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Résumé – L’objectif de cette communication est d’offrir une perspective synthétique sur les liens entre les modèles de génération
d’images par diffusion et le problème classique de débruitage additif gaussien. Nous montrons comment formuler les schémas de
diffusion comme un algorithme alternant des étapes de bruitage et débruitage relaxé. Ceci permet de mieux comprendre les schémas
de bruit utilisés, d’accélérer l’échantillonnage du modèle, et aussi d’utiliser ces schémas avec d’autres débruiteurs existants. Enfin,
nous questionnons l’utilisation des débruiteurs par diffusion pour régulariser des problèmes inverses dans un cadre plug-and-play,
et nous exhibons de potentiels problèmes de stabilité que ces régularisations très profondes induisent.

Abstract – The goal of this paper is to offer a synthetic view of connections between the celebrated diffusion models and classical
additive Gaussian denoising. It allows to formulate standard diffusion schemes as a simple iterative noising-relaxed denoising
process. By bringing new understanding on the noise schedules, this allows to accelerate the model sampling, and also to use
diffusion schemes with off-the-shelf denoisers. Finally, we question the use of diffusion-based denoisers to regularize inverse
problems in a plug-and-play fashion, and highlight potential stability problems induced by such very deep regularizations.

1 Introduction
Imaging inverse problems are often formulated in a

Bayesian setting, where one has to choose a prior that en-
codes some kind of image regularity [10, 16]. Following
major progress on denoising neural networks [9], plug-and-
play (PnP) algorithms [12, 13, 11, 5] allow to use a pre-learned
denoiser (acting as an implicit regularization) in order to ad-
dress more general inverse problems. More recently, diffusion
models [8, 14] solved very difficult generative modeling prob-
lems, triggering their subsequent use as generative prior for
image restoration tasks [7, 6]. The main goal of this paper is
to offer a condensed view on the connection between diffusion
models and classical additive Gaussian denoising.

Some connections have already been discovered between
(score-based) denoising and prior sampling [15, 4]. Our goal
here is show how a diffusion scheme (e.g. DDPM [8]) can be
simply expressed through the use of a denoiser for additive
Gaussian noise. We believe that our formulation could be more
accessible to the image processing community. In addition
to considerably simplifying the presentation of generative dif-
fusion algorithms, our study also allows to explore simpler
and lighter variants of DDPM sampling, and also to bring
new understanding on the noise schedule. For example, it al-
lows for simple direct pruning of a noise schedule underlying
a pre-learned diffusion model, which considerably acceler-
ates sampling. Also, our framework allows to use diffusion
schemes with other (possibly non-deep) denoisers.

Notice that the results shown in this paper required no train-
ing of neural networks and are based only on pre-learned
neural networks: the DRUNet denoiser of [9] (which was
trained on a combination of databases of “natural” images)
and the score-based denoiser of [2] referred to as DiffUNet
(which was trained on the FFHQ dataset [7] of face images).

2 Noising-Denoising Schemes
Let q0 be a probability distribution on Rd, e.g. the empirical

distribution of a database of clean images (with color values
in [0, 1]3).

2.1 Denoising Diffusion Model
First, we recall the construction of the denoising diffu-

sion probabilistic model (DDPM) proposed in [8] and its
relation to score-based denoisers. The DDPM model con-
sists in two discrete-time stochastic processes defined on
[0 : T ] = {0, . . . , T}: a forward model (Xt)t∈[0:T ] (which is
an iterative noising process) and a backward model (X̃t)t∈[0:T ]

(which is an iterative denoising process that depends on a
trained neural network). These processes depend on sequences
of parameters (αt)t∈[1:T ], (βt)t∈[1:T ].

