantic contrast between the original songs.

The question of how to automatically select compatible
song pairs has also received attention. Early approaches, such
as AutoMashUpper [3], relied on rule-based estimations of
harmonic and rhythmic similarity using chroma features and
beat tracking. PopMash [17] extended this by incorporating

2. https://github.com/ax-1le/automashup

mailto:delabaere.marine@gmail.com
mailto:lea.miqueu@gmail.com
mailto:michael.moreno.st@gmail.com
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:bastien.pasdeloup@imt-atlantique.fr
mailto:nicolas.farrugia@imt-atlantique.fr
mailto:axel.marmoret@imt-atlantique.fr
https://github.com/ax-le/automashup

melodic similarity and phonetic analysis of lyrics. More recent
systems have begun exploring learning-based approaches to
compatibility estimation, including contrastive learning frame-
works that model pairwise stem compatibility [6], and graph
neural networks that represent stems and their interrelations
explicitly [15].

Our work complements these contributions by testing
whether pretrained audio models (CLAP [16] and MERT [&])
can support scalable, zero-shot song selection. We also ex-
plore the use of modern audio tools — Demucs [13]] for stem
separation, Allinl [7] for structure and key estimation, and
COCOLA [2] for compatibility evaluation — which, to our
knowledge, have not yet been combined in this context.

3 Mashup creation with AutoMashup

AutoMashup combines several signal processing and deep
learning methods to create mashups, which we present here-
after. In short, after separating the sources of both songs,
our system estimates musical information such as key, music
structure, tempo, and beats, which are then used to align both
songs, both harmonically and rhythmically. AutoMashup also
contains an API powered by Streamlit and Barfi. The entire
AutoMashup system is open-source.

3.1 Source Separation

Source separation is the first stage, used to extract the vocal
track from the rest. While its use in mashup creation is not
new [6]], we leverage the recent Demucs model [13]], consid-
ered the state-of-the-art for this task.

3.2 Estimating Musical Information

AutoMashup leverages the Allinl [7]] music analyzer to
decompose songs into key components. Allinl extracts various
musical features, including tempo, beats and downbeats, key,
and segments, which are different song sections (such as intros,
verses, and choruses).

This detailed breakdown allows users to isolate specific
parts of songs (vocals from the chorus, bass from the verse,
drum solo, etc.) to be used in mashups, and allow for enhanced
modification (pitch and key shifting, tempo modification, etc.).

3.3 Aligning Songs

Starting from several songs (in general, two), AutoMashup
takes the first song as the base song, aligning the others on
the information of the base song (e.g., tonality, duration, and
BPM). Then, it aligns the segments (verse with verse, chorus
with chorus, etc.) and modifies the tonality.

When aligning the segments, if the duration of a segment in
the base song is longer than the corresponding segment in the
second song, AutoMashup repeats the second song’s segment
to fill the gap. This process ensures that both songs remain
synchronized throughout the mashup. However, one limitation
of this method arises when a segment exists in the base song
but is missing in the second song. In such cases, AutoMashup
will continue playing only the segment from the base song.
When aligning two songs, AutoMashup adjusts the BPM of
the second song to match the tempo of the base song (both at

the beat and downbeat scales). This ensures that both songs
follow the same rhythmic structure, keeping their timing in
sync and making the transitions between them smoother.

One of the essential challenges in creating mashups is ad-
justing the pitch and key of the individual tracks so that they
harmonize. AutoMashup relies on Allinl’s key analysis and
applies key adjustments to adjust the pitch where necessary.
This step ensures that the combined elements are musically
compatible, preventing dissonance in the final mashup.

Key and BPM alignment are implemented using the library
Pyrubberband [9]].

4 Automatic Song Selection

As it is, AutoMashup asks the user to provide both songs to
be combined. In this section, we will present a tentative system
to automatically select songs to be combined. The experiments
can be found on the companion GitHub repository.

