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Résumé – Étant donné un graphe avec un signal sur les nœuds, nous nous intéressons à la prédiction des valeurs de signal
manquantes à l’aide de la topologie du graphe et du signal disponible aux nœuds. Dans un travail précédent, nous avons montré
qu’en modélisant le graphe selon un modèle de positions latentes, sous certaines hypothèses, l’estimation de la position latente
associée à l’estimateur de Nadaraya-Watson permet d’atteindre des taux de convergence minimax lorsque la régularité du signal
sous-jacent est faible. Dans ce travail, nous étudions une méthode basée sur la régularisation de la matrice d’adjacence, étroitement
liée à la régression Kernel Ridge à partir d’une estimation non paramétrique, que nous appelons « Régression Graphique Kernel
Ridge » (GKRR). Pour l’estimateur GKRR, nous démontrons des taux de convergence inférieurs aux taux KRR classiques. Nous
soutenons qu’il s’agit d’un phénomène plus général : les algorithmes spectraux sur les LPM ont une variance strictement plus
grande que les algorithmes spectraux classiques sur les matrices à noyau.

Abstract – Given a graph with signal on the nodes, we are interested in prediction of missing signal values using the graph
topology and the available node signal. In a previous work we have shown that modeling the graph as Latent Position Model, under
certain assumptions, latent position estimation along with the Nadaraya-Watson estimator can achieve minimax rates of convergence
when the regularity of the underlying signal is low. In this work we consider a method based on regularizing the adjacency matrix,
closely related with the Kernel Ridge Regression from nonparametric estimation, which we title Graphical Kernel Ridge Regression
(GKRR). For the GKRR estimator we prove convergence rates that are slower than classical KRR rates. We argue that this is a
more general phenomenon - spectral algorithms on LPMs have strictly larger variance than classical spectral algorithms on kernel
matrices.

1 Introduction
We study the problem of node regression — given a graph

G with vertex set [n + 1] = {1, 2, . . . , n, n + 1}, and signal
yi ∈ R on nodes 1 ≤ i ≤ n, we want to infer a missing
value yn+1 ∈ R using the observed signal y and the graph
topology of G. There are many approaches to this problem [2,
13, 20]. In recent years there has been a rapid development of
Graph Machine Learning methods, including deep learning
and representation learning [15, 17]. Nevertheless, there are
relatively few works on theoretical comparison of algorithms
and architectures, especially in the context of random graphs.
In particular, traditional notions of statistical machine learning
are underdeveloped in the context of random graphs. In this
work we aim to expand upon this relatively understudied topic.

A statistical machine learning analysis in the context of
graphs is problematic due to absence of classical notions of
empirical and true risk. The Latent Position Model (LPM) [16]
is a popular method to circumvent this issue. In this model it
is assumed that the observed graph arises from an unobserved
point cloud — each node i is represented by an unobserved,
hidden vector x i ∈ Rd.

In the LPM framework, both the graph G and the signal y
can be assumed to depend on the latent positions Xn+1 =
[x 1, . . . ,xn,xn+1] ∈ Rd×(n+1), allowing for a comparison
between problems in the graph learning and classical statistical
learning setting. In a previous work [13] we have adopted
this approach to the Nadaraya-Watson estimator, where we
have shown that under certain conditions, position estimation

algorithms in conjunction with the Nadaraya-Watson estimator
can yield optimal minimax rates of convergence over the class
of Hölder functions with exponent 1

2 < a ≤ 1.
Another well known and well studied approach for classical

regression is the Kernel Ridge Regression (KRR), and it
is natural to investigate the advantages and limitations of its
LPM variant, which we title the Graphical Kernel Ridge
Regression (GKRR). The adjacency matrix An+1 is given by

An+1 =

[
An an+1

a t
n+1 1

]
∈ {0, 1}(n+1)×(n+1) (1)

where the n×n submatrix An contains the adjacency informa-
tion about the labeled nodes i ∈ [n], with ones on the diagonal
and an+1 ∈ {0, 1}n contains adjacency information for node
n+ 1.

