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Résumé – Nous investiguons la capacité des transformers à apprendre des algorithmes utilisant le contexte alors qu’ils sont
entraînés uniquement en utilisant la prédiction du prochain token. Nous considérons des chaînes de Markov dont les matrices de
transition sont tirées aléatoirement et nous entraînons un transformer a prédire le prochain token. Les matrices d’entraînement et
d’évaluation diffèrent et nous montrons qu’à partir d’une certaine taille de modèle et de données d’entraînement, le modèle est
capable d’estimer les probabilités de transition à partir du contexte au lieu de mémoriser celles des matrices d’entraînement. De
plus, nous montrons qu’encoder astucieusement l’espace d’état permet au modèle de généraliser plus robustement à des chaînes de
Markov dont les structures sont différentes de celles vues durant l’apprentissage.

Abstract – We investigate the capacity of transformers to learn algorithms involving their context while solely being trained using
next token prediction. We set up Markov chains with random transition matrices and we train transformers to predict the next token.
Matrices used during training and test are different and we show that there is a threshold in transformer size and in training set size
above which the model is able to learn to estimate the transition probabilities from its context instead of memorizing the training
patterns. Additionally, we show that more involved encoding of the states enables more robust prediction for Markov chains with
structures different than those seen during training.

1 Introduction
Transformers, and the attention mechanism at their core,

have slowly become one of the most popular neural architec-
tures since their inception as a language modeling tool [16].
Since then, they are now ubiquitous for other tasks such as
computer vision [7], video generation [10] or text-to-speech
generation [6]. This success comes largely from the scaling
abilities of the transformer architecture which has empirically
been shown to handle increases in model size and in training
data size very well [2]. In addition, recent works have shown
that transformers are universal sequence-to-sequence approx-
imators [18] and are also Turing complete [12] which hints
that they should be able to implement complex algorithms by
uncovering them from training data.

More recently, large pretrained transformers have been used
to perform few-shot tasks by leveraging their context win-
dow [5]. This is called In Context Learning (ICL) and assumes
that the transformer is able to reason by analogy when pre-
pending examples of the same task in the input sequence. In
that case, the model is trained with a next-token-prediction
loss, that is task agnostic, and is gaining the capabilities to
solve new tasks at test time by defining the new task by ex-
amples added to the input sequence. However, recent work
has shown that the ICL mechanism may just be equivalent to a
majority vote among the context examples [3].

In this paper, we want to investigate whether a transformer
trained on next-token-prediction can learn to produce an algo-
rithm, and if yes, what are the model sizes and dataset size at
which this capacity emerges. We set a simple problem of esti-
mating the transition probabilities of a Markov chain. Given a
(lengthy) realization as input, we want the model to produce
a continuation of the sequence that is as likely as possible.
Of course, we do not want the transformer to memorize the
transition probabilities of a single chain, but instead to learn to

estimate the transition probabilities of any sequence from the
examples given in the context. This task would be straightfor-
ward if supervised using the empirical estimator of transition
probabilities. However, it becomes surprisingly difficult to
learn when trained solely with a next-token prediction loss.

Our contributions are the following:
— We thoroughly study the capacity of Transformer archi-

tectures to solve next token prediction in Markov Chain
using ICL only and show that there is a transition phase
between memorizing the training chains and learning to
estimate with ICL.

— We propose a permutation-based coding scheme that
allows us to train on a single Markov chain without
losing generalization capabilities.

— Finally, we propose a random orthogonal coding scheme
that allows us to train with a single structure of Markov
chains and generalize to other structures (different num-
ber of states, different statistics of valid transitions).

2 Related Work
In-Context Learning Synthetic tasks involving sequences
sampled from known priors have recently emerged as a power-
ful approach to studying the emergence of ICL in controlled
settings, both theoretically and empirically. In particular, lan-
guage models have been analyzed through Hidden Markov
Models [17], Markov Chains with special "trigger" tokens [4],
and random finite automata [1]. [8] examines ICL through
Markov Chains and is closely related to our work. However,
their study assumes access to unlimited data and does not
explore the robustness of the model to changes in the prior.

