
On the Impact of Data Collection Strategies in Streaming Federated
Learning with Markovian Data

Tan-Khiem HUYNH1 Malcolm EGAN1 Giovanni NEGLIA2 Jean-Marie GORCE1

1INRIA, Université de Lyon, CITI, INSA Lyon, 69100 Villeurbanne, France
2INRIA, Université Côte d’Azur, 06560 Valbonne, France

Résumé – L’apprentissage fédéré (FL) est un cadre essentiel pour l’apprentissage collaboratif entre dispositifs périphériques, où les
données sont souvent collectées de manière continue et présentent une dépendance statistique. Dans ce travail, nous comparons les
performances des algorithmes FL dans deux configurations : l’une où les données des clients sont échantillonnées consécutivement
à partir d’une chaîne de Markov, et l’autre où les échantillons entre les rounds de communication sont indépendants, bien que les
échantillons au sein du même round restent dépendants. Ce dernier scénario est particulièrement pertinent dans les systèmes de FL
où les contraintes de collection de données empêchent les clients de mettre continuellement à jour leurs mémoires. Nos expériences
montrent que garantir l’indépendance entre les tours de communication améliore significativement la convergence, en particulier
pour les processus de Markov à mélange lent.

Abstract – Federated Learning (FL) is a key framework for collaborative learning across edge devices, where data is often
collected in a streaming manner and exhibits statistical dependence. In this work, we study the impact of such dependence by
comparing the performance of FL algorithms under two settings: one where client data is sampled consecutively from a Markov
chain and another where samples across communication rounds are independent, while remaining dependent within the same round.
The latter setting is particularly relevant in FL systems where data collection constraints prevent clients from continuously updating
their memory caches. Our experiments show that ensuring independence between rounds significantly improves convergence,
particularly for slow-mixing Markov processes.

1 Introduction
Clients in edge networks are increasingly diverse, with a

wide range of data collection and learning capabilities. In
particular, many clients have access to streaming data rather
than fixed historical data sets. This is often the case in health
monitoring, robotics, and environmental tracking, where new
data is collected over time.

At the same time, data from a single client is often not
sufficient for learning in applications such as public health
and resource management, which require aggregation of data
across multiple individuals. Since transmitting sensitive or
large datasets is costly, centralized training is impractical. An
alternative approach, known as Federated Learning (FL), en-
ables communication-efficient, collaborative learning by train-
ing models locally and aggregating them centrally [5].

Motivated by these factors, FL with streaming data has re-
cently been investigated in the case of independently drawn
samples [8]. However, data in health and environmental moni-
toring applications is often generated by non-linear physical
and biological systems and modeled as non-stationary Marko-
vian data streams [1]. Moreover, memory constraints mean
that clients can only store a small number of samples. As a
consequence, there is a need for FL algorithms which perform
well with Markovian data, where samples are not drawn inde-
pendently and access to data is limited by memory constraints.

While first-order optimization methods with Markovian
sampling have been extensively studied in the centralized set-
ting [2], recent work on Markovian data in FL has primarily
focused on Federated Reinforcement Learning (FRL) with lin-
ear function approximation. A key challenge is demonstrating

that collaboration is beneficial in this setting; namely, that the
per-client sample complexity of FRL algorithms decreases in-
versely with the number of clients. While this linear speed-up
is well-understood for i.i.d. data, the impact of collabora-
tion remains an open question in the presence of statistical
dependence, as is the case with Markovian data streams. The
work in [6] demonstrated the benefits of cooperation under
a strong homogeneity assumption on the client environment.
Heterogeneous settings have been considered in [3] with a
linear speed-up established in [10] subject to heterogeneity
assumptions, which were then relaxed in [7] by incorporating
control variates.

In [4], we investigated the performance of FL algorithms
with Markovian data streams in a broader learning context
involving non-convex objectives, which commonly arise in
classification and regression tasks in systems with non-linear
dynamics [12]. Our results showed that collaboration in FL
remains beneficial in this setting. However, the analysis in
[4] does not explicitly account for the difference between two
cases: one where client data is drawn sequentially from a
Markov process, and one where samples in different commu-
nication rounds are independent. We highlight that in the latter
case, samples within the same communication rounds are still
drawn consecutively from a Markov chain. This setting is par-
ticularly relevant in scenarios where clients are subject to data
collection constraints; e.g., when clients can only participate
in training intermittently, resulting in independent samples be-
tween consecutive participation rounds. In this paper, through
a simple experiment, we demonstrate that such independence
can improve convergence, especially for slow-mixing Markov
processes.