In this paper we will assume a special case of the LPM —
that the adjacency matrix (1) is a kernel matrix in expectation:

E [An+1] = Kn+1 (2)

where [Kn+1]i,j = k(x i,x j) for i, j ∈ [n+ 1], where x i is
the latent position of node i and k is a Positive Semi Definite
(PSD) kernel with k(x ,x ) = 1. We will consider our node
regression problem as a study of kernel methods with (entry-
wise) noisy kernel matrices, where the noise has a particular
structure. Indeed,

An+1 = Kn+1 +En+1 (3)

where En+1 is centered matrix with independent 1, albeit not

1. conditionally on the latent positions Xn+1
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identically distributed entries. Our aim is to explore the statisti-
cal consequences of using a noisy kernel matrix of the form (3)
instead of classical kernel matrices Kn+1. In this paper we
limit ourselves to the most well known classical kernel method
for regression, Kernel Ridge Regression (KRR). In parallel
with the adjacency matrix An+1 1, we can write

Kn+1 =

[
Kn kn+1

k t
n+1 1

]
∈ [0, 1]

(n+1)×(n+1) (4)

The KRR estimator is constructed from (4) via

f̂λ(xn+1) =
1

n
k t
n+1(K̄n + λI)−1y (5)

where K̄n = 1
nKn and kn+1 are as in 4.

We study a node regression estimator which plugs in the
entries of the matrix An+1 (1) into the formula for KRR (5),

ĝλ(xn+1) =
1

n
a t
n+1

(
Ān + λIn

)−1
y (6)

where Ān = 1
nAn and an+1 are as in (1). Inspired from

Kernel Ridge Regression (KRR) estimator (5), we title the
node regression estimator (6) the Graphical Kernel Ridge
(GKRR). In addition, we will consider the oracle estimator

ĥλ(x ) =
1

n
a t
n+1(K̄n + λI)−1y (7)

This estimator has partial access to the kernel matrix Kn+1 (4),
namely to the principal n×n submatrix Kn, but uses the adja-
cency vector an+1 from An+1 (1) for prediction of the miss-
ing value yn+1 of node (n+ 1). Hence it may be considered a
less stochastic version of GKRR (6).

Our contribution can be summarized as follows:

1. We show that the GKRR (6) converges, in a sense that
takes into account the edge randomness in the graph.
The convergence rate of GKRR is of order n− r

r+4 where
1 ≤ r ≤ 2 is a parameter related to the regularity of the
signal.

2. We show that an oracle estimator ĥλ (7) has larger vari-
ance than f̂λ. This oracle achieves a rate of n− r

r+2 , for
1 ≤ r ≤ 2 which is still considered slow relative to
KRR rates. Since GKRR ĝλ (6) is a more stochastic
version of ĥλ, this suggests that the rates of GKRR are
also slower than those of KRR, i.e. the presence of
noise (3) is detrimental to the statistical performance of
KRR. Such negative results in this context are novel, to
the best of our knowledge.

2 Background on LPMs
The Latent Position Model is a random graph model where

each node i is represented by a vector x i ∈ Rd, also known as
a latent position. The vectors x i can be treated either as ran-
dom variables or as fixed, but unknown parameters, depending
on the context. In both cases, they are assumed to be unob-
served. A major interest in modeling network data as LPMs
stems from the social science literature. The applications of
LPMs are numerous — musical contests [8], legal [26] and
illegal [3] trade, neuroscience [28], education research [24] ,
epidemiology [5], among others. See [18] for a review.

The LPM has also garnered attention in the theoretical statis-
tics and machine learning literature. Most of the interest has
been focused on latent position estimation [1, 12]. Conver-
gence results for wide variety of Graph Neural Networks in
this context were established by [6, 19].

