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Résumé – Dans cet article, nous étudions le potentiel des approches multiniveaux pour accélérer l’entraînement des Transformers.
En utilisant une interprétation de ces architectures sous forme d’équations différentielles ordinaires (EDO), nous proposons une
manière appropriée de varier la discrétisation de l’EDO décrivant ces transformers afin d’accélérer l’apprentissage. Nous validons le
potentiel de notre approche en la comparant à un apprentissage standard.

Abstract – In this article, we investigate the potential of multilevel approaches to accelerate the training of transformer architectures.
Using an ordinary differential equation (ODE) interpretation of these architectures, we propose an appropriate way of varying
the discretization of these ODE Transformers in order to accelerate the training. We validate our approach experimentally by a
comparison with the standard training procedure.

1 Introduction

Transformer architectures have become ubiquitous since
their introduction [26]. They are state-of-the-art on a large
class of problems including image recognition [9, 20], speech
processing [4, 21] and large language models [24, 3, 25]. The
performance of these models, which increases with their di-
mension, is balanced by training and inference costs. Hence,
it is crucial to propose new training methods to better handle
their cost. In this paper, we propose to accelerate the training
of transformers models by relying on an ODE interpretation of
transformer-decoder architectures and multilevel optimization,
in a similar fashion as in [15, 10] for ResNet models.

Transformer-decoder networks are composed of an input
layer that transforms tokens into embeddings and passes these
embeddings to a sequence of transformer blocks which are at-
tention layers followed by feed-forward networks, intertwined
with normalization layers. The output is then transformed
from embeddings to tokens. Similar to previous deep neu-
ral architectures, transformers become progressively harder
to train as their depth increases, primarily due to large-scale
optimization and dependencies on residual connections that
makes training unstable, since it amplifies small parameter
perturbations [19]. Reducing the number of parameters is a
direct remedy to this problem, at the expense of the network’s
expressivity. Therefore it becomes more and more interesting
to find training approaches able to manage the growth in the
number of parameters without reducing performance.

A possible framework to manage this growth is derived
from an ODE interpretation of transformer networks [18, 2].
The success of the ODE interpretation of ResNet networks
[6, 1] motivated the community to extend such study to other
residual networks such as transformer-decoder architectures
[18, 2], at the heart of modern large language models [24, 3].

Our approach is inspired by the work of [15, 10], whose
authors investigate the impact of varying depths of ResNet net-
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Figure 1 – Training loss of the single level algorithm (standard
method) in blue and of the multilevel algorithm (our proposed
approach) in red with respect to the number of optimization
steps (at fine level). The curves are averaged over 6 seeds.
In lighter colors we display the standard deviation of the 6
training runs.

works based on the ODE formalism, and train a deep ResNet
in a multilevel fashion. In order to accelerate the optimization,
multilevel algorithms exploit a hierarchy of approximations of
the objective function. Reducing the problem dimension can
lead to significant gains in convergence speed [17, 16].

Related works. A lot of effort has been dedicated to accel-
erating the training of transformers. A common idea is to
increase the size of the network during training, starting from
a smaller network. We can divide these approaches depending
on the proposed growth method: depth [11], width [13] or
both [7, 5, 27, 8].

In [11], the authors propose a method to transfer knowledge
from a shallow model to a deeper one by progressively stacking
layers and doubling its depth. This strategy is motivated by
observing that lower and upper layer representations exhibit
similar distributions. A similar perspective is adopted in [13],
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where the authors stack weights and double the width of the
model, preserving the output after the expansion.

In [7, 5, 8], authors propose techniques for transferring
information stored in a neural network into another neural
network with increased width or depth. For instance, the
Net2DeeperNet method in [7] transforms one layer into two
layers by initializing the added layer’s weights as the identity.
In [8], the small network is initialized as a pruned dense net-
work, that gradually extends into the dense network. Authors
in [27] also propose a method to simultaneously extend the
width and the depth. Their algorithm learns an expansion ma-
trix from a given dataset. All these methods change the size of
the network during training, and are therefore not comparable
to our proposed approach.