The DDPM forward model is defined by

Xt =
√
αtXt−1 +

√
βtZt for t = 1, . . . , T (1)

where (Zt) are i.i.d. N (0, Id). By induction, one can show
that for any t there exists Et ∼ N (0, Id) such that

Xt =
√
αtX0 +

√
βtEt, (2)

where (αt), (βt) are defined by α0 = 1, β0 = 0 and

αt = αt−1αt, and βt = αtβt−1 + βt. (3)

The noise schedule is called “variance-preserving” if
αt + βt = 1 (which implies αt + βt = 1 for all t), but we do
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not restrict to this choice here. Gaussian conditioning gives

E[Xt−1|Xt, X0] =

√
αt−1βtX0 +

√
αtβt−1Xt

βt

, (4)

Var[Xt−1|X0, Xt] =
βt−1

βt

βt =: β̃t, (5)

which, after manipulation, also gives

E[Xt−1|Xt, X0] :=
1

√
αt

(
Xt −

βt

βt

(Xt −
√
αtX0)

)
. (6)

Without knowing X0, Tweedie formula [3] gives the MMSE
prediction of Xt−1, or X0 knowing only Xt for t ∈ [1 : T ]:

E[Xt−1|Xt] =
1

√
αt

(Xt + βt∇ log qt(Xt)), (7)

E[X0|Xt] =
1√
αt

(Xt + βt∇ log qt(Xt)), (8)

where qt is the probability density of Xt.
The DDPM backward process starts from a random im-

age XT (often Gaussian) and applies backward transitions

Xt−1 = µt
θ(Xt) +

√
β̃tZt−1, with β̃t =

βt−1

βt

βt, (9)

and where (Zt) are i.i.d. N (0, Id), and

µt
θ(x) :=

1
√
αt

(
x− βt√

βt

εtθ(x)

)
≈ E[Xt−1|Xt = x] (10)

is parameterized by a neural network εtθ, and is trained to
approximate the MMSE predictor (7). One can show [17] that

the approximation εtθ ≈ −
√
βt∇ log qt (for L2(qt) distance)

of the Stein score ∇ log qt is equivalent to

Argmin
θ

E[∥Xt−1 − µt
θ(Xt)∥22]. (11)

Similarly, it is equivalent to ask that

1√
αt

(
x−

√
βtε

t
θ(x)

)
≈ E[X0|Xt = x] (12)

approximates well the best predictor (8) of X0 given Xt = x.

2.2 DDPM as “Noising-Relaxed Denoising”
In this section, we show how to interpret the DDPM scheme

only in terms of additive Gaussian noise. This allows to derive
a simple noise preservation rule, which guides the choice of
backward noise schedule. This connects with the “variance-
exploding” formulation of [14].

For σ > 0, let U0 + σZ where U0 ∼ q0 and Z ∼ N (0, Id)
are independent. We consider a denoiser Dσ : Rd → Rd

(which may be parameterized by a neural network) that ap-
proximates the minimum mean-square error (MMSE) denoiser
D∗

σ(u) = E[U0|U0 + σZ = u]. For ρ ∈ [0, 1] we introduce
the relaxed denoiser

Dρ
σ = (1− ρ)Id+ ρDσ. (13)

By setting Ut =
Xt√
αt

, (2) writes as

Ut = U0 + σtEt, with σt =

√
βt

αt
. (14)

The prediction (12) expresses as a Gaussian denoiser

Dσt
(u) = u− σtϵ

t
θ(
√
αt u), (15)

which is trained to approximate the MMSE denoiser

D∗
σt
(u) = E[U0|Ut = u]. (16)

The backward DDPM scheme then translates on Ut :=
Xt√
αt

as

Ut−1 =
µt
θ(
√
αtUt)√
αt−1

+

√
β̃t

αt−1
Zt−1, (17)

which, after simplification, gives

Ut−1 =

(
1− βt

βt

)
Ut+

βt

βt

Dσt
(Ut)+

√
β̃t

αt−1
Zt−1. (18)

Setting ρt =
βt

βt

and γt−1 =
√

β̃t

αt−1
, this backward scheme

can be interpreted as iterative “relaxed denoising-noising”:

∀t ∈ [1 : T ], Ut−1 = Dρt
σt
(Ut) + γt−1Zt−1. (19)

The parameters αt, βt, β̃t can be related to σt, ρt, γt, and
their tuning should ensure that the noise level of Ut stays
close to σt all along the backward process. This reflects in a
variance rule, which was already given in [15]. Assuming that
Ut has noise level σt and that the remaining portion of noise
in Dρt