In this paper, we will adopt the assumption of
Bernoulli edges [19, 13]. Given the positions Xn+1 =
[x 1, . . . ,xn,xn+1], a graph with vertex set [n+1] is sampled
at random such that the entries ai,j of the adjacency matrix
An+1 (1) are given by

ai,j = I(ui,j ≤ k(x i,x j)) (8)

where ui,j = uj,i are uniform on [0, 1] and are jointly inde-
pendent for i < j, i, j ∈ [n + 1]. Equation (8) allows us to
define the edge-randomness in the graph, as contained entirely
in the variables Un+1.

3 Nonparametric regression
Suppose that (Xn,y) = {(x i, yi) : i ∈ [n]} are i.i.d. sam-

ples from Q × Y , where Q ⊆ Rd is a compact domain and
Y ⊆ R. The relationship between yi and x i ∼ ρ is modeled
by

yi = f(x i) + ϵi (9)

where ϵi are independent (among themselves and with Xn),
E [ϵi] = 0, E

[
ϵ2i
]

= σ2 < ∞ and f is a regression
function, such that

∫
f2(x )dρ(x ) < ∞. The classical re-

gression problem is formulated as constructing an estimate
f̂ = f̂ (Xn,y) ∈ L2(Q, ρ) based on the observed data
(Xn,y) such that a specified performance metric is optimized.
For regression, a classical choice is the risk Rf

(
f̂
)

, given by

Rf

(
f̂
)
= Eϵ

[∫ [
f̂(x )− f(x )

]2
dρ(x )

]
To get rates of convergence, we need to consider a restricted

class F ⊆ L2(Q, ρ) as a hypothesis space for the regression
function f . A class F may be considered as a prior on the
signal y (9) — it incorporates some (desired od expected)
smoothness property of the regression function f in (9). For a
given F ⊆ L2(Q, ρ) we consider the risk over F

R
(
f̂ ,F

)
:= supf∈F Rf

(
f̂
)

(10)

Classical nonparametric regression literature typically as-
sumes that F is a Hölder or Sobolev space [14, 25]. In these
settings, the risk over F (10) is bounded by a deterministic
rate rn in a suitable sense, either with high probability over
Xn [4] or in expectation over Xn [10]. In this paper we will
consider the former case.

3.1 Learning with kernels
One fruitful approach to regression is via kernel meth-

ods [11, 23]. A Positive Semi Definite (PSD) kernel k : Q×
Q → R is a continuous, symmetric function, such that for any
z 1, . . . , zm ∈ Q and s1, . . . , sm ∈ R,

m∑
i,j=1

sisjk(z i, z j) ≥ 0 (11)
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The main theoretical benefit of working with PSD kernels
k (11) is a functional analytic construction titled Reproducing
Kernel Hilbert Space (RKHS) [27]. Mercer’s theorem [27]
yields the spectral decomposition

k(x , z ) =
∞∑
j=1

tjϕj(x )ϕj(z ) (12)

where (tj)
∞
j=1 is decreasing sequence of nonnegative val-

ues converging to 0 and ϕj ∈ L2(Q, ρ) are orthonormal in
L2(Q, ρ). The nonparametric case is the assumption that tj >
0 for all j ∈ N. In this case, for any r ≥ 1 the Hilbert space

Hr =
{∑∞

j=1 θjϕj ∈ L2(Q, ρ) : θj ∈ R,
∑∞

j=1

θ2
j

trj
< ∞

}
with inner product ∞∑

j=1

θjϕj ,

∞∑
j=1

θ̃jϕj


Hr

=

∞∑
j=1

θj θ̃j
trj

is an infinite dimensional space of real-valued functions. In the
special case r = 1, H = H1 is a space of continuous functions
satisfying the reproducing property: for all x ∈ Q, and for all
f ∈ H, f(x ) = (f, kx )Hwith kx =

∑∞
j=1 tjϕj(x )ϕj ∈ H.