Induction Heads The ICL capabilities of language models
are largely attributed to attention patterns known as "Induction
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Heads" - mechanisms that match previous occurrences of the
current token and extract information from the subsequent
token [9, 11]. In the context of Markov Chains, [8] demon-
strated the emergence of statistical induction heads, achieving
performance close to that of the Bayes-optimal predictor.

3 Markov chain estimation
We consider the problem of predicting the next token

xT+1 ∈ S of a sequence X = {x1, . . . , xT }, with a state
space S = {1, . . . , k}. We assume that the sequence is a
Markov chain with a transition matrix P . More formally, we
want to optimize the parameters θ of a model f such that:

f(X ) ≈ P(xT+1|xT ). (1)

Furthermore, we impose a causality constraint on f(X )
such that any computation involving xt can only depend on
x1, . . . , xt. This constraint ensures that the model can subse-
quently be used in an auto-regressive manner by concatenating
a sampling of its output probability distribution to its input.
This is a common practice for auto-regressive transformers.

However, instead of trying to learn P from a large set of
realization X ∼ P , we want f to be able to generalize to
any Markov chain, including those not seen during training
and including those that do not have the same structure (for
example, with a different number of states k). In some sense,
this is a meta learning task as we want the feed-forward call
of f to perform online optimization over its input X so as to
predict xT+1 (or equivalently P).

Solving this problem involves 2 key aspects:
1. What training data is used?
2. What architecture for f is used?

We detail both aspects in the following sections.

3.1 Data
We first consider a simpler case with a fixed number of

states k. Let us denote by A = {X} the training set of size
n. We consider the case where we have a single training
Markov chain, denoted A1 = {Xi ∼ P1}1≤i≤n, and the case
where we have N Markov chains, denoted AN = {Xi ∼
Pi mod N}1≤i≤n, each having their transition matrix sampled
according to a Dirichlet distribution (Pi ∼ Dir(α)). We chose
α small to favor sparse distributions.

For both cases, we sample a test set T of realizations from
10k different transition matrices to measure the generalization
of f to newer Markov chains not seen during training.

Then, we consider a more complex case where the structure
of the Markov chain varies between train and test. In particular,
we propose to train on a set of realization that have the same
Markov chain structure (fixed k and α) but evaluate on Markov
chains that have a different structure (different k and/or differ-
ent α) to evaluate how f is robust to these changes.

3.2 Architecture
Transformer with MHSA The core component of the Trans-
former architecture is the Multi-Head Self-Attention. Given
an input embedding X ∈ RT×d, and learned projection ma-
trices WQ,WK ,WV ∈ Rd×dh , where dh = d/h is the head

dimension, each head computes self-attention over X . The
outputs from all heads are concatenated and projected using
WO ∈ Rd×d:

Q = XWQ, K = XWK , V = XWV (2)

Attn(Q,K, V ) = softmax(
QK⊤
√
dh

)V (3)

MHSA(Q,K, V ) = Concat(head1, . . . , headh)WO (4)

The decoder blocks follow the Llama architecture [15]:

X ′
l = Xl + MHSA(LN(Xl)) (5)

Xl+1 = X ′
l + MLP(LN(X ′

l)) (6)

where MLP is a SwiGLU block [13], LN is the RMSNorm [19],
and RoPE [14] modifies Q and K before attention to encode
relative positional information. After the last block, the hidden
states are normalized and projected onto the embedding space.

3.2.1 State encoding

Permutation embedding In the case of A1, it is then
obvious that f will memorize the transitions of P1 if we
are not careful. To prevent this memorization, we pro-
pose to relabel the states using a random permutation π
for each realization. The training set thus becomes A1 =
{(πi(x1), . . . , πi(xT ))|(x1, . . . , xT ) ∼ P1}.

