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Résumé – Nous présentons un nouveau modèle de textures obtenues comme réalisations de champs appelés champs browniens
fractionnaires pondérément tensorisés. Ils sont obtenus par une relaxation de la structure de produit tensoriel qui apparaı̂t dans la
définition des draps browniens fractionnaires. Des propriétés statistiques de ces champs, telles que l’auto-similarité, la stationnarité
des accroissements rectangulaires, sont obtenues. Une généralisation à des champs à auto-similarité matricielle est proposée et des
simulations basées sur la représentation spectrale sont effectuées.

Abstract – We present a new model of textures, obtained as realizations of a new class of fractional Brownian fields. These fields,
called weighted tensorized fractional Brownian fields, are obtained by a relaxation of the tensor-product structure that appears in the
definition of fractional Brownian sheets. Statistical properties such as self-similarity and stationarity of rectangular increments are
obtained. An operator scaling extension is defined and we provide simulations of the fields using their spectral representation.

1 Introduction
The modeling of natural phenomena, in particular textures,

by random objects has led to the introduction of numerous
stochastic processes and fields. The most famous and histori-
cally first example is the well-known Brownian motion, which
was extended to fractional Brownian motions by Kolmogorov
in his seminal paper of 1940 [10], to define “Gaussian spirals”
in Hilbert spaces. Given a Hurst parameter H ∈ (0, 1), the
fractional Brownian motion BH is the unique Gaussian pro-
cess with stationary increments satisfying the self-similarity re-

lation BH
at

(d)
= aHBt for any a, t > 0, where

(d)
= means that the

equality holds in the sense of finite-dimensional distributions.
It can be characterized via its harmonizable representation:

∀t ∈ R+, B
H
t =

∫
R

eitξ − 1

|ξ|H+1/2
dŴ(ξ), (1)

Several extensions have been proposed in higher dimen-
sions. In particular, two natural generalizations have been
introduced. The first one is the Levy fractional Brownian mo-
tion (LFBM) of Hurst index H ∈ (0, 1), also called fractional
Brownian field (see e.g. [13]). It is the unique real-valued
isotropic Gaussian field Y H with stationary increments sat-

isfying the self-similarity property Y H
ax

(d)
= aHY H

x , where
“isotropic” means that the field is invariant in law by rotation.
Again, it can be defined using its harmonizable representation:

Y H
x =

∫
RN

ei⟨x,ξ⟩ − 1

∥ξ∥H+N
2

dŴ(ξ) (2)

where ⟨·, ·⟩ denotes the standard scalar product in RN .
A second famous extension is given by the fractional

Brownian sheet (fBs) studied in [2, 9]. For a given vector
H = (H1, ...HN ) ∈ (0, 1)N , the fBs of Hurst index H is
a real-valued centered Gaussian random field SH with the
following harmonizable representation

SH
x =

∫
RN

N∏
m=1

eixmξm − 1

|ξm|Hm+ 1
2

dŴ(ξ). (3)

Setting Hm = 1
2 for each m ∈ {1, . . . , N} yields the standard

Brownian sheet. While LFBMs are isotropic, fBs exhibit a
strong “tensor-product” structure even when Hm = H for all
m ∈ {1, . . . , N} and no longer have stationary increments but
instead possess rectangular stationary increments (see Defini-
tion 3.2). Nevertheless, this field has been widely studied for
its interesting mathematical aspects, including fractal dimen-
sions [3], geometric features, local times, and many more.

Further developments. Focusing on the class of Gaus-
sian fields, the two previously mentioned extensions of the
fractional Brownian motions can be seen as particular cases
of more general models. Important properties have been in-
troduced in these models, such as anisotropy with different
properties along directions.

The Operator Scaling Gaussian Random Fields (OSGRF)
introduced in [6] satisfy a self-similarity condition

∀a > 0, ZaEx
(d)
= aHZx

for some H > 0, where E is a N ×N matrix with eigenvalues

having positive real parts, and where aE =
∑
k≥0

ln(a)kEk

k!
.