In an adjacent direction, authors of [28] propose to speed up
the training by sharing weights across all transformer blocks
up until a certain point in the training. This procedure allows
the blocks to quickly learn common shared features, therefore
bringing the weights closer to the optimal solution faster.

The idea of training neural networks using multilevel tech-
niques has been investigated in several papers [10, 15, 30, 12].
Authors of [10, 15] start from the ODE interpretation of
ResNets to create a hierarchy of smaller networks then used in
a multilevel fashion by alternating the training of the smaller
networks and of the target network, achieving great accelera-
tion. In [12], the context of PDE solving allows the network
to be divided into blocks that can be trained separately. Each
block targeting different frequency components of the solution,
the training is accelerated.

Lastly, a multilevel approach reducing width and depth of
transformer network during training was recently proposed in
[30], saving up to 20% of the total computational cost. The
authors introduce a construction of operators that allow to go
from one network to the other, reducing (resp. increasing) the
depth and the width sequentially.

Contributions. In this paper, we propose a multilevel ap-
proach to train an ODE transformer neural network for se-
quence generation. By varying the depth, we obtain smaller
networks that are easier to train, and we propagate these
smaller networks to the fine network, thus accelerating its
training. In contrast to [30], we do not use operators to reduce
the width and the depth of the network. We rely on the ODE
interpretation to reduce the dimension without any operators.

Outline. In Section 2, we present the ODE formalization of
transformer networks, and we then introduce our multilevel
algorithm for the training. In Section 3, we compare our algo-
rithm to a single level training on a sequence generating task.
Finally, we discuss our findings and potential improvements.

2 Multilevel training for ODE trans-
formers

In this section, we present the interpretation of transformer-
decoder networks using an ODE [18]. The presentation is
slightly different than in [18], but principles remain similar.
This interpretation will then allow us to derive a multilevel
algorithm to train transformer networks.
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Figure 2 – Training loss of the single level algorithm (standard
method) in blue and of the multilevel algorithm (our proposed
approach) in red with respect to FLOPS. The curves are aver-
aged over 6 seeds. In lighter colors we display the standard
deviation of the 6 training runs.

2.1 ODE Transformers.
Like ResNets, transformer networks use residual connec-

tions. The ODE interpretation is well known for ResNets
[6, 1], and is a consequence of these residual connections.

A transformer layer is composed of a self-attention (SA)
block followed by a feed-forward (FF) network. The input
of these blocks is passed through a Layer Norm (LN) opera-
tion, and a residual connection. Denote by xt the input of a
transformer layer at time t. The output xt+1 is given by:

xt+1 = xt + SAt(LNt(xt)) + FFt(LNt(xt + SAt(LNt(xt))))

= xt + F(xt, θt) (1)

where F(·, ·) = SAt(LNt(·)) + FFt(LNt(·+ SAt(LNt(·)))).
At time t, F will depend on parameters θt. This equation can
be seen as the Euler discretization of the following ODE

dx(t)

dt
= F(x(t), θ(t)) (2)

with a discretization step ∆t = 1. Our idea is to use different
levels of discretization of this ODE to define a hierarchy of
networks. The fine level network will have the desired N
(even) number of transformer layers Fi with parameters θi, for
i = 1, . . . , N . Coarser networks will use less and less layers
corresponding to their discretization level.

2.2 Multilevel training of transformers.
For the clarity of the presentation, we limit ourselves to two

levels. We will denote by h elements of the fine level network,
and by H elements of the coarse level network.

In the following, coarse and fine level networks will share
input and output layers that respectively transform tokens into
embeddings and embeddings into tokens. It is standard for
input and output layers to share the same weights [24, 3].