Orthogonal embedding To avoid being restricted to a fixed
space S seen during training, we experiment with dynamically
generating the embedding matrix used by the transformer for
each sequence. We sample E ∈ Rk×d from N (0, I) and
perform a QR decomposition to obtain E′ with decorrelated
rows. We then compose the input X from E′ as Xi = E′

xi
.

However, with this approach, we observe that induction
heads no longer emerge. We hypothesize that this occurs
because the information needed to identify tokens is randomly
spread across dimensions, and merging tokens at the first layer
of the induction head would destroy critical information.

To mitigate this issue, we concatenate a d-dimensional vec-
tor of zeros to each vector of the vocabulary and increase the
network’s capacity. At the final layer, we generate logits over
the dynamically created vocabulary using a simple dot product.

3.2.2 Loss and evaluation

During training, we minimize the next-token prediction loss,
with l the cross-entropy loss:

L(θ) =
1

T

T∑
i=1

l(fθ({x1 . . . xi}), xi+1) (7)

During validation, we compare the predicted transition prob-
abilities against two analytical baselines. The Oracle, using
the true transition probability matrix P , and the Empirical
estimator, computed based on the observed context. Denoting
Pij the transition probability from state i to j, we derive from
our Dirichlet prior that

E[Pij |X ] =
cij + α

Ni + kα
(8)
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where cij is the count of transitions from i to j and Ni the
number of occurrences of i in the available context. We com-
pare the performance of the estimators using the cross-entropy
loss over the last K = 20 steps. Given P̂(t) an estimation of
P at step t obtained with the oracle, the empirical estimator,
or our model, we report

L(θ) =
1

K

T∑
i=T−K

l(P̂(i), xi+1) (9)

4 Experiments

4.1 Implementation Details
For models with learned embeddings, we use two layers

with a single attention head, a hidden size of 128, and tied em-
beddings. These models are trained for 10k steps. In contrast,
models with orthogonal embeddings require additional capac-
ity; we use four layers with two attention heads and train them
for 20k steps. Note that applying this configuration to models
with learned embeddings does not improve their performances.

All models are trained using the AdamW optimizer with a
constant learning rate of 3 × 10−4, a weight decay of 0.01,
and gradient clipping set to 1.0. We use a batch size of 500
and train on sequences of length 1000.

4.2 Results
4.2.1 How many N to learn to estimate?

We analyze the model’s behavior with respect to its size and
the number of transition matrices available during training, N .
We train a collection of models with hidden sizes d ranging
from 8 to 512, using 1 to 10,000 predefined Markov chains
with k = 30 and α = 0.1. We compare their loss to the oracle
loss on the test set and present the results in Figure 1.

We observe three distinct regimes:
1. Overfitting (small N ): The model achieves low training

loss while the validation loss increases, especially for
large d, indicating that it memorizes transition proba-
bilities instead of extracting them from context. The
attention is uniform over the entire context.

2. Underfitting (large N , small d): Both training and vali-
dation losses stagnate, suggesting that the model lacks
the capacity to either memorize the training matrices or
learn a generalizing algorithm. This behavior persists up
to d = 32, which matches the problem’s intrinsic dimen-
sionality for k = 30. The attention is mostly uniform,
with a wavy positional bias at the second layer.

3. Generalization (large d, large N ): The model suddenly
transitions from memorization to generalization, suc-
cessfully learning to infer unseen transition matrices.
The induction head pattern appears.

4.2.2 Comparison between A1 and AN

We focus on the extreme cases: when only a single tran-
sition matrix is available for training (A1), potentially with
permutation, and when a new transition matrix P is sampled
for each training sequence (equivalent to A5M in our setting).
These cases are denoted as π and ∞, respectively, in Figure 1.