These fields have been shown to exhibit anisotropic regularity
properties [4], which offer strategies for numerical estimations
of the parameters of the model [12].

Goals, contribution and outline. The strong effect of the
tensor-product in Brownian sheets make them insufficiently
realistic for modeling many textures. However, in urban data
or medical images, some textures may exhibit a reticulated
structure. The contribution of the paper is to provide new
Gaussian textures with a controlled tensor-product effect. This
effect emerges as a parameter α goes from 1 to 0, yielding the
fractional Brownian sheet for α = 0 and a field closer to an
LFBM in terms of regularity for α = 1. Note that the regularity
of the fields has been studied in detail in [8], where associated
“weighted tensorized” function spaces have also been defined.
This notion of weighted tensorized regularity naturally arises in
partial differential equations such as the electronic Schrödinger
equation [16]. In this paper, we focus on statistical properties
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of self-similarity, stationarity and variance of increments. We
provide an extension to the anisotropic cases and simulations
of these fields.

2 Definition of the fields
Let α ∈ [0, 1] and H ∈ (0, 1), we set

H+
α := (1 + α)H and H−

α := (1− α)H

and we define a weighted tensorized fractional Brownian field
(WTFBF) as the Gaussian field {Xα,H

(x1,x2)
}(x1,x2)∈R2 given by

Xα,H
(x1,x2)

:=

∫
R2

(eix1ξ1 − 1)(eix2ξ2 − 1)

ϕα,H(ξ1, ξ2)
dŴ(ξ) (4)

where the function

ϕα,H(ξ1, ξ2) = min(|ξ1|, |ξ2|)H
−
α + 1

2 max(|ξ1|, |ξ2|)H
+
α + 1

2

denotes the square root of the inverse of the spectral density of
the field. In the sequel, we also use the notation

Kα,H
(x1,x2)

(ξ1, ξ2) :=
(eix1ξ1 − 1)(eix2ξ2 − 1)

ϕα,H(ξ1, ξ2)

for the kernel in the stochastic integral (4). The formula mim-
ics the definition of the fractional Brownian sheet and carefully
provides homogeneity properties for the function ϕα,H which
are crucial to define self-similar fields. However, the param-
eter α introduces a diversity of the spectral law leading to
non-classical regularity of the fields. Note that the field (4) is
well-defined since this last kernel belongs to L2(R2). Note fur-
thermore that the Fourier transform of Kα,H

(x1,x2)
is real. Indeed,

one has

ℑ
(
e−i(t1ξ1+t2ξ2)(eix1ξ1 − 1)(eix2ξ2 − 1)

)
=sin((x1 − t1)ξ1 + (x2 − t2)ξ2)− sin(−t1ξ1 + (x2 − t2)ξ2)

− sin((x1 − t1)ξ1 − t2ξ2) + sin(−t1ξ1 − t2ξ2)

which is an odd function in (ξ1, ξ2). It follows that∫
R2

ℑ
(
e−i(t1ξ1+t2ξ2)(eix1ξ1 − 1)(eix2ξ2 − 1)

)
ϕα,H(ξ1, ξ2)

dξ = 0.

It implies that K̂α,H
(x1,x2)

is real, hence so is the field Xα,H
(x1,x2)

.

3 Basic properties
Proposition 3.1. For all α ∈ [0, 1] and H ∈ (0, 1),
the process Xα,H is self-similar: for all a > 0,

{Xα,H
(ax1,ax2)

}(x1,x2)∈R2

(d)
= {a2HXα,H

(x1,x2)
}(x1,x2)∈R2 .

Proof. The self-similarity property obviously comes from the
homogeneity of the function ϕα,H .

These fields offer new examples of self-similar fields with
stationary rectangular increments, complementing the exam-
ples presented in [2, 11] and allowing simulations of them.
Note that the class of Gaussian self-similar processes with
stationary increments is reduced to fractional Brownian pro-
cesses. Extensions to 2D are provided by the class of OSGRF
but the property of rectangular stationary increments seems to
allow more richness in terms of regularity.

