How to improve expressivity of convex ReLU neural networks?

Anne GAGNEUX! Mathurin MASSIAS?

Emmanuel SOUBIES?

Rémi GRIBONVAL?

"Ens de Lyon, CNRS, Université Claude Bernard Lyon 1, Inria, LIP, UMR 5668, 69342 Lyon Cedex 07, France
2Inria, Ens de Lyon, CNRS, Université Claude Bernard Lyon 1, LIP, UMR 5668, 69342 Lyon Cedex 07, France
3Université de Toulouse, CNRS, IRIT, UMR 5505, 31000, Toulouse, France

Résumé — Pour implémententer des fonctions convexes avec des réseaux de neurons, I’architecture standard est celle des ICNNs.
Cet article présente une étude de leur expressivité, a la fois théorique et expérimentale. En s’appuyant sur la caractérisation des
réseaux ReLLU convexes, nous proposons une régularisation favorisant la convexité de la fonction apprise.

Abstract — To implement convex functions with neural networks, the standard way is to use Input Convex Neural Networks
(ICNNSs). This article provides a study of their expressivity, theoretically and experimentally. Leveraging the characterization of
convex ReLU networks, we introduce a new regularisation which softly enforces convexity of the learnt function.

1 Introduction

The ability to implement convex functions with neural net-
works is crucial in many applications, from learning convex
regularizers for inverse problems tasks [10] to learning opti-
mal transport maps [8, [3]. The dominant approach, widely
adopted by the community, is to use Input Convex Neural Net-
works (ICNNGs) [[1]. Their main advantage is that they require
only slight changes to standard neural architectures, namely
an additional nonnegativity constraint on the weight matri-
ces. While this architecture is straightforward to implement
and guarantees convexity by design, ICNNs demonstrate poor
expressivity when scaling up [9]. In fact, the nonnegativity
constraint of ICNNs can seem somewhat arbitrary, questioning
whether it is the only way to enforce convexity or if there exist
many more convex neural networks that are not ICNNs. The
authors in [4] provide a first answer, showing that any convex
function defined over a compact domain and implemented by
a ReLU neural network, i.e., a piecewise affine function, can
also be implemented by an ICNN. Yet, their constructive proof
yields an architecture which has as many layers as affine pieces
in the function, and only one neuron per layer, thus far from a
practical architecture. Following this work, we study in [S]] the
expressivity of ICNNSs for a given architecture (i.e., set width
and depth). We fully characterize convex ReLU neural net-
works and show that there exist convex functions implemented
by a given ReLU network that are not implementable by any
ICNN with the same architecture.

Our paper first brings a pedagogical dive into the findings
from [5]. Second, while [5] builds a theoretical framework
for characterizing convexity in neural networks, this paper
provides empirical evidence that ICNNs only constitute a small
fraction of all convex ReLU neural networks. Additionally,
we propose a new regularisation which acts as a soft constraint
while training a ReLU network, promoting convexity of the
learnt function.

Notations We denote by IV the set of all neurons of a neural
network, and v € N is a neuron. We divide the set of all
neurons between input neurons Ny, the (single) output neuron

Nyt and the hidden neurons H such that N = N;y UH UNgyt.
The parameters of a network are denoted #. The function
2, (x, 0) is the pre-activation of the neuron v € N at x € R%,

2 Convex ReLU neural networks

2.1 Input Convex Neural Networks

The ICNN architecture, displayed in Figure[I] consists in a
standard multilayer perceptron, with the additional constraint
that the weight matrices of all hidden layers have nonnegative
entries. ICNNs require convex and non-decreasing activation
functions; in this work, only ReLU activations will be con-
sidered. Weighted skip connections linking the input to each
hidden layer are also allowed. The convexity of ICNNs is
based on rules for composition of convex functions: the com-
position f o g of a convex function g with a non-decreasing
convex function f is convex, and so is any linear combination
of convex functions using nonnegative coefficients.

