
Regularizing Gradient Reconstruction Attacks in Federated Averaging

Pierre JOBIC Aurélien MAYOUE Sara TUCCI-PIERGIOVANNI

Université Paris-Saclay, CEA List, F-91120, Palaiseau, France

Résumé – Pour répondre aux besoins grandissants d’accès aux données et de confidentialité, l’apprentissage fédéré est de plus en
plus considéré. Il permet à plusieurs clients d’apprendre un modèle de façon collaborative sous la supervision d’un serveur central
mais sans jamais partager leurs données. Par construction, l’apprentissage fédéré apparait comme une solution pour assurer la
confidentialité des données mais pas celle du modèle dont les paramètres sont échangés entre les clients et le serveur tout au long du
processus d’apprentissage. Des attaques récentes, telles que les attaques par reconstruction de gradient (GRAs), ont ainsi montré la
faisabilité de reconstruire les données d’entraînement des participants. Néanmoins, la majorité de la littérature s’intéresse à FedSGD,
une version simplifiée et non réaliste de l’apprentissage fédéré où chaque client réalise une seule itération de descente de gradient
stochastique à chaque tour. Dans un scénario plus réaliste, les clients calculent plusieurs étapes de descente de gradient (FedAvg)
avant de partager leur modèle au serveur. Ce protocole ajoute des étapes de calculs intermédiaires, inconnues de l’attaquant, rendant
ainsi les GRAs moins efficaces. Dans cet article, nous introduisons une nouvelle régularisation qui rend les GRAs plus efficaces
dans le cadre de FedAvg. Notre discussion est étayée par des expériences dans un contexte de vision par ordinateur.

Abstract – Federated Learning (FL) has gained prominence as a decentralized and privacy-preserving paradigm that enables
multiple clients to collaboratively train a machine learning model under the supervision of a central server but without sharing their
data. By design, FL is a solution for data privacy but not model privacy. Recent attacks, such as gradient reconstruction attacks
(GRAs) have precisely shown privacy issues when an attacker knows the model parameters sent by a client to the server. In the
literature, these privacy issues are mainly explored when clients compute a single gradient descent step on their data (FedSGD). In a
more realistic scenario, clients compute several gradient descent steps (FedAvg). This protocol adds intermediate computation steps,
which are unknown from the attacker, thus making GRAs less successful. In this paper, we introduce a new regularizer that makes
GRAs more efficient under FedAvg. Our discussion is supported with experiments in computer vision.

1 Introduction
Federated Learning (FL) [9] addresses privacy concerns

by keeping training data on user devices and sharing only
locally-computed updates of a parametric statistical model,
such as neural networks. Federated Stochastic Gradient De-
scent (FedSGD) [9] involves clients computing a full-batch
gradient descent and sharing it with the server, but it incurs
high communication overhead [9, 2]. Federated Averaging
(FedAvg) [9] reduces communication rounds by having clients
perform multiple stochastic gradient descent (SGD) steps be-
fore sending updates, thus accelerating learning and decreasing
communication costs.

Despite FL’s design to protect training data, recent attacks
on FedSGD [12, 3, 11] and FedAvg [1, 4, 10, 8, 5] have in-
ferred sensitive information from model updates. Gradient
Reconstruction Attacks (GRAs) exploit these updates to infer
client data passively and undetectably.

Following the recent work to design attack for FedAvg,
we propose a new regularizer that can enhance all GRAs on
FedAvg. Thus our main contributions are:

— A novel regularizer that can boost all GRAs in the con-
text of FedAvg.

— Extensive experiments to compare our method with
state-of-the-art attack [1].