The assumption

f ∈ Hr (R) := {f ∈ Hr : ||f ||Hr ≤ R} (13)

is known as source condition, a condition frequently used in
the kernel learning literature [4, 10]. For s ≥ r ≥ 1, we have
Hs (R) ⊆ Hr (R), thus the higher the parameter r, the smaller
the class Hr (R) and the easier the problem of bounding (10).

For technical reasons we will assume that 1 ≤ r ≤ 2.
Namely, KRR can exploit the regularity of the source condi-
tion (13) only for 1 ≤ r ≤ 2, for any r > 2 one gets the same
performance as with r = 2. This is known as the saturation
effect of KRR [22].

3.2 Kernel Ridge Regression
The Kernel Ridge Regression (KRR) estimator (5) can be

stated as optimization problem in H, i.e.

f̂λ = argminh∈H

[
1

n

∑n

i=1
(h(x i)− yi)

2 + λ||h||2H
]

where λ ≥ 0 is a hyperparameter that determines the trade-off
between fitting to the data and penalizing complex functions
— it is a bias-variance tradeoff parameter. Early studies of
KRR [7, 9] characterize this tradeoff via an upper bound on
the risk (10)

R
(
f̂λ,Hr (R)

)
≲ λr +

1

nλ4
(14)

with probability at least 1− n−η (over Xn), where the sign ≲
hides away some constants that depend on various parameters
(k, R, r, η and σ2) and polynomials in log(n). When there are
additional smoothness assumptions on k, so called fast rates
are possible. For instance, [4] shows that when the Mercer
decomposition (12) satisfies tj = Θ

(
j−b

)
for some b > 1,

then we have the improved upper bound

R
(
f̂λ,Hr (R)

)
≲ λr +

1

nλ
1
b

(15)

Since the inequalities (14) and (15) hold for all λ > 0 simul-
taneously, they may be optimized to conclude that the KRR
risk

RKRR (Hr (R)) := infλ>0 R
(
f̂λ,Hr (R)

)
(16)

is of order RKRR (Hr (R)) ≲ n− r
r+4 in the general setting

of (14) — a rate known as a slow rate, and, when the eigen-
values follow polynomial decay, in the setting of (15), it is of
order RKRR (Hr (R)) ≲ n− br

br+1 — a so called fast rate 2. In
Section 4.1 we will show that the GKRR (6) can achieve the
slow rate in the general setting of (14). In Subsection 4.2 we
will show that the oracle (7) ĥλ can not meet the fast rate (15)
which suggests that GKRR can not meet it as well.

4 Node Regression
We observe a latent position graph G on n+1 nodes, where

edges are given by (8), where the kernel k is PSD (11). In
addition, we observe a signal y = [y1, . . . , yn] ∈ Rn given
by (9) where f ∈ Hr (R) (13) with 1 ≤ r ≤ 2. We do not
observe the kernel matrix Kn+1 or the latent positions Xn+1.
We will define a notion of risk analogous to (10), but that takes
the random edges Un+1 (8) into account. In this framework,
an estimator ĝ(xn+1) for f(xn+1) must be constructed from
the adjacency matrix An+1 (1) and the observed signal y (9).
Note that such estimators ĝλ depend on the signal y , the latent
positions Xn+1 and the random edges Un+1 (8). In analogy
with the nonparametric regression risk, we will consider

RG
f (ĝ) := Eun+1

[Rf (ĝ)]

= Eun+1,xn+1,ϵ

[(
ĝ(xn+1)− f(xn+1)

)2]
the average risk over both the latent position xn+1 and the
random edge vector un+1, and

RG (ĝ,F) := supf∈F RG
f (ĝ) (17)

We will work with the source condition (13), F = Hr (R).