2.2 ReLU Neural Networks

Any function implemented by a ReL'U neural network is
a continuous and piecewise linear (CPWL) function, as com-
position of continuous piecewise linear functions. A CPWL
function f partitions the input space R? into convex polyhedra
—called regions— on which f is affine.

For ReLU neural networks, a change in the slope of the
implemented function f at € R? means that at least one
neuron’s pre-activation is zero at x, as zero is the only point of
nondifferentiability of the ReL'U function.

In this work, we adopt the definition of activation regions [[7}
Definition 1]. Consider a ReLLU network with fixed parameters
6. For each neuron v € N, define its activation as a,, (z,6) =
1. (z6)>0 € {0,1}. Then, activation regions are sets of input
points on which all the activations a,, are constant (v € H; see
Figure[2). [[7, Lemma 1] shows that activation regions define
a partition into convex regions for which f is affine on each
region.


mailto:anne.gagneux@ens-lyon.de 
mailto:
mailto:
mailto:

hidden layers output

weighted input skip connections

Figure 1 — The ICNN architecture. J—9

2.3 Convexity of CPWL functions

Intuitively, convexity of CPWL functions only needs to be
checked at boundaries between regions. [3, Proposition 3.7]
shows that it is in fact sufficient to check convexity only on
boundaries between neighboring regions, defined as regions
which share a boundary with affine dimension d — 1. Specifi-
cally, this result states that a CPWL function f is convex if and
only if for every neighboring regions R; ~ Ro, there exists a
pair of points (z1, z2) with 1 € int(R;), 22 € int(R2) such
that

<Vf(1‘1) - Vf(a?g),.’lil - .1?2> Z 0. (1)

The key insight is that we identify here a minimal set of con-
vexity conditions to be checked, as illustrated on Figure [3]
This will be crucial for ReL'U neural networks, as we seek the
smallest set of constraints that still ensures convexity of the
implemented function.

2.4 Convexity of ReLLU neural networks

To go from characterization of convex CPWL functions
to characterization of convex ReLU networks, a first step
is to identify neighboring activation regions. Between two
neighboring regions R; ~ Ro, at least one neuron’s activation
switches from active to unactive state. That is, there exists
at least one hidden neuron v € H such that a,(x1,0) =
1 —a,(z2,0) for z; € int(Ry), x2 € int(R2). We will more
specifically focus on points where only the activation of one
specific neuron changes.

Definition 2.1 (Isolated neurons [5]) Given parameters 0,
for each hidden neuron v € H, X, is the set of input points for
which in every small enough neighborhood, only the activation
of neuron v switches:

%V::{xeRd:Eleo>0:VO<e§eo,
Vi #v o aul(-,0) is constant on B(z, €),

ay(+,0) is not constant on B(z,€)}.
A neuron v € H is isolated if X,, # .

In principle, this set X,, should match the frontiers, i.e., the
relative interior of the boundaries between two regions with
dimension d — 1, which are points where convexity needs to
be checked. Indeed, for input points at the intersection with

Figure 2 — Activation regions for a Figure 3 — Convexity must be
ReL.U network with input dimension checked along each black line, i.e.,

between neigbouring regions only.

more than two regions, at least two neurons’ activations switch.
However, there may be some cases where frontiers also involve
multiple neurons switching simultaneously: we consider such
cases as degenerate cases and exclude them from our analysis.
We refer to [3, Section 7.3] for a discussion on the genericity
of such an assumption.

2.4.1 The one-hidden-layer case

For one-hidden-layer networks, [5, Section 4] shows that
convex ReLLU networks and ICNNs implement the same set
of functions.

Proposition 2.2 (ICNNs are all you need) Any convex func-
tion implemented by a one-hidden-layer ReLU network with
weighted input skip connections can also be implemented by a
one-hidden-layer ICNN with the same width.