2 Background and Related Work
In FL, the FedAvg [9] is a procedure to collaboratively train

a machine learning model, which computes as follows:

1. Clients Selection: In each round t, a subset St of clients
is selected. Each client k has a local dataset (Xk, Yk).

2. Communication in: In each round t, the server sends
to each selected client the global model θt.

3. Model Optimization: After the communication step,
each client updates the global model θt by minimizing
a loss function L with its dataset. Let n, β, η, ϵ be the
dataset size, the batch size, the learning rate and the
number of epochs respectively. Then each client updates
the model with a stochastic gradient descent (SGD),
∀e ∈ J1, ϵK, ∀u ∈ J1, n

β K:{
θu+1
e = θue − η · ∇θL(θue ;Xu

e , Y
u
e)

θ1e+1 = θ
n
β +1
e ; and θ11 = θt

Where Xu
e , Y

u
e is the batch of data at step u and

epoch e. We introduce the notations U =̇ n
β and

θUϵ =̇ FedAvg(β, ϵ, η, θt, X, Y) for this algorithm.

4. Communication out: After model optimization at
round t, each client sends its model updates ∆θt =
θUϵ − θt back to the server.

5. Aggregation: The server aggregates these updates to
compute new global parameters:

θt+1 ← θt+
1

|St|
∑
k∈St

FedAvg(n, β, ϵ, θt, Xk, Yk)−θt

6. Communcation rounds: The step 1. to 5. are repeated
for a number of communications rounds T .

1

mailto:pierre.jobic@cea.fr
mailto:aurelien.mayoue@cea.fr
mailto:sara.tucci@cea.fr

In the specific case of FedSGD, each client performs only
one epoch (ϵ = 1) and uses the entire dataset as a single batch
(β = n). This results in a single update step per round.

Threat Model In this paper we consider the case of a honest-
but-curious server, which has access to the client’s communi-
cation θUϵ and θt and the model architecture, i.e. a white-box
model. The hyperparameters (HP) of the clients η, β, n are
known from the attacker.

Gradient Reconstruction Attacks (GRAs) In spite of the
privacy-by-design architecture of FL to protect clients’ training
data, it is still possible for an attacker to reconstruct crucial
information on these training data. GRAs are the simplest
attack to implement yet powerful. In order to attack, GRAs
will construct data points X̃, Ỹ which will mimic the observed
parameters update θt, θ

U
ϵ . Namely:

1. Initialization: initialize (X̃, Ỹ) (often sampled from
random normal distribution)

2. Optimization: Repeat until convergence:
— Simulation: θ̃ = Sim(β, ϵ, η, θt, X̃, Ỹ) where Sim

is any optimization algorithm on the parameters θ
(e.g. FedAvg as in step 3 of dotted list).

— Gradient Descent: any gradient descent algo-
rithm on (X̃, Ỹ) by minimizing a loss function
Loss(θUϵ , θt; θ̃, X̃, Ỹ).

All the trick is to choose Sim and Loss wisely.
Loss functions can be decomposed in two terms:

Loss = dist(θUϵ , θ̃) + reg(θUϵ , θt; θ̃, X̃, Ỹ) (1)

Where dist is a distance function, such as euclidean distance
[12] or cosine similarity [3]. This equation (with or without
the reg) is not convex, there is not a global minimum but a lot
of local minima, but only a few are interesting. That is why, a
regularization term reg is often added to select the solutions
of interest.

For instance, [3] use the Total Variation (TV) which charac-
terizes the smoothness of an image. This (positive) metric is
often very low on real images. It allows (X̃, Ỹ) to converge
to more realistic images.

GRAs in the litterature GRAs have mainly been designed
for the FedSGD cases, where the clients communicate only
the gradients. However in a more realistic scenario, clients
use FedAvg. As stated by [1], GRAs are harder on FedAvg
because of the unknown intermediate local updates θue that
are computed by the clients. To address this, [4, 10] propose
to attack FedAvg by simulating FedSGD. More concretely,
θ̃ = Sim(β, ϵ, η, θt, X̃, Ỹ) = FedAvg(n, 1, U ·ϵ ·η, θt, X̃, Ỹ).
Note that the learning rate in the simulation is U · ϵ · η to
compensate the single update step that the attack performs
compared to the U · ϵ steps that the client performs.

It is also possible to attack FedAvg by simulating FedAvg:
θ̃ = Sim(β, ϵ, η, θt, X̃, Ỹ) = FedAvg(n, ϵ, η, θt, X̃, Ỹ). Sim-
ulating FedAvg to attack FedAvg is what [3] proposed in a
slightly different context.