4.1 COCOLA score

To quantitatively assess compatibility, we employ CO-
COLA [2], a contrastive model trained to evaluate harmonic
and rhythmic coherence between audio segments, leading to a
COCOLA score of compatibility between two stems. While
COCOLA was trained exclusively on instrumental music, we
found that its scores empirically correlate with our own quali-
tative assessments of mashup quality — even in the presence
of vocals. Although a formal validation of this assumption is
beyond the scope of this study, we identify it as an important
direction for future work. To the best of our knowledge, this
is the first study that leveraged COCOLA for automatic song
selection for mashups.

COCOLA, while promising for evaluating musical compati-
bility, requires direct comparison between every possible track
pair, resulting in computationally prohibitive O(n?) complex-
ity for large music libraries. Hence, automatic song selection
would benefit from a more scalable approach for assessing
musical compatibility.

4.2 General-purpose Audio Models

To address the computational complexity of COCOLA’s
pairwise track comparisons, we explore using large audio mod-
els such as CLAP [16] and MERT [8]. We hypothesize that the
rich representational capabilities learned by these deep learn-
ing models can be leveraged to efficiently approximate track
similarity. These models produce embeddings — compressed,
fixed-length vector representations of audio signals, extracted
from their internal latent space — that capture both semantic
and acoustic characteristics. We investigate whether the em-
beddings obtained for each song can be used to predict mashup
compatibility. Specifically, we hypothesize that songs with
similar embeddings are more likely to blend well in a mashup,
and that the distance between embeddings should correlate
with their compatibility, as estimated by the COCOLA score.
To test this, in Section [5} we analyze the cosine similarity
between the vocal and instrumental stem embeddings for each
candidate song pair.

S Experiments

5.1 Dataset

Due to the exponential cost of computing COCOLA scores
for all song pairs, we subselected 21 tracks from the FMA
dataset [4], guided by key annotations from Stella Wong’s
repository [14]. We intentionally limited diversity to simplify
mashup creation and better focus on the specific characteristics
of each track. Future work should expand this study to more
diverse musical material.

To reduce structural complexity and ensure vocal content,
we excluded experimental and jazz tracks, instrumental pieces,
and classical music, which often involve complex arrange-
ments or choirs. As a result, we limited our selection to popu-
lar music. Within this subset, we focused on songs within two
semitones of C (Bb to D), as C major is the most common key
in popular music [5]], and to minimize the potential artifacts in-
troduced by repitching in mashups. Only tracks in major keys
were retained, given their dominance in popular genres [12].
We further constrained durations to the 184-194 second range,
centered around the dataset’s mean (189s). This filtering pro-
cess yielded 21 tracks, resulting in 420 music samples when
combined with base tracks and their generated mashups.

5.2 Asymmetry in the Song Selection

When computing cosine similarities between (instrumental
and vocal) track embeddings generated with CLAP and MERT,
we found that the resulting similarity matrices were system-
atically asymmetric. Specifically, the similarity between the
vocal track from song A and the instrumental track from song
B differed from the reverse pairing (vocal of song B, instrumen-
tal of song A), despite involving the same musical content
This directional discrepancy indicates that musical compati-
bility is not symmetric, and depends heavily on the functional
role assigned to each track (e.g., vocals or accompaniment).
In addition, it implies that mashup compatibility cannot be
solely derived via musical features (such as tonality or tempo,
as in [3]), because such features are consistent between the
vocal and instrumental tracks. We did not find explicit mention
of asymmetry in previous works [3} 17} 6].

This finding had direct implications for mashup generation.
It suggested that compatibility cannot be modeled as a symmet-
ric relation, and that successful pairings depend on assigning
consistent roles to the tracks being combined.