2.4.2 The two-hidden-layer case

For two-hidden-layer networks, the previous results no
longer hold: [} Proposition 2.1] gives an example of a convex
function implemented by a two-hidden-layer ReLU network
which is not implementable by any ICNN with the same ar-
chitecture. In fact, the characterization of two-hidden-layer
convex ReLU networks shows that a network is convex if and
only if some sum of products of weights are nonnegative: this
condition is less restrictive than the ICNN constraint enforcing
every hidden layer weight to be nonnegative.

2.4.3 General architectures

Consider a neural network architecture with parameters 6,
implementing a function f : R? — R, and described by a
Directed Acyclic Graph (DAG) G = (N, E) with vertices N
representing neurons and edges E representing weights. To
study convexity of f, we use the path-norm toolkit [6]], which
allows us to rewrite the output of the network f(x, ) for any
input € R? as

.0 = (#(0).4@0) (7)) @

The vector ®(6) is called the parh-lifting [6]]; it has as many
rows as there are paths in G connecting some neuron v (either
an input neuron or a hidden neuron) to the (unique) output



neuron. The value for each row is given by the product of
weights along the path. The matrix A(x, ) corresponds to
the path-activations. It has as many rows as paths and d +
1 columns where d is the input dimension. For each path
p starting at an input neuron (. € Ni,, A(x,0),,, is 1 if
the path is activated, 0 otherwise — a path p being activated
if each neuron along the path is activated, i.e., A(z,0), =
[1,¢, av(z,0). For each path p starting at an hidden neuron
p € H, A(z,0), 441 is 1 if the path is activated, 0 otherwise.
Precise definitions are given both in [6} /5], as well as how these
tools can take into account convolutional layers, max-pooling,
etc. Figure [d]illustrates the construction of these objects for a
simple one-hidden-layer network with d = 1 (x € R).

Figure 4 — Replacing the ReLU
by the neurons activation,

. w! f(z,0) = wia, (x,0)(wiz +
(. 6) bh) +wia,, (v, 0)(w?z+b?) +by.
f) So f rewrites as the sum of

x
a,(x,0) b, 5 terms. The path-lifting
TN thus writes as ®(0) =

1,1 21,1 2.2 12 2 T
2 (wiws, bjws, wiwy, bjws, ba) .

1
b,

Similar objects can be built for sub-graphs of G. We denote
®¥7(0) the path-lifting associated with the sub-graph G¥~
extracted from G with v as input neuron and the same output
neuron as G (see Figure[5).

The path-norm toolkit is useful to study convexity as the
convexity conditions given by Equation[T|involve the slopes of
f(-,0) for each activation regions, on which A(-, ) is constant.
For z; € R; where R; is an activation region with constant
path-activations matrix A;, we deduce from @]) that

Vf(z1) = A] (0). ?3)

Under some non-degeneracy assumption [, Assumption
7.1], convex ReLU neural networks are characterized by [3,
Theorem 7.4], which we recall below.

Theorem 2.3 (Characterization of convex ReLLU networks)
Consider a ReLU network with parameters 0, implementing a
function fp : R — R and described by a DAG. The function
fo is convex if and only if for every hidden neuron v € H, it
holds

min {(a, ®"7(0)) > 0, %)

aca’

where a~ := {a"~ (z,0) : x € X, }[]

Intuitively, each binary vector a € a¥~ corresponds to an
activation pattern for a d — 1 dimensional boundary between
neighboring activations regions for which the activation of
v switches. Because each vector a is binary, these convexity

1. The notation ¥ relates to the largest sub-graph extracted from G with
v as single input.

GV*}
° Figure 5 — Sub-graphs ex-
N, tracted from G.

conditions involve checking nonnegativity of sums of product
of weights. If all elementary vectors (0,...,0,1,0,...,0)T
are in a¥~ for all v € H, then these constraints reduce to the
ICNN constraints as the scalar product only involve one term.
On the contrary, when enough elementary vectors are missing,
the constraints (@) become less restrictive than the ICNN ones.

