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Résumé – La segmentation des calculs rénaux est un prétraitement facilitant l’identification du type des calculs urinaires à l’aide de classifieurs.
La segmentation manuelle est fastidieuse et peu appropriée car la base de d’images urétéroscopiques est de grande taille. Cette étude examine
le potentiel du modèle “segment anything model” (SAM, une approche d’apprentissage profond de référence) pour automatiser la segmentation
des calculs rénaux. Les performances de SAM sont comparées à celles de modèles classiques tels que U-Net, Residual U-Net, et Attention U-Net
qui sont efficaces, mais qui disposent d’une faible capacité de généralisation à des données “encore non vues”. Cette contribution démontre
l’adaptabilité et l’efficacité de SAM. Bien que SAM conduise à des résultats comparables à ceux d’U-Net pour des images dont la distribution est
similaire à celle des données d’apprentissage (Accuracy : 97,68±3,04 ; Dice : 97,78±2,47 ; IoU : 95,76±4,18), SAM démontre une plus grande
capacité de généralisation en surpassant de 23% les performances de toutes les variantes d’U-Net pour des distributions non apprises.

Abstract – Kidney stone segmentation is a preliminary step for facilitating the identification of urinary stone types using machine- or deep-
learning methods. IPerforming a manual segmentation is tedious and impractical since the ureteroscopic image database is large. This study
investigates the potential of the segment anything model (SAM, a state-of-the-art deep learning approach) to automate the kidney stone seg-
mentation. The performance of SAM is compared to that of traditional models such as U-Net, Residual U-Net, and Attention U-Net which are
efficient, but often struggle to generalize to unseen datasets. This contribution emphasize the adaptability on different data-distributions of SAM.
While SAM shows a performance similar to that of U-Net on in-distribution data (Accuracy: 97.68±3.04, Dice: 97.78±2.47, IoU: 95.76±4.18),
it demonstrates superior generalization capability on out-of-distribution data, outperforming all U-Net variants by margins of up to 23%.

1 Introduction

Kidney stone formation is an illness that affects millions
worldwide. The lifetime prevalence in the United States ranges
from 7.2% to 10.1%, whereas other in other world parts hi-
gher rates are reported, such as 21.1% in certain populations
[1]. Early detection and accurate diagnosis behind the kidney
stone formation are critical for prescribing an effective treat-
ment to prevent complications such as renal damage, infec-
tions, and recurrent stone formation. With such timely interven-
tion, patients can experience improved outcomes and reduced
healthcare costs. Given its high incidence and the severe pain
it causes, kidney stone detection plays a vital role in medical
practice, particularly in patients with recurrent episodes or in
those at high risk [2].

Recent advancements in deep learning (DL) offer promising
potential for enhancing the classification of kidney stones [3,
4]. These methods have the potential of speeding up diagnosis
by automating a highly operator dependent task when perfor-
med directly during the stone extraction process (ESR, endo-
scopic stone recognition) which is crucial for patients needing
early intervention. An accurate segmentation of the detected

kidney stones is a necessary preliminary step before classifica-
tion, as it enables the model to isolate the stone itself from sur-
rounding tissues, thereby improving diagnostic precision [5].
DL, particularly convolutional neural networks (CNNs) and trans-
former models, have demonstrated significant efficacy in seg-
mentation tasks, as they can automatically discern relevant fea-
tures within complex medical images, enhancing the reliability
of image-based diagnosis [6].

DL-segmentation models such as U-Net and its variations
(Attention U-Net and Residual U-Net) have shown good per-
formance in segmenting images. U-Net, known for its limi-
ted generalization efficiency, excels at preserving spatial in-
formation through its encoder-decoder structure, although it
may have difficulties with complex and noisy images [7]. Re-
sidual U-Net, which integrates residual connections, addresses
problems like vanishing gradients, improving performance in
deeper networks, but its deeper architecture can increase trai-
ning time [8]. Attention U-Net improves U-Net by incorpora-
ting care mechanisms, allowing the model to focus on relevant
areas, but this added complexity can lead to increased compu-
tational costs [9]. More recently, models such as the “segment
anything model” (SAM) have emerged. These transformer-based



architectures offers increased flexibility across a variety of image
types without requiring extensive task-specific tuning. Although
SAM is very promising for handling various data sets, its com-
plexity and resource demand remains a challenge [10].

The segmentation of kidney stone images extracted from ure-
teroscopy videos is traditionally performed manually by an ex-
pert (see the top row in Fig. 1). While this method can be ef-
fective for small datasets, it becomes impractical when applied
to large-scale databases due to its time-intensive nature and re-
liance on operator expertise. Advanced DL models like SAM
offer a transformative solution, enabling the automatic segmen-
tation of extensive video datasets with high accuracy and effi-
ciency. The ability of SAM to generalize across diverse data-
sets presents a significant advancement, making it a promising
alternative to traditional manual methods for large-scale seg-
mentation tasks (see the bottom row in Fig. 1).