5.3 Clustering Analysis

To further investigate the embeddings produced by CLAP
and MERT, we applied hierarchical clustering on 42 embed-
dings corresponding to the separated vocal and instrumental
tracks of 21 songs. Clustering was performed by thresholding
pairwise cosine distances, and visualized using t-SNE projec-
tions shown in Figure[T]

The t-SNE visualizations reveal clear differences in the
structure of the two embedding spaces. CLAP embeddings
formed three distinct clusters: one dominated by vocal tracks,
one by instrumental tracks, and a third cluster consisting

3. We qualitatively confirmed this assymetry by listening to a few
mashups.

mostly of synthetic voices. This separation suggests that CLAP,
trained on language-audio pairs, organizes its latent space pri-
marily along semantic and acoustic boundaries — for instance,
distinguishing human speech from instrumental content. How-
ever, this modality-based organization leads to a separation
between vocals and instrumentals, which may limit CLAP’s
usefulness for modeling cross-stem compatibility in mashups.

In contrast, MERT embeddings produced only two clusters,
each containing a mix of vocal and instrumental tracks. This
pattern suggests that MERT encodes information that cuts
across the vocal/instrumental divide — possibly focusing more
on tonal, rhythmic, or structural properties. In the context of
mashup creation, such organization could reflect a grouping of
musically compatible tracks, regardless of their stem type.

To quantitatively compare the clustering outputs of CLAP
and MERT, we computed the Adjusted Rand Index (ARI) [[L1],
a standard measure of clustering similarity that corrects for
chance. Our analysis yielded an ARI of -0.0261, indicating no
agreement between the clusterings beyond random chance.

This result implies that CLAP and MERT capture different
aspects of musical content — likely because MERT is music-
specific, while CLAP is trained on broader audio-text data.

5.4 Comparison of CLAP and MERT embed-
dings with COCOLA Score
We conducted a correlation analysis to evaluate how well

similarity scores derived from CLAP and MERT embeddings
align with the COCOLA score, presented in TableE}

Correlation Metric CLAP Embeddings MERT Embeddings

Pearson Correlation 0.051 -0.018
Spearman Rank Correlation 0.079 -0.017
Kendall’s Tau Correlation 0.053 -0.010

Table 1 — Correlation metrics between embedding similarities
and the COCOLA score.

The results show no meaningful correlation between either
large audio model and the COCOLA score, with all corre-
lation metrics yielding values close to zero. This suggests
that the similarity measures computed from these embeddings
fail to capture the musical coherence that COCOLA quantifies.
While this outcome is consistent with the modality-based struc-
ture observed in CLAP’s embedding space (Section [5.3), it
also reveals a limitation of MERT: despite being trained specif-
ically for music, its embeddings appear unsuited for assessing
mashup compatibility, at least in a zero-shot setting.

6 Conclusion

In this paper, we presented AutoMashup, a system for au-
tomatic mashup creation that combines recent advances in
source separation, musical structure analysis, and compati-
bility estimation. Beyond the mashup generation process it-
self, we focused on the upstream task of selecting musically
compatible tracks, and proposed the use of COCOLA to quan-
titatively assess stem compatibility in mashup creation. We
also investigated whether general-purpose audio embeddings
— specifically CLAP and MERT — could support this task in
a zero-shot setting.

Visualisation des fichiers audio en 2D (t-SNE) pour Clap

Dimension

(a) CLAP

Visualisation des fichiers audio en 2D (t-SNE) pour Mert

°
°%
°0 o o
R
10 e oo

o®

Dimension 2

-10 -5 0 5 10
Dimension 1

(b) MERT

Figure 1 — t-SNE visualisation of the embeddings obtained by CLAP and MERT. The colors represent different clusters, obtained

via herirachical clustering.

Our analysis revealed two key findings. First, mashup com-
patibility is inherently asymmetric: similarity between vocal
and instrumental tracks depends on the direction of the pairing,
highlighting the need to consider stem roles explicitly. Second,
CLAP and MERT embeddings fail to align with perceptual mu-
sical compatibility, as measured by the COCOLA score. These
results underscore the limitations of current general-purpose
audio models in this creative musical context.

Future work should explore alternative large audio models
tailored to complex musical tasks, potentially by lifting the
zero-shot constraint — for instance, through COCOLA-based
distillation or fine-tuning. Another promising direction is
the development of representations sensitive to the functional
roles of stems, such as by leveraging CLAP’s multimodal
structure. Finally, perceptual evaluations of mashups should
be conducted to assess their musicality.