1

mailto:tan-khiem.huynh@inria.fr
mailto:malcom.egan@inria.fr
mailto:giovanni.neglia@inria.fr
mailto:jean-marie.gorce@inria.fr


2 Problem setup

2.1 Streaming Federated Learning
Consider M clients, each with an objective given by

Fm(w) := Ex∼πm [fm(w;x)], (1)

where fm : Rd × Ωm → R is a smooth function on Rd and
πm is the data distribution of client m.

In FL, the M clients collaborate to solve

min
w∈Rd

1

M

M∑
m=1

Fm(w) (2)

Two popular examples of this procedure are Minibatch SGD
and Local SGD [11]. In Minibatch SGD, T steps of SGD
are performed, each based on a gradient computed from a
minibatch of KM samples. To summarize, initializing at
some w0, Minibatch SGD operates as follows,

g
(m,k)
t = ∇fm

(
wt;x

(m,k)
t

)
,m ∈ [1,M ], k ∈ [0,K − 1],

wt+1 = wt − γgt, where gt =
1

MK

M∑
m=1

K−1∑
k=0

g
(m,k)
t

Unlike Minibatch SGD, Local SGD allows the clients to update
their local iterates throughout the local training phase based on
their gradient estimates. Denote w

(m,k)
t the local iterate after

t rounds and k local steps on client m, Local SGD operates as
follows,

w
(m,k+1)
t = w

(m,k)
t − η∇fm

(
w

(m,k)
t ;x

(m,k)
t

)
,

w
(m,0)
t+1 = wt+1 =

1

M

M∑
m=1

w
(m,K)
t

In standard FL, the samples (x(m,k)
t )k∈[K] available at client

m in any communication round t are fixed, corresponding to
pre-collected data, while in streaming FL, the data available
to client m can change in every communication round. This
limits client control over sampling, where i.i.d. samples from
the target distribution πm are not available.

2.2 Markovian Data Streams
Let xm

t = (x
(m,k)
t )k∈[K] be the data samples available to

client m in communication round t. Health and environmental
monitoring data often follow non-stationary Markov processes,
as seen in biological, chemical, and physical systems. As such,
we model the data stream Xm = (xm

t , t ∈ N) of client m by
a time-homogeneous Markov chain evolving on the state space
Ωm ⊆ Rd with the corresponding Borel σ-field Bm. The
evolution of the time-homogeneous Markov chain for client
m is characterized by the initial distribution xm

0 ∼ Qm and
by the transition kernel Pm(x

(m,k)
t ,dx

(m,k+1)
t ). The proba-

bility of transitioning from the state x
(m,k)
t ∈ Ωm to a state

x
(m,k+1)
t ∈ Xm ∈ Bm is given by

∫
x∈Xm

Pm(x
(m,k)
t ,dx).

The t-step transition kernel for client m from an initial state
xm
0 is denoted by P t

m(xm
0 ,dx). We focus on the case of inde-

pendent clients, where Xm is independent of Xm′ for m ̸= m′.

This scenario occurs when client data streams are generated
by non-interacting processes.

The Markov chain Xm admits a stationary distribution πm

on Ωm if∫
x∈Ωm

πm(dx)Pm(x, dx
(m,k)
t ) = πm(dx

(m,k)
t ). (3)

We say that Xm is stationary if xm
0 ∼ πm; otherwise, Xm is

non-stationary. In this paper, we focus on the stationary case
(analysis in the non-stationary setting is given in [4]). The
stationary distributions πm, m ∈ [M ] correspond to the target
distributions in (2), which capture the long-term statistics of
the data samples.

As each client data stream evolves independently, the
system-level data stream X = ((xm

t )m∈[M ], t ∈ N) will
eventually draw samples from the stationary distribution π

defined on (Ω :=×M

m=1
Ωm,B :=

⊗M
m=1 Bm). Let Q :=⊗M

m=1 Qm, P (x0,dx) :=
∏M

m=1 Pm(xm
0 ,dxm), and denote

the t-step transition kernel for the system-level Markov chain
initially in state x0 by P t(x0,dx).

The distance of the distribution of (xm
t )m∈[M ] and π can

be quantified in terms of the total variation norm. The mix-
ing time τ of the system-level data stream X is then defined
as the required number of transitions so that this distance is
sufficiently small (see [4] for further details). Following prior
work on stochastic optimization with Markovian data [2], we
assume that the system-level Markov chain admits exponential
mixing, i.e., regardless of the initial distribution, it converges
exponentially fast to the stationary distribution π.