The main contributions of this work include the assessment
of both traditional and modern deep learning segmentation tech-
niques. By examining the performance of models such as U-
Net and comparing them with SAM, this research seeks to iden-
tify the most appropriate approaches for kidney stone segmen-
tation in two classes, namely kidney stones and surrounding
tissues.

The paper is structured as follows. Section 2 provides de-
tails about the dataset and methodology used in this study, fo-
cusing on traditional deep learning-based segmentation tech-
niques, contrasting them with SAM. Section 3 discusses the
findings and presents the results. Finally, future directions and
conclusions are discussed in Section 4.

2 Materials and Methods

2.1 Clinical image datasets
Four kidney stone datasets were utilized in our experiments.

The images were obtained from two sources : standard CCD
cameras and endoscopic images that were captured using an
ureteroscope. The main characteristics of the used datasets are
described below.

Database A. In-vivo endoscopic images. It contains a total
of 156 in-vivo (endoscopic) images. In the scene, three classes
are observed : surrounding tissue, kidney stone, and laser used
for stone fragmentation. The dataset can be used to segment
two or three classes. The dimensions of the images in this da-
taset are of different sizes around 1008 × 1042 pixels [11].

Database B. Ex-vivo endoscopic images. It includes 409
ex-vivo images acquired using a realistically simulated envi-
ronment (i.e., a phantom that mimics the characteristics of the
ureters in which stones may be blocked). The dataset consists
of two classes : kidney stone and tissue. The dimensions of the
all images on this dataset are 1920×1080 pixels [12].

Database C. In-vivo endoscopic images. It is comprised
of 56 in-vivo images. The images were acquired from videos
where several classes can be observed : living tissue, kidney
stones, and instruments such as the laser for fragmentation. In

this dataset, there are two resolutions of the images : 400×400
and 720×720 pixels. This dataset can be used to evaluate the
performance of segmentation mode for either two or three classes.

Database D. Ex-vivo CCD-camera. It consists of 356 ex-
vivo charge-coupled device (CCD) images, showing exclusi-
vely two classes : the extracted kidney stone fragments and
their environment. The dimensions of the images in this dataset
are of different sizes around 4288× 2848 pixels [13].

All images from these databases were resized to square di-
mensions of 512 × 512 pixels for analysis. Additionally, each
database is accompanied by ground-truth segmentation masks
of the original images, manually created by a specialist.

2.2 Kidney Stone Segmentation

In this work, the SAM model is employed to perform kidney
stone segmentation in ureteroscopy. Segmented masks from the
input dataset (Distribution 1) are required to accomplish this
task. These masks are obtained through the ”traditional me-
thod for segmenting kidney stones” (see the top row in Fig. 1),
performed by an expert. Subsequently, the ”automatic kidney
stone segmentation and generalization” method utilizing SAM
(see the bottom row in Fig. 1), is applied to generate new auto-
matic segmentation masks,either from the same distribution or
other distributions.

Traditional method for segmenting kidney stones. Frames
displaying both kidney stones and the surrounding tissues are
first selected in ureteroscopy videos to generate binary (two
class) segmentation masks. These images comprise the dataset
from Distribution 1 thatis manually annotated at the pixel level
by an urologist. The resulting masks are then paired with their
corresponding RGB-images, forming the input dataset (X1, Y1),
where X1 represents the original images and Y1 their segmen-
tation labels.

Automatic kidney stone segmentation and generalization.
As mentioned in Section 1, kidney stone segmentation is effec-
tive for small datasets but impractical for large ones. For this
reason, we evaluate SAM (Segment Anything Model) to learn
from an expert-labeled dataset and then use it to automatically
generate segmentation masks—both for the original data distri-
bution and for others.

SAM involves two stages : training and testing. Concerning
the training, an initial step is first carried out to prepare the data.
This image preprocessing step involves a normalization and re-
sizing techniques which “standardizes” the images (512×512)
to ensures uniform input image sizes for all models. In the
next step, the training of SAM is split into two processes :
first, a feature extraction transformer block condenses the in-
put image in a feature matrix. These extracted features and the
model’s prompts, such as segmentation masks (Y2), are then
fed into a decoder head. After training, the learned embeddings
enable the testing of SAM, either on the same data distribution
(Y1 → Y1 ) or on a different distribution (Y1 → Y2).

Dataset A (in-vivo endoscopic images) was used to train
SAM. Inference was performed on its original distribution (in-



FIGURE 1 – Overview of the principle of the segmentation method compzrison. Traditional segmentation methods extract frames
from ureteroscopy videos to create a dataset (distribution 1), which is manually labeled by an expert. When SAM for zn automatic
kidney stone segmentation, the model is trained on distribution 1 and its labels. It then performs inference on a different dataset
(distribution 2, without labels), producing the labels for this set. It has to be noticed that distributions 1 and 2 are distinct.

distribution) and on three additional datasets (B, C, and D), as
detailed in Section 2.1. Three UNet variants were trained (stan-
dard UNet, Residual UNet, and Attention-UNet) to benchmark
SAM’s performance against classical architectures. All models
were trained on their respective data distributions and subse-
quently evaluated on datasets A, B, C, and D. The primary dis-
tinction is that SAM was trained solely on Dataset A but tested
across all datasets (A–D).

