
Regularization path via ℓ0 Bregman relaxations

Mhamed ESSAFRI1 Luca CALATRONI2 Emmanuel SOUBIES1

1IRIT, Université de Toulouse, CNRS, Toulouse, France
2MaLGa Centre, DIBRIS, Università di Genova & MMS, Istituto Italiano di Tecnologia, Genoa, Italy

Résumé – L’optimisation des problèmes impliquant la pseudo-norme ℓ0 joue un rôle important en traitement du signal et en
apprentissage automatique. En raison de la nature intrinsèquement NP-difficile de ces problèmes, des relaxations continues
(potentiellement non convexes) ont attiré une attention significative ces dernières années. En particulier, la notion de “ℓ0 Bregman
relaxation” (B-rex)—une classe de relaxations exactes pour des critères régularisés en norme ℓ0 avec des termes d’attache aux
données généraux définie à partir de distances de Bregman—a été proposée. Ces relaxations sont exactes dans le sens où elles
préservent les minimiseurs globaux tout en éliminant certains minimiseurs locaux. En s’appuyant sur ces propriétés, nous proposons
un nouvel algorithme pour estimer le chemin des solutions pour différents niveaux de parcimonie. Nous présentons les aspects
méthodologiques de cette approche, ainsi que des exemples illustratifs et numériques démontrant son efficacité.

Abstract – The optimization of problems involving the ℓ0-pseudo norm plays an important role in signal processing and machine
learning. Due to the intrinsic NP-hardness of such problems, continuous (potentially non-convex) relaxations have gained significant
attention in recent years. In particular, the notion of the ℓ0 Bregman relaxations (B-rex)—a class of exact relaxations for ℓ0-
regularized criteria with general data terms defined in terms of Bregman distances—have been proposed. These relaxations are
exact in the sense that they preserve global minimizers while eliminating certain local minimizers. Building on these properties, we
propose a new algorithm to estimate the path of solutions across a range of sparsity levels. We discuss the methodological aspects
of this approach, along with illustrative and numerical examples that demonstrate its effectiveness.

1 Introduction
Over the recent years, the increasing predominance of high-

dimensional data has sparked significant interest in sparse
models in many scientific fields, such as machine learning,
statistics, and signal/image processing. Sparsity is particularly
valuable in such settings as it enables the construction of com-
pact models with reduced complexity. To that end, the natural
approach is to solve problems of the form

x̂ ∈ argmin
x∈CN

{
J0(x) := Fy(Ax)+λ0∥x∥0+

λ2
2
∥x∥22

}
(1)

where A ∈ RM×N is a given design matrix, and y ∈ RM
represents the observed data. The function Fy : RM 7→
R serves as a data-fidelity term, measuring the discrepancy
between the linear model Ax and the observation y. The set C
is a constraint set, which is either R or R≥0 in this paper. The
regularization terms include the sparisty-promoting ℓ0-pseudo
norm ∥ · ∥0, which counts the number of nonzero elements in
its argument, and the standard ℓ2-norm ∥·∥22, which introduces
ridge regularization. The hyperparameters λ0 > 0 and λ2 ≥ 0
control the strength of the sparsity-promoting ℓ0 term and the
smoothness-inducing ℓ2 term, respectively.

Examples of data-fidelity terms Fy include least squares
(LS) [4], Kullback-Leibler (KL) divergence [6], and logistic
regression (LR) [3], which commonly appear in various fields.
Due to the presence of the ℓ0-pseudo norm, Problem (1) is
NP-hard [13]. Additionally, selecting an appropriate value for
the parameter λ0 balancing the amount of regularization with
the data term is generally a challenging task. Over the past
decades, much research efforts have focused on two directions:
(i) developing relaxed formulations of the problem to make

it more tractable, and (ii) constructing solutions to (1) for a
range of λ0 values, which is often called ℓ0 path.

Exact relaxations. One strategy to simplify (1) seeks to re-
place the ℓ0-pseudo norm with a continuous approximation,
ensuring that the resulting relaxation (typically non-convex)
preserves the global minimizers of the original problem. More-
over, these relaxed formulations shall also eliminate certain
local minimizers, thereby simplifying the optimization land-
scape and making it more amenable to efficient optimization al-
gorithms. Over the years, various exact relaxation approaches
have been proposed. For least squares data terms, the au-
thors in [16] introduced an exact relaxation known as CEL0
(Continuous Exact ℓ0). This particular penalty can be seen
as the “quadratic envelope” of the ℓ0 pseudo-norm, as intro-
duced in [7]. Moving beyond least squares, the authors in [12]
proposed a class of exact relaxations based on Mathematical
Programs with Equilibrium Constraints (MPEC). In [2] the
authors demonstrated that the capped-ℓ1 penalty leads to exact
relaxations when the data term is Lipschitz continuous. Finally,
extending the analysis of [16, 7] to general (non-quadratic)
data terms, we introduced in [9] the ℓ0 Bregman relaxation (B-
rex), which provides a class of exact relaxations by leveraging
Bregman divergences.