Definition 3.2. If {X(x1,x2)}(x1,x2)∈R2 is a field and if
(x1, x2), (y1, y2) ∈ R2, we set

∆X(x1,x2);(y1,y2)

:= X(x1+y1,x2+y2) −X(y1,x2+y2) −X(x1+y1,y2) +X(y1,y2).

We say that {X(x1,x2)}(x1,x2)∈R2 has stationary rectangular
increments if, for any (y1, y2) ∈ R2, we have

{∆X(x1,x2);(y1,y2)}(x1,x2)∈R2

(d)
= {X(x1,x2)}(x1,x2)∈R2 .

Proposition 3.3. For all α ∈ [0, 1] and H ∈ (0, 1), the field
{Xα,H

(x1,x2)
}(x1,x2)∈R2 has stationary rectangular increments.

Proof. It suffices to show that, for any (y1, y2) ∈ R2, the
finite dimensional distributions of {Xα,H

(x1,x2)
}(x1,x2)∈R2 and

{∆X(x1,x2);(y1,y2)}(x1,x2)∈R2 have the same characteristic
function. First, we remark that for any (x1, x2) ∈ R2, we
get from (4)

∆Xα,H
(x1,x2);(y1,y2)

=

∫
R2

ei(y1ξ1+y2ξ2)Kα,H
(x1,x2)

(ξ1, ξ2)dŴ(ξ).

Thus, recalling [13, Corollary 6.3.2], we have

E

exp

i

n∑
j=1

t(j)∆Xα,H

(x
(j)
1 ,x

(j)
2 );(y1,y2)


= exp

−c0

∫
R2

∣∣∣∣∣∣
n∑

j=1

t(j)ei(y1ξ1+y2ξ2)Kα,H

(x
(j)
1 ,x

(j)
2 )

(ξ1, ξ2)

∣∣∣∣∣∣
2

dξ


= E

exp

i

n∑
j=1

t(j)Xα,H

(x
(j)
1 ,x

(j)
2 )

 ,

for any (x
(1)
1 , x

(1)
2 ), . . . , (x

(n)
1 , x

(n)
2 ), (y1, y2) ∈ R2 and any

t(1), . . . , t(n) ∈ R, with c0 := 1
2π

∫ π

0
cos(θ)2 dθ. The conclu-

sion follows directly.

4 Variance of rectangular increments
Estimating the variance of the increments is a classical strat-

egy to derive results on the regularity of sample paths, using a
Kolmogorov-type theorem.

Proposition 4.1. For all α ∈ [0, 1] and H ∈ (0, 1), there is
a constant c1 > 0 such that the rectangular increments of
{Xα,H

(x1,x2)
}(x1,x2)∈R2 satisfy

E(|∆Xα,H
(h1,h2);(x1,x2)

|2)

≤ c1
(
max{|h1|, |h2|}1−α min{|h1|, |h2|}1+α

)2H
for all (x1, x2), (h1, h2) ∈ R2.

Proof. The isometry property of the stochastic integral gives

E
(
|∆Xα,H

(h1,h2);(x1,x2)
|2
)

=

∫
R2

|ei(x1+h1)ξ1 − eix1ξ1 |2|ei(x2+h2)ξ2 − eix2ξ2 |2

(ϕα,H(ξ1, ξ2))2
dξ

=
1

|h1| |h2|

∫
R2

|eiη1 − 1|2|eiη2 − 1|2

(ϕα,H( η1

h1
, η2

h2
))2

dη

2



(a) α = 0 (b) α = 0.5 (c) α = 1 (d) α = 0 (e) α = 0.5 (f) α = 1

Figure 1 – Weighted tensorized fractional Brownian fields simulated using a spectral representation approximation method, with
parameters (a-c) H = 0.3 or (d-f) H = 0.7 and (a,d) α = 0, (b,e) α = 0.5 or (c,f) α = 1.

using the change of variables (η1, η2) = (h1ξ1, h2ξ2). Notice
now that if |h1| ≥ |h2|, one has

(ϕα,H( η1

h1
, η2

h2
))2 ≥ min(|η1|, |η2|)2H

−
α +1|η2|2H

+
α +1

|h1|(2H
−
α +1)|h2|(2H

+
α +1)

.