In this paper, we consider the following scenarios:
(i) Dependent Batches: All TK samples observed by client

m are drawn sequentially from the Markov chain Xm

with transition kernel Pm and stationary initial distribu-
tion Q = π.

(ii) Independent Batches: At the beginning of each com-
munication round, the samples xm

t are drawn from the
Markov chain Xm with transition kernel Pm, and ini-
tial state xm,1

t ∼ πm drawn independently of xm
t−1. As

such, xm
t is independent of xm

t−1, while the samples
(xm,k

t )k∈[K] remain statistically dependent.
In [4], we focus on the first setting, although the theoretical

analysis can also be applied to the second one. In the following
section, we compare the performance of Minibatch SGD and
Local SGD under these two settings through a simple toy
experiment.

3 Results
In this section, we experimentally evaluate the performance

of Minibatch SGD and Local SGD on a non-convex linear
regression problem with Markovian data. In the following
experiments, we study the average performance over 5 random
seeds.

Let U (a, b) denote the uniform probability distribution over
[a, b]. The data stream for each client m is generated by a
two-state Markov chain (i

(m,k)
t , k ∈ [K], t ∈ N), where the

probability of jumping from one state to another is p ∈ (0, 1),
with mixing time Θ(1/p). 1 Associated with each state i ∈

1. Here we use the standard Big-Θ notation.

2



Local SGD Independent Batch Local SGD Dependent Batch Minibatch SGD Independent Batch Minibatch SGD Dependent Batch

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(a) K = 10

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(b) K = 10

0 100 200 300 400 500
Communication rounds

10 5

10 3

10 1

(c) K = 1000

0 100 200 300 400 500
Communication rounds

10 5

10 3

10 1

(d) K = 1000

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(e) K = 10

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(f) K = 10

0 100 200 300 400 500
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(g) K = 1000

0 100 200 300 400 500
Communication rounds

10 5

10 3

10 1

(h) K = 1000

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(i) K = 10

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(j) K = 10

0 100 200 300 400 500
Communication rounds

10 4

10 3

10 2

10 1

100

(k) K = 1000

0 100 200 300 400 500
Communication rounds

10 5

10 3

10 1

(l) K = 1000

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(m) K = 10

0 10000 20000 30000 40000 50000
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(n) K = 10

0 100 200 300 400 500
Communication rounds

10 4

10 3

10 2

10 1

100

(o) K = 1000

0 100 200 300 400 500
Communication rounds

10 5

10 4

10 3

10 2

10 1

100

(p) K = 1000

Figure 1 – Gradient norm as a function of the number of communication rounds for Local SGD and Minibatch SGD with 100
clients, with mixing time τm = 10 (first row), τm = 100 (second row), τm = 1000 (third row) and τm = 10000 (last row) for all
m ∈ [M ] and number of local steps K ∈ [10, 1000].

{0, 1} are the vectors Vm,i ∈ R10 which are drawn randomly
for each seed according to U (0, 1). For each seed and i ∈
{0, 1}, half of the optimal parameters wm,i ∈ R10 take the
value w1

i ∼ U(0, 1), while the other half take the value w2
i ∼

U(1, 2).
The samples associated with client m correspond to the

observations

x
(m,k)
t = wT

m,i
(m,k)
t

V
m,i

(m,k)
t

+ ϵ
(m,k)
t , (4)

where ϵ
(m,k)
t ∼ U(0, 0.01), t ∈ N,m ∈ [M ], k ∈ [K].

Since the Markov chain (i
(m,k)
t , k ∈ [K], t ∈ N) is sym-

metric, the stationary distribution for every client m is uniform;

i.e., πm(0) = πm(1) = 1/2. The local objective function for
each client m is then given by

Fm(w) =
1

2

[
(w − wm,1)

T
Vm,1

]2
(5)

+
1

2

[
(w − wm,2)

T
Vm,2

]2
+ λr(w),

where r(w) = 1
2

∑10
d=1

w2
[d]

1+w2
[d]

is a non-convex regularizer

often used in robust non-convex and smooth stochastic opti-
mization.

In Figure 1, we plot the gradient norm trajectory
∥∇F (wt)∥2 of Minibatch SGD and Local SGD, with algo-

3



rithm parameters γ = 0.01, η = 0.001, β = 0.1, 100 clients,
the number of local steps K ∈ {10, 1000}, and the mixing
time for every client τm ∈ [10, 100, 1000, 10000], under two
scenarios described in Section 2.2. The curves indicate that
when the mixing time and the number of local steps are of
the same order of magnitude, both algorithms perform sim-
ilarly in both scenarios. However, when the mixing time of
the underlying Markov processes is significantly larger than
the number of local steps, ensuring independence between
samples across different communication rounds can improve
convergence. This suggests that the delays in updating clients’
memory caches due to communication overheads can actually
be beneficial in FL systems with slow-mixing Markovian data
streams. Therefore, designing suitable memory management
techniques on the client side that account for these data col-
lection constraints to maintain independence between samples
across rounds could be an interesting direction to explore.