4.1 Graphical Kernel Ridge (GKRR)
The adjacency matrix Ān in general has negative eigenval-

ues, and therefore (6) needs to be treated carefully. Indeed,
Ān + λI is invertible iff λ > 0 is not an eigenvalue of −Ān.
The best possible performance of GKRR is

RG
KRR (Hr (R)) := infλ/∈σ(−Ān)R

G (ĝλ,Hr (R)) (18)

Since we are learning in the LPM setting via An+1 and y ,
we have strictly less information than in the kernel setting, and
hence, we expect that the risk RG

KRR (18) for GKRR is at least
as the risk in the nonparametric setting RKRR for KRR, i.e.
RKRR ≲ RG

KRR. We have the following upper bound.

Theorem 4.1 Suppose that the source condition (13) holds.
Given η > 0, there exists Cη such that for any λ ≥ 2Cη√

n
,

RG (ĝλ,Hr (R)) ≲ λr +
1

nλ4

2. Note that for b > 1 and r ≥ 1 we have br
br+1

> 1
2

, so this rate is

always faster than n−1/2
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with probability at least 1− 2n−η over the random edges Un

and the latent variables Xn.

The proof of Theorem 4.1 is based on a bound of the spectral
norm of Ān − K̄n in [21]. The GKRR rate 4.1 matches the
KRR rate (14). In particular, it implies that RG

KRR (Hr (R)) ≲
n− r

r+4 . In the KRR literature, this is the rate associated with
the most general assumptions on the kernel Kn+1 (5), and
even in this case it is known that better rates are possible [29].
At the moment we do not have a proof that a tighter upper
bound is impossible, so there might be some room for improve-
ment of Theorem 4.1. However, we have a strong argument
that GKRR can not achieve the fast rates (15) which can be po-
tentially extended to a broader class of spectral regularization
estimators. We discuss these arguments in Subsection 4.2.

4.2 Oracle estimator lower bound
The following result suggests that fast rates are not possible

for the GKRR estimator.

Proposition 1 Recall the oracle estimator (7) is given by

ĥλ(x ) =
1

n
a t
n+1

(
K̄n + λI

)−1
y

There exists kc,Kc > 0 such that for all Xn,

kcσ
2

1 + λ+ nλ2
≤ RG

f

(
ĥλ

)
−Rf

(
f̂λ

)
≤ Kc(R

2 + σ2)

1 + λ+ nλ2

Proposition 1 shows that the oracle estimator ĥλ which
has access to the kernel matrix Kn (5) needs regularization
λ = ω(n− 1

2 ) to have (asymptotically) negligible excess risk
compared to the KRR estimator. Comparing the result to
the bound (15), which needs λ = o(1) and λ = ω(n−b),
b > 1, we see that ĥλ requires much stronger regularization
for convergence. Proposition 1 also shows that the oracle ĥλ

converges at rate n− r
r+2 , which is considered slow in com-

parison to KRR. Indeed, for the highest regularity r = 2, ĥλ

converges at rate n− 1
2 , whereas fast rates from 15 are always

in o(n− 1
2 ). Since GKKR (6) is a noisier version of the oracle

ĥλ, we expect that its rate is not going to be better than the
oracle i.e. of order n− r

r+2 , although currently we do not have
a proof of this conjecture.

5 Discussion
In a previous work [13] we have shown that in the frame-

work (3) under certain conditions it is possible to achieve
optimal rates when the prior is that f is continuous but not
necessarily with smooth derivatives.

This work hints that it is more challenging to exploit higher
order of smoothness in the regression function. While the pre-
sented method GKRR converges (Theorem 4.1), it is substan-
tially slower than its counterpart on kernel matrices, KRR (15).
The bound in Proposition 1 is specific to KRR, but we suspect
that this behavior extends to a broader class of spectral meth-
ods. Indeed, some Random Matrix Theory (RMT) results
indicate that spectral information of Kn is lost in the bulk —
only a small fraction of the spectrum of Kn can be recovered
from An and therefore it is reasonable that a broader family of
spectral kernel methods such as KPCR, Landweber iteration,

gradient descent with early stopping [9, 10] are facing the
same limitations as GKRR. Minimax rates in this framework
as well as construction of more efficient algorithms are left as
an open problem for future work.
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