3 Algorithm

Given a ReLU neural network with architecture G =
(N, E), the two main bottlenecks to check the convexity con-
ditions of Theorem[2.3] are:

1. Handling the dimension of the vectors ®*— and "~
involved in the scalar product. Considering feedforward
networks, the number of paths grows exponentially with
the number of layers, and in general with the depth
of the network, so this is a priori a daunting task. [5,
Section 8] explains how this can be easily addressed.
Each condition can be evaluated with a forward pass
on a slightly modified neural network, circumventing
the need to explicitly compute and store the path-lifting
vectors &V (0).

2. Computing the set of activation patterns a”— for ev-
ery hidden neuron v € H. This requires identifying
all input points « € X,, where only the activation of v
changes. In practice, it amounts to identifying all fron-
tiers and regions of the CPWL function, whose number
grows exponentially with the number of neurons. We
rely on [2]] which provides an efficient algorithm to iden-
tify the frontiers of the CPWL function implemented by
a feedforward fully-connected ReLU network.

4 Experiments

4.1 Number of convex networks

To assess the limitations of ICNNs, we compare the num-
ber of convex ReLU networks to the number of ICNNs when
sampling random networks. We provide several experiments,
varying the width (Figure[6a), the depth (Figure [6b) and the
input dimension of the network. The weights of the last layer
are sampled independently from a folded normal distribution,
ensuring their nonnegativity (as it is a necessary condition for
convexity). The weights of the other hidden layers are sam-
pled from a normal distribution, and may thus have negative
entries. We observe (not reported) that the input dimension has
no impact on the number of sampled convex ReLU networks
or ICNNs. This is expected for ICNNS, as the nonnegativity
constraint is applied to the hidden layers, making it indepen-
dent of the input dimension. Figure [6a] compares the number
of random two-hidden-layer ReLLU networks that are convex
with the number of ones that are ICNNs, when varying the
widths of each hidden layer. Likewise, Figure [6b]displays the
number of random networks that are convex when increasing
the depth, i.e., the number of hidden layers. We do not report
the number of ICNNs among these convex RelLU networks
as it is consistently zero beyond three hidden layers. In both
cases, we observe that convex ReLLU networks largely out-
number ICNNs. The number of convex ReL'U networks varies
in assymetric manners. Somewhat unexpectedly, it increases



Convex ReLU networks

1008 | 44 197 111 54

132 57 23

107 46 15

64 37 14 a 21 4 3

& zl u - 0 0 0

2 3 4 5 6 7

ICNNs
w 5 4 0
REE 146 42 6 1 0 Depth

© 12 5 0

«~SNEN 15 3 0 0 0
~ 22 7 0

. 37 1 0 0 0 0
@© 47 8 1

o 8 1 0 0 0 0
e 5 0 0 0 0 0 > 81 15 0
~ ] 0 0 0 0 0 = 97 28 0
5 2 3 5 6 7
: ' o ® ¢ 7 Width w 0 7

(a) Width varies. Convex ReLU (b) Depth varies. Convex ReLU
networks among 10k draws. Top: networks among 5k draws. n =
convex ReLU networks. Bot- (w,w,...,w). Input dimension
tom: ICNNs. Architecture n = d = 3.

(n1,n2). Input dimension d = 2.

Figure 6 — Comparison of convex ReLLU networks by varying
width and depth.

with depth for a given width. Besides, there are more convex
networks in “decoder-like” architectures (n, > nq) than in
“encoder-like” architectures.

4.2 Convex regularisation

For a ReLLU network with parameters 6, a natural regular-
isation that pushes towards convex networks is obtained by
penalizing the convexity conditions’ values which are negative
as follows

RO):=A>_ Y max(0,—(a, 27 (). (5

vEH aca¥ ™

To assess the potential of such regularisation, we test it on a
2D CPWL function which we approximate by sampling uni-
form points on the square [—10, 10]? and training the ReLU
networks with an /1 loss. We compare an unconstrained ReLU
network (which may not be convex), an ICNN and a reg-
ularised ReLU network, all with architecture n = (4, S)El
These networks share the same random initialisation. Fig-
ure[7]display the learnt functions while Table[T] gives the mean
square error on NV, = 20K uniformly sampled points.