3.1 Theoretical Explanation
We provide a brief theoretical explanation of the above

phenomena for Minibatch SGD. Detailed analysis can be found
in our previous work [4].

The difference in performance between the two settings
arises due to errors in stochastic gradient estimates. In the
Dependent Batches case, we have that:

E
[
∥gt −∇f(wt)∥2

]
= O

(
C∞σ2

νpsMK

)
, (6)

C∞ = sup
x=(xm)Mm=1

∥∥∥∥dP (x, .)

dπ(.)

∥∥∥∥
π,∞

(7)

and νps is the pseudo spectral gap of P [9]. On the other hand,
in the case of Independent Batches, we have:

E
[
∥gt −∇f(wt)∥2

]
= O

(
σ2

νpsMK

)
. (8)

For product Markov chains that are uniformly ergodic (i.e.,
exponential convergence to the stationary distribution),

C∞ = O
(
ρ⌊1/τ⌋

)
, ρ < 1. (9)

As such, C∞ increases with the mixing time τ of the product
Markov chain.

4 Conclusion
Statistical dependence in data streams is often unavoidable,

making it crucial to study its impact on FL, especially as it
emerges as a standard framework for collaborative learning be-
tween edge devices. This work compares the performance of
FL algorithms under two relevant settings, both incorporating
such dependence: one where client data is sampled consecu-
tively from a Markov chain; and another where samples across
communication rounds are independent while remaining de-
pendent within the same round. Our experiments show that
ensuring independence across rounds significantly improves
convergence, particularly with slow-mixing Markov processes.

5 Acknowledgement
This research was supported in part by Groupe La Poste,

sponsor of the Inria Foundation, in the framework of the Fed-
Malin Inria Challenge, the LearnNet Inria Challenge, and
the ANR JCJC TCDTP. Experiments were carried out using
the Grid’5000 testbed supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several
Universities as well as other organizations.

References
[1] D. Anderson and T. Kurtz. Stochastic Analysis of Bio-

chemical Systems. Springer, Berlin, 2015.

[2] Aleksandr Beznosikov et al. First order methods with
markovian noise: from acceleration to variational in-
equalities. In Advances in Neural Information Processing
Systems, 2023.

[3] Thinh Doan et al. Finite-time analysis of distributed
TD(0) with linear function approximation on multi-agent
reinforcement learning. In International Conference on
Machine Learning, 2019.

[4] Tan-Khiem Huynh, Malcolm Egan, Giovanni Neglia, and
Jean-Marie Gorce. Streaming federated learning with
markovian data. arXiv preprint, arXiv:2503.18807, 2025.

[5] Peter Kairouz et al. Advances and open problems in
federated learning. CoRR, abs/1912.04977, 2019.

[6] Sajad Khodadadian et al. Federated reinforcement learn-
ing: Linear speedup under Markovian sampling. In In-
ternational Conference on Machine Learning, 2022.

[7] Paul Mangold et al. SCAFFLSA: Taming heterogene-
ity in federated linear stochastic approximation and TD
learning. In Annual Conference on Neural Information
Processing Systems, 2024.

[8] O. Marfoq, G. Neglia, L. Kameni, and R. Vidal. Feder-
ated learning for data streams. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
2023.

[9] Daniel Paulin. Concentration inequalities for Markov
chains by Marton couplings and spectral methods. Elec-
tronic Journal of Probability, 20(none):1 – 32, 2015.

[10] Han Wang, Aritra Mitra, Hamed Hassani, George J. Pap-
pas, and James Anderson. Federated TD learning with
linear function approximation under environmental het-
erogeneity. Transactions on Machine Learning Research,
2024.

[11] Blake E Woodworth, Kumar Kshitij Patel, and Nati Sre-
bro. Minibatch vs local sgd for heterogeneous distributed
learning. In Advances in Neural Information Processing
Systems, volume 33, pages 6281–6292, 2020.

[12] Q. Yuan, H. Shen, T. Li, Z. Li, S. Li, Y. Jiang, H. Xu,
W. Tan, Q. Yang, J. gg, and J. Gao. Deep learning in envi-
ronmental remote sensing: Achievements and challenges.
Remote sensing of Environment, 241, 2020.

4