Then [1] attacked FedAvg by introducing a new Sim in
accordance with a new reg. The new Sim, which we call
FedAvg-Epoch, introduces new dummy sets (X̃e, Ỹe)e∈J1,ϵK

for each simulated epochs. Each dummy sets are fed into the
simulation FedAvg sequentially. To be specific, ∀e ∈ J1, ϵ−1K{

θ̃e+1 = FedAvg(n, 1, η, θ̃e, X̃e, Ỹe)

θ̃1 = θt

This simulation returns θ̃ϵ, such that we introduce the notation:

θ̃ϵ =̇ FedAvg-Epoch(n, ϵ, η, θt, (X̃e, Ỹe)e∈J1,ϵK)

And the gradient descent of the GRAs is done on all of the
dummy sets (X̃e, Ỹe)e∈J1,ϵK. This dummy sets are introduced
to add more flexibility in the attack.

In addition, each dummy set should represent the same data,
because the attacked client uses the same dataset between
each epoch. Thus [1], introduce a regularization term to use
this information. This regularization enforces the different
dummy sets to share a common summary statistic S(X̃e, X̃e)
(for instance the mean image of X̃e). Their regularization
is simply the pair-wise distance of this common summary
statistic:

Linv =
1

ϵ2

ϵ∑
i=1

ϵ∑
j=1

dist(S(X̃i, X̃i), S(X̃j , X̃j))

At the end of their attack, [1] propose the following recon-
structed data points:

X̃, Ỹ = Aggregate((X̃e, Ỹe)e∈J1,ϵK)

Where Aggregate combines the images that are similar be-
tween the different dummy sets. In the end, [1]’s attack is:

— Sim: the Fedavg-Epoch simulation
— dist: the cossim (cosine similarity, as in [3])
— reg: the combination of the TV and their Linv

Later, [8] improved the aggregation step by removing out-
liers in the sets (X̃e)e∈[1,..,ϵ].

3 Methods
In this paper, we introduce a novel regularization term de-

signed to enhance any GRA that mimics a FedAvg-like simu-
lating scheme. Our key insight is that the intermediate client
parameters at the end of each epoch (θUe)e∈J1,ϵK, should lie
close to a straight line. This is based on the assumption that
the loss curvature should not vary significantly between two
nearby points, ensuring that the gradient directions align to-
wards the same descent path. Consequently, the parameters
should descend along the gradient descent direction, which
ideally forms a straight line.

To illustrate this concept, consider Fig.1, where the inter-
mediate step θ31 of the client (in black) is relatively close to
the line passing through θ11 and θ32 . Since these last two points
are known to the attacker, the straight black dashed line is also
known. Therefore, we propose the following regularization
term:

Line = λ

ϵ−1∑
i=1

cossim((θ̃Ui+1 − θ̃Ui), θ
U
ϵ − θt) (2)

Here, λ is a scaling parameter to weight the impact of this
regularization term. In this context, the vectors are (θ̃Ui+1 −
θ̃Ui), corresponding to the vectors passing by the first and last
points of each epoch in the parameter space. Minimizing

2

Figure 1 – Overview of the client’s FedAvg optimization with (ϵ = 2, n = |(x1, x2)| = 2, β = 1, U = n
β = 2) and the attacks

simulating FedAvg and FedAvg-Epoch. The model’s parameters at epoch e ∈ [1, · · · , ϵ] and step u ∈ [1, · · · , U] is denoted θue . θ11
is the received model parameters from the server. θUϵ = θ23 are the parameters send back to the server by the client. The dataset is
shuffled between each epoch, represented by the permutation π.

this regularization term helps ensure that the intermediate
steps θ̃Ui+1 remain close to the straight line passing through
θt and θUϵ . In Fig.1, this is depicted by the blue and yellow
dashed lines (for the FedAvg-Epoch and FedAvg simulations,
respectively), which should be parallel to the black dashed
line.