Construction of coarse models. To coarsen our fine level
network, we will divide by 2 the number of transformer layers.
The coarse model has therefore N/2 layers FH

i with parame-
ters θHi for i = 1, . . . , N/2. These layers are the layers of the
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fine level network, linked by the following relationship

∀i ∈ {1, . . . , N/2}, θHi = θh2i. (3)

At any point during the training, this relationship holds (with-
out additional memory footprint). After K steps of coarse opti-
mization, we obtain a new set of parameters (θ̃Hi )1≤i≤N/2. We
then update fine level parameters by prolongating the coarse
parameters. For all i ∈ {1, . . . , N}

θ̃h2i = θ̃Hi ,

θ̃h2i+1 = (1− δ)θh2i+1 + δθ̃Hi , (4)

where δ ∈ [0, 1] is an averaging constant. Here we follow the
example of [30]. The simplest setting would be to set δ = 1,
and would be substantiated by the literature on numerical solu-
tion of ODEs (see [15, 10] and references therein). However,
due to the low number of layers in our context (a dozen ver-
sus a few thousands in [15, 10]), we would lose too much
information at the fine level. Moreover, one can see that only
training even layers leads the training to be quite asymmetrical.
Therefore we propose to train two coarse models. The second
coarse model is linked to the fine model by

∀i ∈ {1, . . . , N/2}, θHi = θh2i−1, (5)

with the symmetric of Equation 4 to prolongate the coarse
parameters to the fine levels so every fine layer will be updated
(even though they are not trained at this coarse level). We
display in Figure 3 an example of a fine level network with
4 layers and its two coarse models. One training step on a
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Figure 3 – Scheme of our proposed approach on a network
with 4 transformer layers. The fine level network (blue blocks)
is decomposed into two coarser networks (red blocks) that
contains even-indexed (resp. odd-indexed) layers. Input and
output layers (gray blocks) are shared across all networks.

coarse model costs less than an training step on the fine model
and training a smaller network is easier. Hence, the loss of
expressivity by using smaller networks should be outweighed
by the computational and training gains. Note that a fine level
step is always computed after K coarse steps.

Optimization parameters at coarse level. It remains now
to address the training of the coarse models. Both coarse
models see the same data points as the fine level, in the same
order. We tried to vary the data points and the order, without
any noticeable effect. The number of tokens seen at each
optimization step also remains the same. In a few words, we
train each coarse model like the fine model. After training
both coarse models, we always compute one optimization step
for the fine model.

A notable difference with standard multilevel approaches
is that we do not share gradient information between levels.
Standard approaches impose coherence between levels using
this information [17]. Due to the stochastic nature of the
gradient, in our context, adopting this coherence leads to be
coherent with noisy information.

3 Numerical experiments

In this section, we numerically compare the training speed
of our approach against the standard single level approach.

Dataset. We use a portion of the FineWeb-Edu dataset: a
billion of GPT-2 tokens, sampled from the 10 billions smaller
version [22]. This dataset contains educational pages of the
FineWeb dataset.

Architecture choice. For our experiments we consider accel-
erating the training of a transformer-decoder architecture that
takes as input sequences 256 tokens obtained with the GPT-2
tokenizer 1 in a vocabulary of size 50257. The input layer
embeds the tokens into a space of dimension 256, after which
follows 12 transformer blocks with 8 attention heads each. The
output layer then reverts the embedding operation. Across all
levels, the input and output layers remain untouched, and we
only reduce the number of transformer blocks to define our
coarse models. The number of parameters of this architecture
is 22, 368, 512, which allows training the fine model and the
coarse models on a single GPU with 16 GB of RAM.

Hyperparameters for training. Each model was trained
with Stochastic Gradient Descent (SGD). This choice is not the
state-of-the-art for training transformer models for sequence
generation, but is easier to handle when dealing with the train-
ing of several related networks (see the discussion at the end).
16000 steps are computed with a batch size of 32 sequences of
length 256, accumulated to reach a total batch size of 262144
tokens. Therefore, the network is trained for a little bit more
than 4 epochs. All training runs follow a learning rate schedule
with 715 steps of linear warm-up followed by a cosine decay
to zero. Minimum and maximum learning rates were set to
1.2×10−4 and 1.2×10−3 respectively [24, 3]. Hyperparame-
ters for the coarse models are identical, except for the learning
rate that remains constant equal to 1.2× 10−3.