Model | Unconstrained ICNN
MSE 0.90 4+ 0.53

Convex Reg
1.71 £ 0.90 | 0.84 +0.73

Table 1 — Approximation results. The standard deviation is
given on 10 initialisations.

2. n denotes the tuple of widths of hidden layers.

Unconstrained

10.0
7.5 7.5
5.0 5.0
25 2.5
0.0 0.0

-2.5 =25

-5.0 -5.0

-7.5 =75

-10.0 -10.0
-10 5 10 -10 -

10.0 10.0
7.5 . 7.5

5.0 5.0

5 0 5
Convex Reg

2.5 2.5
0.0 0.0
=25 =25
-5.0 -5.0
-7.5 =75

-10.0 -10.0
-10 -5 0 5 10 -10

=5 0 5 10

Figure 7 — Target and learnt functions. The regularisation is a
compromise between the lack of expressivity of ICNNs and
the convexity requirement.

5 Conclusion

Both the theoretical characterization of convex ReLU net-
works and our numerical experiments confirm there is room
for improvements upon the ICNN architecture. In this paper,
we suggest one way to do so, by using the characterization of
convex networks as a soft regularisation to promote convexity
of the network. A computational challenge is to scale it to
practical networks, as this would open new ways to train more
expressive convex networks.

Acknowledgements R. Gribonval is grateful to Antonin
Chambolle for enlightening discussions on related topics dur-
ing the SMAI-MODE 2024 conference. This project was
supported in part by the AllegroAssai ANR project ANR-19-
CHIAO0009 and by the SHARP ANR project ANR-23-PEIA-
0008 funded in the context of the France 2030 program. A.
Gagneux thanks the RT IASIS for supporting her work through
the PROSSIMO grant.

References

[1] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. 2017.

[2] Arturs Berzins. Polyhedral Complex Extraction from ReLU Networks using Edge
Subdivision. 2023.

Charlotte Bunne, Stefan G Stark, Gabriele Gut, Jacobo Sarabia Del Castillo, Mitch
Levesque, Kjong-Van Lehmann, Lucas Pelkmans, Andreas Krause, and Gunnar
Ritsch. Learning single-cell perturbation responses using neural optimal transport.
Nature methods, 20(11):1759-1768, 2023.

Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal Control Via Neural Net-
works: A Convex Approach. In ICLR, 2019.

[5] Anne Gagneux, Mathurin Massias, Emmanuel Soubies, and Rémi Gribonval. Con-
vexity in ReLU Neural Networks: beyond ICNNs?, 2025.

Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, and Rémi Gribonval. A path-
norm toolkit for modern networks: consequences, promises and challenges. /CLR,
2023.

[7]1 Boris Hanin and David Rolnick. Deep ReLu Networks Have Surprisingly Few
Activation Patterns. Neurips, 2019.

3

[4

[6

[8

Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny
Burnaev. Wasserstein-2 generative networks. arXiv preprint arXiv:1909.13082,
2019.

Alexander Korotin, Daniil Selikhanovych, and Evgeny Burnaev. Neural optimal
transport. 2023.

[10] S.Mukherjee, S. Dittmer, Z. Shumaylov, S. Lunz, O. Oktem, and C.-B. Schénlieb.
Data-driven convex regularizers for inverse problems. 2024.

[9



	Introduction
	Convex `3́9`42`"̇613A``45`47`"603AReLU neural networks
	Input Convex Neural Networks
	`3́9`42`"̇613A``45`47`"603AReLU Neural Networks
	Convexity of CPWL functions
	Convexity of `3́9`42`"̇613A``45`47`"603AReLU neural networks
	The one-hidden-layer case
	The two-hidden-layer case
	General architectures


	Algorithm
	Experiments
	Number of convex networks
	Convex regularisation

	Conclusion