4 Experiments and Results
Table 1 – Effectiveness of the attacks, with the PSNR metric,
for different values of regularization scale λ (from 10−3 to 10).
The model is CNN2 and the dataset is CIFAR100. The client’s
FedAvg HPs are a dataset size of 32, a minibatch size of 4, 5
epochs and a learning rate of 4 · 10−3.

λ 0.001 0.01 0.1 1. 10
FedAvg 24.18 24.22 24.32 25.01 24.72

FedAvg-Epoch 21.82 21.78 21.86 22.93 23.51

Considered attacks We wanted to have a fair comparison
with state-of-the-art method (i.e. [1]), so that we used their
attack. We also used a FedAvg simulation and the same loss
as [1]. Our attacks simply add our Line regularization, to both
previous attacks, in the Loss term with the scaling parameter
λ. This is what we call our attack. Notice that in Tab.1, there
is no Linv regularization compared to attacks in Tab.2.
Reproducibility In order to have robust results, all the met-
rics reported are the average of at least 25 independent and
identical distributed experiments.
Datasets We use CIFAR100 [6], MNIST [7] to have different
levels of complexity in the images we attack.
Models The models are a Simple CNN (as in [9]) which we
call CNN1, a Deeper CNN (as in [1]) which we call CNN2,
and a simple MLP called Linear.
On the Hyperparameter (HP) λ On Tab.1, the Peak-Signal-
Noise-Ratio (PSNR) values of the images reconstructed with
FedAvg and FedAvg-Epoch simulations are shown. We can
see that from 10−3 to 10−1 the regularization has little to no
impact on the performances of the attacks. Which is expected

because the distance term in eq.1 and our regularization Line
both compute the cossim, thus have the same order of mag-
nitude. In addition, we can see an improvement of 0.69 to
1.07 dB on the PSNR comparing λ = 0.1 and λ = 1.0, which
proves the effectiveness of our regularization term. PSNR scale
is logarithmic, so gaining 1. dB is a notable improvement. For
λ = 10, the enhancement is not unanimous, thus we consider
λ = 1. for the next of the experiments. It is interesting to
note that it helps even more the FedAvg-Epoch simulation,
which has indeed more variables (the sets (Xe, Ye)e∈J1,ϵK) to
optimize, thus the regularization term Line is lowering the
freedom of these variables and helping the outcome of the
attack.

Table 2 – PSNR of the reconstructed images comparing [1]’s
attack (FedAvg-Epoch + Linv) versus ours (FedAvg-Epoch
+ Linv + Line) for different number of local epoch (ϵ), mini
batch size (β), and total number of local updates U · ϵ. The
dataset size is fixed to 32. The model is CNN2 and the dataset
is CIFAR100. The GAP column is the difference between our
attack and [1]’s attack.

U · ϵ β ϵ Attack PSNR GAP
20 8 5 [1] 21.85 1.32

Us 23.17
40 4 5 [1] 22.37 0.63

Us 23.00
80 2 5 [1] 20.97 0.85

Us 21.82
4 10 [1] 20.17 1.39

Us 21.56

On the Dataset Size (DS), Datasets and Models On Fig.2,
the PSNR of the different attacks are shown under an increas-
ing DS for a variety of models and datasets. As expected, the
PSNR is decreasing (for any attack) while the DS is increasing,
because the quantity of information to reconstruct (the images)
is increasing while the quantity of information available (the
gradients) stay the same. Our attack (shown with solid lines)

3

is almost always better compared to its counterpart (dashed
lines), up to a big margin (3dB). Our regularization fails only
for the FedAvg attack carried out on the CNN1 with MNIST.
We have no explanation for this phenomena. In addition, the
regularization is less effective when the DS is higher. This is
due to the fact that our assumption ("the gradient path is close
to a straight line") is more realistic when the number of data
points is low. Because it increases the number of optimization
steps, leading to less straight gradient paths.

Figure 2 – PSNR of the reconstructed images coming from
the attacks in function of the client’s DS for different models
and datasets. The blue, orange lines are FedAvg, FedAvg-
Epoch simulation respectively. The solid, dashed lines are
with or without our regularization respectively. Thus the or-
ange dashed line is [1]’s attack. The client’s FedAvg HP are a
mini-batch size of 4, 5 epochs and a learning rate of 4 · 10−3.