Multilevel hyperparameters. We use two coarse models:
one that trains odd-indexed transformers blocks (1,3,5,7,9,11),
the other that trains even-indexed (2,4,6,8,10,12) transformer
blocks. Each coarse model has 17, 649, 920 parameters. After
one step of fine level optimization, we use the coarse models
for 35 steps. During these steps, each coarse model is trained
for 100 steps, before propagating their weights to the fine level
network, and then training once the fine level network. Both
coarse networks are trained using the same optimizer as the
fine network. For both coarse models, we set the averaging
constant δ to 0.25 following [30] and our own experiments.
After these 35 steps, we only train the fine level network. In
practice, when using coarse levels long after these starting
steps, we observed diminishing returns with respect to the
computational cost, therefore we only used them at the start.

1. tiktoken used with tiktoken.get_encoding("gpt-2")
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Comparison metrics. In order to show that a multilevel ap-
proach can accelerate the training, we compare the training
losses with respect to the iterations of our approach and of
the single level approach. Such comparison is at our advan-
tage since one iteration of our algorithm encompasses several
coarse iterations. Thus, to be fair to the single level algorithm
we also compare the training loss with respect to the number
of Floating Point Operations (FLOP)s computed per iteration.
We estimate the number of FLOPs of one iteration by esti-
mating the number of FLOPs required to do one forward pass
of the networks. Then we follow similar works that estimate
that one training step requires in FLOPs the equivalent of 3
forward pass (cf this report 2 or [14]).

Results. Training curves are averaged over 6 training runs
using 6 different seeds. We display in Figure 1 the training loss
of our multilevel approach and of the single level approach
with respect to the number of optimization steps. In Figure 2,
we display losses with respect to the number of FLOPs. Our
algorithm achieves the same loss as the single level training
in 16000 steps, while reducing the total number of FLOPs by
44%, demonstrating the efficiency of our multilevel method in
accelerating the training of transformer networks.

Discussion. As mentioned earlier, [30] performs multilevel
on a transformer-decoder. In order to compare to their method,
we need to train larger architectures such as GPT-2 [24], as they
did. Due to the higher number of hyperparameters requiring
tuning for their method to work (compared to ours), we could
not afford to do this expensive tuning yet. Hence, we leave a
comparison for later works.

However, their coarse level is obtained by reducing the
width of each layer and the depth of the network while our mul-
tilevel approach focuses on the depth of a transformer-decoder
as this method respects the ODE interpretation detailed in Sec-
tion 2. We are aware that SGD is not the preferred algorithm
for language tasks [29]. Showing that our approach can ac-
celerate the training with the vanilla algorithm is a first but
necessary step towards the acceleration of more complex algo-
rithms. Notably, one question needs to be solved in order to be
competitive with Adam or AdamW: the interaction between
the momentum at fine and coarse level. In a convex setting,
this momentum does not seem to be a problem [17], but in
deep learning settings it is [12]. To the best of our knowledge,
no multilevel algorithm handle it in a satisfying manner. The
question is either omitted [30, 10, 15] or circumvented using
restarting techniques [12].

4 Conclusion

In this article we proposed a multilevel approach to accel-
erate the training of transformer networks. Our approach is
based on an ODE interpretation of these networks, which al-
lows us to vary their size by varying the discretization that
solves the associated ODE. We obtained impressive savings
in FLOPs with respect to the single level training. At the mo-
ment, the setting of these experiments is limited. It calls for
more experiments, and also more theoretical developments to
better understand interactions between the training of finer and
coarser networks, notably the momentum. We also need to

2. https://epoch.ai/blog/backward-forward-FLOP-ratio

compare the robustness of the trained network with respect to
test tasks to completely validate the benefit of our approach.
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