σt
(Ut) has level (1 − ρt)σt, then considering the noise

variance on both sides of (19) gives

σ2
t−1 = (1− ρt)

2σ2
t + γ2

t−1. (20)

One can check that the β̃t choice of (9) (as advised in [8])
indeed makes this equality true. Indeed, the relation (3) can be
written in terms of σt, ρt as

σ2
t = σ2

t−1 + ρtσ
2
t i.e. ρt =

σ2
t − σ2

t−1

σ2
t

. (21)

2.3 Iterative Noising-Relaxed Denoising
Based on the previous derivations, we here propose to con-

sider diffusion schemes as iterative noising-denoising. Let
(σt)t∈[0:T+1] ∈ RT+1

+ , (ρt)t∈[1:T+1] ∈ [0, 1]T+1 be such that
∀t ∈ [1 : T ], γ2

t := σ2
t − (1− ρt+1)

2σ2
t+1 ≥ 0.

We define iterative noising-relaxed denoising (INRD) as
follows. Starting from a random VT , for t = T, . . . , 1, we let

Vt−1 = Dρt
σt
(Vt + γtZt). (INRD)

By convention, VT has noise level (1 − ρT+1)σT+1 so that
VT + γTZT can be denoised at level σT . The case ρt = 1
gives iterative noising-denoising (IND):

Vt−1 = Dσt
(Vt + σtZt). (IND)
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Generated images are then obtained as samples of V0. INRD
connects to the schemes of Section 2.2 with Vt−1 = Dρt

σt
(Ut).

These schemes depend in an obvious way on the noise
schedule (σt) that controls the level of additive Gaussian noise
at each step. Since most of the literature on image denois-
ing focuses on additive Gaussian noise, we claim that this
formulation is much easier to understand for image process-
ing practicioners. Current iterates Vt have noise level 0 and
can be displayed as images. INRD generalizes the DDPM
scheme, by allowing for example ρt = 1 which leads to IND.
If (σt, ρt) satisfies (21) with ρt ∈ (0, 1) (in particular σt in-
creases), then INRD induces a DDPM-like scheme. For any
non-decreasing noise schedule (σt), (21) gives a canonical
choice of relaxation (ρt). But INRD is defined more generally
with the only constraint that we denoise sufficiently at each
iteration: ρt ≥ 1− σt−1

σt
. Notice that this condition is met with

the canonical relaxation ρt = 1− σ2
t−1

σ2
t

as soon as σt−1 ≤ σt.

3 Experiments

3.1 Faster Diffusion Schemes
The generative quality of a diffusion scheme depends cru-

cially on the chosen schedules (σt, ρt). There is obviously a
trade-off between sufficient denoising (which produces geo-
metric structures as in the images of the dataset) and sufficient
noising (which authorizes random innovation at each step).
On Fig. 1 we illustrate several possible noise schedules: the
DDPM noise schedule of [8], and also super-geometric and
affine schedules. For DDPM we initialize with a constant im-
age VT = 0.5. It is interesting to notice that the DDPM noise
schedule starts around 80× the image range.

For all experiments shown in this paper, we used the canoni-

cal relaxation ρt =
σ2
t−σ2

t−1

σ2
t

(as in standard DDPM). With this
choice, we only need to fix a noise schedule (σt) adapted to
the denoiser. In particular, this allows for very simple pruning
of pre-learned diffusion models, for example using DDPM on
a time subgrid (using σ′

t = σat for a ∈ N∗).
On Fig. 2, we show samples of IND and INRD based

on DiffUNet. Surprisingly convincing samples can be ob-
tained with the simpler algorithm IND. While samples of IND
seem smoother, the created geometric stuctures do not appear
less relevant compared to INRD(1000) (which is the standard
DDPM). Also, both IND and INRD produce convincing sam-
ples, even for 20 steps (50× less than DDPM).

3.2 Diffusion with pre-learned denoisers
Since (INRD) expresses simply through a Gaussian denoiser,

it can be directly tested with off-the-shelf denoisers. On Fig. 3,
we show samples obtained with INRD with DRUNet and total
variation denoiser TVDλ(u) = Argminv

1
2∥u−v∥22+λTV(v).