On the number of local epochs (ϵ) and the mini batch size
(β) On Tab.2, the comparison between [1]’s attack and ours
(i.e. the same with the regularization Line) for different ϵ
and β is provided. Our attack is always better than [1] which
proves the effectiveness of our regularization. In addition, at a
fixed number of epochs (and dataset size), our regularization is
more effective when the batch size is higher (1.32dB). Looking
at the four last rows of the Tab.2, it seems that our attack is
more effective when the number of local epoch is higher (im-
provement of 1.39dB vs. 0.85dB). Indeed, our regularization
might restrict the optimization’s freedom of the dummy sets
(Xe, Ye)e∈J1,ϵK such that the intermediate parameters θ̃Ue are
close to the line θUϵ − θ11

5 Conclusion
FedAvg is harder to attack than FedSGD but is a more

realistic scenario. The work of [1] proposes an effective attack
against FedAvg. In this paper, we add a regularization to their

attack that helps the convergence of the attack. The idea of the
regularization is to help the simulation of FedAvg by enforcing
the intermediate steps to stay close to a line. This line is
given by the direction of the client’s gradients. Throughout
a variety of experiments, we prove the effectiveness of our
regularization for different scenarios. Our regularization is
applicable to any attack that is designed for FedAvg.

Acknowledgement
This work has benefited from French State aid managed by

the Agence Nationale de la Recherche (ANR) under France
2030 program with the reference ANR-23-PEIA-005 (RE-
DEEM project).

References
[1] Dimitar Iliev Dimitrov, Mislav Balunovic, Nikola Kon-

stantinov, and Martin Vechev. Data leakage in federated
averaging. Transactions on Machine Learning Research,
2022.

[2] Peter Kairouz et al. Advances and Open Problems in
Federated Learning, March 2021. arXiv:1912.04977 [cs,
stat].

[3] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge,
and Michael Moeller. Inverting Gradients – How easy
is it to break privacy in federated learning?, September
2020. arXiv:2003.14053 [cs].

[4] Jiahui Geng, Yongli Mou, Feifei Li, Qing Li, Oya Beyan,
Stefan Decker, and Chunming Rong. Towards Gen-
eral Deep Leakage in Federated Learning, January 2022.
arXiv:2110.09074 [cs].

[5] Pierre Jobic, Aurélien Mayoue, Sara Tucci-Piergiovanni,
and François Terrier. Extending the scope of gradient
reconstruction attacks in federated averaging. In Proceed-
ings of the 2024 ACM Workshop on Information Hiding
and Multimedia Security, IHMMSec ’24, page 235–246,
New York, NY, USA, 2024. Association for Computing
Machinery.

[6] Alex Krizhevsky. Learning multiple layers of features
from tiny images. pages 32–33, 2009.

[7] Yann LeCun and Corinna Cortes. MNIST handwritten
digit database. 2010.

[8] Bowen Li, Hanlin Gu, Ruoxin Chen, Jie Li, Chentao
Wu, Na Ruan, Xueming Si, and Lixin Fan. Temporal
Gradient Inversion Attacks with Robust Optimization,
June 2023. arXiv:2306.07883 [cs].

[9] H. Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agüera y Arcas.
Communication-Efficient Learning of Deep Networks
from Decentralized Data, February 2017.

[10] Jin Xu, Chi Hong, Jiyue Huang, Lydia Y. Chen, and
Jérémie Decouchant. Agic: Approximate gradient inver-
sion attack on federated learning, 2022.

[11] Hongxu Yin Hongxu, Arun Mallya, Arash Vahdat,
Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. See
through Gradients: Image Batch Recovery via GradIn-
version, April 2021. arXiv:2104.07586 [cs].

[12] Ligeng Zhu, Zhijian Liu, and Song Han. Deep Leakage
from Gradients, December 2019. arXiv:1906.08935 [cs,
stat].

4

	Introduction
	Background and Related Work
	Methods
	Experiments and Results
	Conclusion