π

8

16

32

64

128

256

512

H
id

d
en

si
ze
d

1 5 10 50 100 500 1000 5000 10000
Training matrices N

O
verfitting

Underfitting

Generalization

∞

0

1

2

3

4

5

6

M
o
d

el
loss

-
O

racle
loss

13
16
19
1

13
16
0

10
10
0
6

18
13
19
9
5
5

10
6

18

L
ay

er
1

×10−2

1
3

1
6

1
9 1

1
3

1
6 0

1
0

1
0 0 6

1
8

1
3

1
9 9 5 5

1
0 6

1
8

13
16
19
1

13
16
0

10
10
0
6

18
13
19
9
5
5

10
6

18
L

ay
er

2

×10−2

×10−2

1
3

1
6

1
9 1

1
3

1
6 0

1
0

1
0 0 6

1
8

1
3

1
9 9 5 5

1
0 6

1
8

×10−1

1
3

1
6

1
9 1

1
3

1
6 0

1
0

1
0 0 6

1
8

1
3

1
9 9 5 5

1
0 6

1
8

×10−1

Figure 1 – Top, performance of models with respect to size
and training data. Small models struggle to learn meaningful
correlations. Larger models tend to memorize the training
priors and do not generalize well for small N . Our permuta-
tion strategy with a single matrix yields results comparable
to training with unlimited sampling. For each cell, we report
the loss average after 10k training step over 5 runs. Bottom,
typical attention patterns for each mode.

While all models quickly overfit on A1, our simple permu-
tation scheme enables them to generalize, achieving perfor-
mances comparable to A5M. This improvement arises from
the combinatorial nature of our data augmentation, effectively
generating training examples from k! matrices.

4.2.3 Robustness to changes in k

We now study how differences between the training ma-
trix distribution and the test matrix distribution impact the
generalization capability. To that end, we train on random
matrices with k = 30 states and evaluate the performances on
matrices with a different number of states, but sampled from
Dirichlet distributions of the same parameter α. We compare
the standard learned embedding of the state with our random
orthogonal embedding proposed in 3.2.1.

We show the results in Figure 2, top. The standard learned
embedding shows degraded performances for Markov chains
with fewer states than what was seen during training. Obvi-
ously, this model cannot handle Markov chains with a larger
number of states since there are no corresponding entries in
the embedding matrix. Our proposed orthogonal embedding
follows the same behavior as the online estimator, only slightly
worse, even for Markov chain more that twice as big as the
ones seen during training. This is very encouraging in terms
of generalization capabilities as it means that the transformer
was able to learn an in-context algorithm.
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Figure 2 – Extrapolation capabilities of models trained with
k = 30 and α = 0.1, for learned and orthogonal embeddings.
Top, models performance with respect to the number of states
k. Models using learned embeddings cannot extrapolate to
more states, whereas our model with random orthogonal em-
beddings follows the trend of the empirical estimator. Bottom,
models performance with respect to the prior parameter α.

4.2.4 Robustness to changes in α

We now study the robustness to changes of transition statis-
tics by varying the parameter α between training and test.
All models are trained with α = 0.1 and k = 30. Results
are shown on Figure 2 bottom. The online estimator has a
relatively constant error, which is not surprising since it incor-
porates the Dirichlet prior. The standard embedding method
does really well around the training α. But then the error in-
creases significantly has α grows, indicating that the model
is perturbed by these entirely new statistics. On the contrary,
our proposed orthogonal embedding is slightly worse for α
close to the training setup, but the the error does not grow as
much for larger α. This indicates that the orthogonal embed-
ding somehow incentivizes the models to learn a more robust
algorithm.

5 Conclusion
In this paper we show that next-token prediction is a suffi-

cient task to learn to estimate the transition probabilities of a
Markov chain from the context instead of memorizing those
from the training set, provided that the model size and the
training set size are above some threshold. We also propose
state encoding schemes based on permutations and random
orthogonal vectors that allow us to train on a single type of
Markov chain while still generalizing to other structures.
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