The scaling parameter was here (abusively) set to λ = σ.
We rely on implementations of the DeepInverse library [1].
For DRUNet, we used noise schedules adapted to the noise
range [0, 0.2] that was used for the denoiser training. Also, for
DRUNet, we initialize VT ∼ N (0, s2T Id) with sT ≫ σT in an
ad-hoc manner; otherwise the process degenerates immediately
to the mean value, and no geometric structures appear.
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Figure 1 – Noise schedules t 7→ σt (for image range [0, 1])

Linear(100) DDPM(20) DDPM(100) DDPM(1000)

Figure 2 – Samples of IND (1st row) and INRD (2nd row)
with DiffUNet. Noise schedules are shown on Fig. 1. For each
column we indicate the number of time steps.

Our experiments indicate that, while some widely adopted
noise schedules produce good samples with the pre-learned
DiffUNet, they may not be adapted to other denoisers. Our
experiments highlighted stability problems when using INRD
with DRUNet. For this reason, in Fig. 3 we only show inter-
mediate samples of this INRD-DRUNet. In contrast, we did
not observe such stability problems for INRD based on DiffU-
Net or TVD. These experiments therefore confirm that finding
the right noise schedule (σt) requires some careful ad-hoc
tuning, in a way that depends on the chosen denoiser. Since
the learning phase of standard diffusion models relies on the
approximation of the MMSE denoiser for all noise levels (σt),
the success of a diffusion model cannot be attributed only to
the training loss but depends on several hyperparameters that
are carefully tuned.

NS1 NS2 NS3

NS4 NS5 NS6

Figure 3 – Samples of IND-DRUNet (Rows 1,2) and INRD-
TV (Row 3) with noise schedules of Fig. 1. For DRUNet, we
show samples after 60 and 120 iterations, out of 400 iterations.
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3.3 Plug-and-Play Imaging
This last section shows that, in the other way around, diffu-

sion denoisers like DiffUNet can be used in PnP schemes in
order to adress linear imaging inverse problems. Here we con-
sider a deblurring problem y = Avc + w where y ∈ Rm

is the degraded observation, vc ∈ Rd is a clean image,
A ∈ Rm×d is a periodic convolution and w ∼ N (0, ν2Id)
with ν = 0.01. The corresponding data-fidelity writes as
f(v) = 1

2ν2 ∥Av − y∥22. We will focus only on the PnP-
PGD algorithm, which consists in the iterations vn+1 =
Dσ ◦ (Id− τ∇f)(vn). As already noticed in [4], relation (15)
allows to use the pre-learned DiffUNet denoiser in this PnP
scheme. Contrary to diffusion schemes, most PnP schemes
require to use the denoiser only for low noise levels, and
here we will show comparisons with the smallest noise level

σ0 =

√
β0

α0
≈ 0.005 accessible for DiffUNet.

On Fig. 4 we display several results obtained with this PnP-
PGD algorithm based on DRUNet and DiffUNet on images
taken from the FFHQ validation set. Our main observations
are as follows. First, with this raw (non-convergent) PnP-PGD
scheme, DiffUNet does not offer sufficient implicit regulariza-
tion to solve this deblurring problem in a stable way: numerical
artifacts may appear, and not only on the image border. This
often reflects in a clear PSNR drop and residual vn+1− vn not
going to 0. Second, while DRUNet tends to oversmooth most
regions, other oscillatory (non-numerical) artifacts may be left
by DiffUNet, especially subtle textural patterns in homoge-
neous regions (visible only with close look, and not accounted
for by PSNR). Therefore, if one looks for a good compromise
between performance, stability and computational cost when
using this precise PnP-PGD scheme, one should definitely
favor the lighter network DRUNet. Indeed, light networks
appear sufficient to regularize inverse problems that are not
severely ill-posed (especially in contexts where the restora-
tion algorithm should not hallucinate content), and some of
their stability issues can be settled by turning to convergent
variants of PnP algorithms [11] instead of raw PnP-PGD with
uncontrolled denoiser.
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