It implies E
(
|∆Xα,H

(h1,h2);(x1,x2)
|2
)
≤ c1|h1|2H

−
α |h2|2H

+
α with

c1 =

∫
R2

|eiη1 − 1|2|eiη2 − 1|2

min(|η1|, |η2|)2H
−
α +1|η2|2H

+
α +1

dη (5)

if |h1| ≥ |h2|. The same argument for |h1| < |h2| leads to the
conclusion.

Regarding the rectangular increments, a generalization of
Kolmogorov’s continuity theorem allows us to assert that there
exists a modification of the field {Xα,H

(x1,x2)
}(x1,x2)∈R2 which

is nearly locally (H+
α , H−

α )-rectangular Hölder. This means
that for every bounded intervals I, J of R, every x1 ∈ I ,
x2 ∈ J and every ε > 0, there exists a positive finite random
variable C > 0 such that almost surely

|∆Xα,H
(h1,h2);(x1,x2)

|

≤ C
(
max{|h1|, |h2|}(1−α) min{|h1|, |h2|}(1+α)

)H−ε

for all h1, h2 ∈ R such that x1 + h1 ∈ I and x2 + h2 ∈ J ,
see [8] for details.

5 Anisotropic extension
The model introduced in the previous sections can be ex-

tended to provide anisotropic textures by imposing an operator
scaling property.

We consider β1, β2 ∈ (0, 2) such that β1 + β2 = 2, and set

Xα,H,β1,β2

(x1,x2)
:=

∫
R2

(eix1ξ1 − 1)(eix2ξ2 − 1)

ϕα,H,β1,β2
(ξ1, ξ2)

dŴ(ξ) (6)

where ϕα,H,β1,β2
(ξ1, ξ2) = ϕα,H

(
|ξ1|

1
β1 , |ξ2|

1
β2

)
. If

max(β1, β2)− 1 < 2H < 3min(β1, β2)− 1, the correspond-
ing field is well-defined and satisfies

Xα,H,β1,β2

aDx

(d)
= a2HXα,H,β1,β2

x (7)

with D = diag(β1, β2) and aDx = (aβ1x1, a
β2x2). These

fields then satisfy anisotropic properties of regularities that
will be explored in a forthcoming work. Extensions to non-
diagonal operators could also be investigated.

6 Simulation
Several strategies have been developed to simulate Gaussian

random fields. Methods based on an explicit expression for
the covariance of the field allow for exact simulations that pre-
serve statistical properties such as stationarity (see [5]).When
the covariance is not explicitly known but is known along ra-
dial directions, the turning-bands method can be employed, as
in [7] to simulate some anisotropic fields. Using the spectral
density of the field, approximations of AFBF have been ob-
tained in [1]. Given that we only have an integral expression of
the covariance, we adopt this approach to generate a WTFBF.
This spectral representation method involves discretizing the
field in the Fourier domain [14]. Although its main limita-
tions include challenges in assessing the convergence of the
approximation, as well as the potential for the inverse Fourier
transform to disrupt the statistical properties of the field, this
method is still widely used to generate stationary and non-
stationary Gaussian random fields. In the case of stationary
random fields, Shinozuka and Deodatis [14] proved that the
generated samples verify ergodic properties, in the sense that
the spatial mean and autocorrelation function of any sample
converge to the theoretical mean and autocorrelation function
of the field, as the sample size increases. It is also fast and
easy to perform as it involves fast Fourier transforms. Approx-
imations based on wavelet methods could be used, but they
are known to be quite slow in practice even if they provide the
best approximation rate by a series in the case of FBF.