References

[1] Ragnhild Brgvig-Hanssen and Paul Harkins. Contextual
incongruity and musical congruity: the aesthetics and
humour of mash-ups. Popular Music, 31(1):87-104,
2012.

[2] Ruben Ciranni, Giorgio Mariani, Michele Mancusi, Emil-
ian Postolache, Giorgio Fabbro, Emanuele Rodola, and
Luca Cosmo. COCOLA: Coherence-oriented contrastive
learning of musical audio representations. In ICASSP
2025. 1IEEE, 2025.

[3] Matthew EP Davies, Philippe Hamel, Kazuyoshi Yoshii,
and Masataka Goto. Automashupper: Automatic cre-
ation of multi-song music mashups. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
22(12):1726-1737, 2014.

[4] Michaél Defferrard, Kirell Benzi, Pierre Vandergheynst,
and Xavier Bresson. FMA: A dataset for music analysis.
arXiv preprint arXiv:1612.01840, 2017.

[5] Hooktheory. I analyzed the chords of 1300
popular songs for patterns. Blog post, 2020.
https://www.hooktheory.com/blog/

i-analyzed-the-chords-o0f-1300-popular-songs.

[6] Jiawen Huang, Ju-Chiang Wang, Jordan BL Smith,
Xuchen Song, and Yuxuan Wang. Modeling the com-

patibility of stem tracks to generate music mashups. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 187-195, 2021.

[7] Taejun Kim and Juhan Nam. All-in-one metrical and
functional structure analysis with neighborhood atten-
tions on demixed audio. In IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics. IEEE,
2023.

[8] Yizhi Li et al. Mert: Acoustic music understanding
model with large-scale self-supervised training. arXiv
preprint arXiv:2306.00107, 2023.

[9] Brian McFee. Pyrubberband: Python wrapper for rub-
ber band library. https://github.com/bmcfee/
pyrubberband.

[10] Popenstock. Mouth souvenirs: La culture du mashup
comme palimpseste du web. Popenstock, 2024.

[11] William M Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association, 66(336):846-850, 1971.

[12] Mark Richards. Tonal ambiguity in popular music’s axis
progressions. Music Theory Online, 23(3), 2017.

[13] Simon Rouard, Francisco Massa, and Alexandre Défos-
sez. Hybrid transformers for music source separation. In
ICASSP 2023. 1IEEE, 2023.

[14] Stella Wong. Key and mode annotations for the FMA
dataset. GitHub repository, 2023. https://github,
com/stellaywong/fma_keysl

[15] Xinyang Wu and Andrew Horner. Graph neural net-
work guided music mashup generation. In 2024 IEEE
International Conference on Big Data (BigData), pages
3235-3241. IEEE Computer Society, 2024.

[16] Yusong Wu et al. Large-scale contrastive language-audio
pretraining with feature fusion and keyword-to-caption
augmentation. In JCASSP 2023. IEEE, 2023.

[17] Baixi andothers Xing. Popmash: an automatic musical-
mashup system using computation of musical and lyri-
cal agreement for transitions. Multimedia Tools Appl.,
79(29-30):21841-21871, 2020.

https://www.hooktheory.com/blog/i-analyzed-the-chords-of-1300-popular-songs
https://www.hooktheory.com/blog/i-analyzed-the-chords-of-1300-popular-songs
https://github.com/bmcfee/pyrubberband
https://github.com/bmcfee/pyrubberband
https://github.com/stellaywong/fma_keys
https://github.com/stellaywong/fma_keys

	Introduction
	Related Work
	Mashup creation with AutoMashup
	Source Separation
	Estimating Musical Information
	Aligning Songs

	Automatic Song Selection
	COCOLA score
	General-purpose Audio Models

	Experiments
	Dataset
	Asymmetry in the Song Selection
	Clustering Analysis
	Comparison of CLAP and MERT embeddings with COCOLA Score

	Conclusion