The quantitative evaluation is based on standard metrics :
Accuracy, Dice Coefficient, and Intersection over Union (IoU).
These metrics can be used for an objective segmentation qua-
lity assessment. Testing across four datasets (with distinct dis-
tributions) demonstrated the models’ generalization capability
and robustness for kidney stone segmentation across diverse
clinical scenarios.

The training of the models was performed on a 16 GB Nvi-
dia DGX GPU, using the AdamW Optimizer with a dynamic
learning rate adjustment and a warmup phase. A combination
of Dice Loss and CE Loss was used to minimize discrepan-
cies between predicted segmentation and ground truth masks.
U-Net, Residual U-Net, and Attention U-Net were trained for
80 epochs, while SAM was trained for 200 epochs.

3 Results and Discussion
The performance of the segmentation models (SAM and UNet-

based models), introduced in Section 2.2, was evaluated using
the datasets described in Section 2.1. The experimental results
are summarized in Table 1 and discussed below.

In distribution. The SAM model, trained on Dataset A and
evaluated on its native distribution, achieves consistent perfor-
mance across all evaluation metrics : 97.68 ± 3.04 Accuracy,
97.78 ± 2.47 Dice, 95.76 ± 4.18 IoU, and an Error Rate of

4.24. These results demonstrate SAM’s ability to deliver high
performance despite limited training data (156 images). While
SAM does not achieve the absolute highest performance when
trained and tested on the same distribution (Dataset A), it main-
tains comparable results. For comparison, all results in Table 1
are reported in terms of IoU.

Out-of-distribution. The SAM model, trained on Dataset
A and evaluated on Datasets B, C, and D, consistently outper-
forms U-Net-based models : it achieves 93.74 ± 9.55 IoU on
Dataset B (vs. U-Net’s 60.75 ± 22.20 IoU), 86.64 ± 10.90 IoU
on Dataset C (vs. 63.37 ± 23.70 IoU), and 93.81 ± 9.47 IoU on
Dataset D (vs. 70.58 ± 27.59 IoU), demonstrating its ability to
generate segmentation masks with out-of-distribution data.

4 Conclusions

The results from this study demonstrate that SAM outper-
forms traditional segmentation models such as U-Net, Resi-
dual U-Net, and Attention U-Net for kidney stone segmenta-
tion. While the traditional models performed well on the da-
taset they were trained on, their performance significantly de-
clined when tested on new, unseen datasets. SAM, trained on
the same dataset, not only excelled in the original dataset but
also generalized effectively across different datasets, maintai-
ning high segmentation accuracy.

SAM’s ability to generate accurate, continuous segmenta-
tions without the artifacts commonly seen in other models, com-
bined with its superior generalization across datasets, makes it
the most reliable model for kidney stone segmentation. This
reinforces the importance of using models that can adapt to
new data, ensuring consistent performance in clinical applica-
tions where data variability is expected.



TABLE 1 – Comparison of the performance of four segmentation models (U-Net, Residual U-Net, Attention U-Net, and SAM)
across four datasets (A to D). Segmentation is performed for two classes (surrounding tissue or background, and kidney stone).
The presented results were measured using segmentation metrics (Accuracy, Dice Score, Intersection over Union, and Error Rate).

Dataset Model Accuracy ↑ Dice ↑ IoU ↑ Error rate ↓

A : In-vivo Endoscopic

SAM Model 97.68±03.04 97.78±02.47 95.76±04.18 4.24%
U-Net 97.68±01.38 97.72±01.28 95.77±02.37 4.23%

ResU-Net 97.92±00.96 97.93±01.01 95.97±01.91 4.03%
AttentionU-Net 96.37±02.71 96.24±03.77 92.98±06.02 7.02%

B : Ex-vivo Endoscopic

SAM Model 98.71±02.87 96.39±07.70 93.74±09.55 6.26%
U-Net 88.8±07.83 73.05±18.58 60.75±22.20 39.25%

ResU-Net 87.9±07.03 70.85±18.49 57.95±21.82 42.05%
AttentionU-Net 83.83±07.75 65.47±19.37 51.77±21.76 48.23%

C : In-vivo Endoscopic

SAM Model 95.33±04.70 92.42±07.19 86.64±10.90 13.36%
U-Net 86.45±11.38 74.31±22.89 63.37±23.70 36.63%

ResU-Net 86.09±11.64 71.69±25.58 60.83±25.27 39.17%
AttentionU-Net 85.16±09.95 71.67±20.30 59.08±20.69 40.92%

D : Ex-vivo CCD Camera

SAM Model 96.48±07.91 96.50±06.20 93.81±09.47 6.19%
U-Net 87.59±12.96 78.73±25.35 70.58±27.59 29.42%

ResU-Net 89.51±11.02 84.13±18.92 76.19±22.41 23.81%
AttentionU-Net 89.31±11.78 82.85±21.42 75.11±24.42 24.89%
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