The results presented in Figures 1 and 2 are generated us-
ing a spectral representation approximation on a discrete grid
of size (M + 1) × (M + 1), with M = 512. For a given
WTFBF {Xα,H

(x1,x2)
}(x1,x2)∈R2 , the strategy involves generat-

ing W , a collection of independent standard complex Gaus-
sian variables of size (2M × 2M). These variables are then
multiplied by a function g. Next, in both directions suc-
cessively, a 1D Fourier transform is applied, followed by
subtracting the value of the field at the origin. If we set
g(x, y) = (ϕα,H(x, y))−11{x ̸=0,y ̸=0} for (x, y) ∈ R2, the
generated field xα,H is given, for all k1, k2 ∈ {0, . . . ,M}, by

xα,H
(
k1

M , k2

M

)
= R

(
y2

(
k1

M , k2

M

)
− y2

(
0, k2

M

))
,

where for any n1 ∈ {−M + 1, . . . ,M}

y1
(
n1,

k2

M

)
=

M∑
n2=−M+1

W (n1, n2)g (πn1, πn2) e
− 2iπn2k2

2M ,

y2
(
k1

M , k2

M

)
= π

M∑
n1=−M+1

(
y1

(
n1,

k2

M

)
− y1(n1, 0)

)
e−

2iπn1k1
2M .

3



(a) α = 0 (b) α = 0.5 (c) α = 1 (d) α = 0 (e) α = 0.5 (f) α = 1

Figure 2 – Anisotropic weighted tensorized fractional Brownian fields simulated using a spectral representation approximation
method, with parameters (a-c) H = 0.4, β1 = 0.7, β2 = 1.3 and α = 0, α = 0.5 or α = 1, and (d-f) H = 0.6, β1 = 0.85,
β2 = 1.15 and α = 0, α = 0.5 or α = 1.

The same method is used to simulate the anisotropic extension.
Figure 1 presents synthesized WTFBFs with various param-
eters H and α. When α = 0, the procedure samples a fBs
while, when α = 1, the generated texture tends to loose the
reticulated aspect and to approach a fractional Brownian field.
Figure 2 shows anisotropic WTFBFs. These fields Xα,H,β1,β2

produce anisotropic textures, where the highest β determines
the dominant direction. The images (a-f) illustrate the effects
of the parameters α, β and H on the fields. We generated
100 textures of size 512× 512, with parameters H = 0.3 and
α = 0.5 to evaluate the statistical properties of the realizations,
similarly as in [15]. The results are presented in Table 1. Note
that the fields given by the rectangular increments tend to have
a mean and a skewness approaching the mean and skewness
of the original field and the theoretical mean and skewness,
supposed to be zero. Regarding the self-similarity property,
the estimated mean and skewness of the rescaled generated
textures are close to their theoretical target, zero. In both cases
however, the variance seems to be biased. A matlab implemen-
tation to generate these textures and reproduce our results is
available online (https://github.com/claunay/wtfbf).

Table 1 – Estimated moments of WTFBFs generated by the
spectral representation method

Xα,H ∆Xα,H 1
a2H Xα,H

Mean −2× 10−4 −1× 10−5 2× 10−2

Variance 7.3 10.7 1.4
Skewness −6× 10−4 1× 10−6 −0.3

Conclusion
In this paper, we introduced a new model of textures that

relaxes the tensor-product structure of fractional Brownian
sheets, in an attempt to construct a bridge between fBs and
fractional Brownian fields. These textures can appear in medi-
cal or urban images and are associated with regularity proper-
ties involved partial differential equations. We have shown that
these random fields are self-similar and have stationary rectan-
gular increments, with bounded variance. Some simulations
illustrate the behavior of these textures for various parameters.
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[2] A. Ayache, S. Léger, and M. Pontier. Drap Brownien
Fractionnaire. Pot. Anal., 17:31–43, 2002.

[3] A. Ayache and Y. Xiao. Asymptotic properties and
Hausdorff dimensions of fractional Brownian sheets. J.
Fourier Anal. Appl., 11(4):407–439, 2005.
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