Regularization path. For least-squares, the construction of
solutions to (1) for different λ0 with λ2 = 0 has been studied
in [15]. Replacing the ℓ0 term by MCP (Minimax Concave
Penalty) penalty –of which CEL0 is a specific instance–, the
authors proposed a pathwise algorithm based on coordinate
descent together with warm-start and graduated non-convexity
(GNC). There, the path is built for a given grid of λ0 which
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is given as input. In [5], the authors propose two algorithms
for constructing the ℓ0 path. Both algorithms exploit the piece-
wise linear nature and concavity of the so-called ℓ0-curve (see
Section 3 for details). As opposed to [15], the explored λ0 are
directly computed by the algorithms and not required as input.
Finally, in [11], the authors develop fast algorithms based on
coordinate descent and local combinatorial optimization. They
use continuation on a grid of λ0 values with a warm-start strat-
egy. Paper [8] generalizes this work for binary classification
problems, including logistic regression.

Contributions and outline. We propose a new algorithm,
called L0PathBrex, which exploits the nice properties of B-
rex in order to estimate an ℓ0 path. In Section 2, we first recall
the concept of the ℓ0-curve associated to the ℓ0 path introduced
in [5], as well as the B-rex proposed in [9]. Then, Section 3 pro-
vides a description of the proposed algorithm, L0PathBrex.
Finally, in Section 4 we benchmark our proposed method
against two algorithms of the L0Learn package [11].

2 Preliminaries
In this section, we first recall some properties of the minimiz-

ers of J0 in (1) and define the associated ℓ0-curve. Then, we
review the key components of the ℓ0 Bregman-relaxation [9].

2.1 Local minimizers of J0 and ℓ0-curve
Local minimizers of J0. In [9, Proposition 2] a character-
ization of the local minimizers of Problem (1) is provided,
showing that finding local minimizers of J0 reduces to solving
convex optimization problems for fixed supports, i.e., subsets
of [N ] := {1, . . . , N} containing the nonzero entries of the
minimizer. In particular, these subproblems are independent of
λ0, meaning that local minimizers of J0 are the same whatever
the value λ0. Furthermore, as stated in [9, Theorem 3], the
strict minimizers of J0 are countable, although their number
grows exponentially with the dimension.

The ℓ0-curve. By the invariance of the set of minimizers
discussed above, one can see that, in the (λ0, J0(x̂))-plane,
each local minimizer x̂ of J0 defines an affine line with slope
∥x̂∥0 and constant b̂ = Fy(Ax̂) + λ2

2 ∥x̂∥
2
2. Indeed, we have

J0(x̂) = b̂+ λ0∥x̂∥0 := g(λ0).

An illustration, showing only strict minimizers with different
supports which include the global ones, is provided in Figure 1
(left). The lower concave envelope of these affine functions,
known as the ℓ0-curve [5], is exactly defined by the minimizers
x̂ belonging to the ℓ0 path which we aim to estimate. This
curve is piecewise affine, with singular points (indicated as
λ̂i0, i = {1, 2} in Figure 1) corresponding to critical values of
λ0 where the support of the global solution changes.

2.2 The ℓ0 Bregman relaxation (B-rex)
We recall the definition of B-rex and the sufficient condi-

tions required to build an exact continuous relaxation of J0.

Definition 1 (B-rex [9]) Let x ∈ CN and Ψ(x) =∑N
n=1 ψn(xn), where ψn : C → R are strictly convex and

twice differentiable functions. Then, the ℓ0 Bregman relaxation
(B-rex) is given by BΨ(x) =

∑N
n=1 βψn(xn), with

βψn
(x)=

 ψn(0)− ψn(x) + ψ′
n(α

−
n )x, if x ∈ [α−

n , 0],
ψn(0)− ψn(x) + ψ′

n(α
+
n )x, if x ∈ [0, α+

n ],
λ0, otherwise.

where, the interval [α−
n , α

+
n ] ∋ 0 defines the λ0-sublevel set of

x 7→ ψn(0)− ψn(x) + xψ′
n(x).

Given a family Ψ, defining a B-rex requires solving the
inequality ψn(0)− ψn(x) + xψ′

n(x) ≤ λ0. We showed in [9]
that this can be done for common generating functions ψn
found in the literature, such as the squared function, Shannon
entropy and Kullback-Leibler divergence [9, 10]. A continuous
relaxation of J0 can be thus defined in terms of B-rex as:

JΨ(x) = Fy(Ax) +BΨ(x) +
λ2
2
∥x∥22. (2)

In Theorem 2, we recall a sufficient condition on Ψ under
which JΨ is an exact relaxation of J0, meaning that JΨ pre-
serves the global minimizers of the original problem, while
potentially removing some of the local minimizers.

Theorem 2 (Exact relaxation property [9, Theorem 9]) Let
JΨ be defined as in (2). If for all n ∈ [N ], x ∈ RN and
t ∈ (α−

n , 0) ∪ (0, α+
n ) the following condition holds

∂2

∂t2
Fy(A(x(n) + ten)) + λ2 < ψ′′

n(t), (CC)

Then,

argmin
x∈CN

JΨ(x) = argmin
x∈CN

J0(x), (3)

x̂ local minimizer of JΨ =⇒ x̂ local minimizer of J0.

Moreover, from [9, Proposition 10], a local minimizer x̂ of
J0, remains a local minimizer of JΨ if and only if

∀n ∈ σ(x̂), x̂n ∈ C\[α−
n , α

+
n ], (4)

∀n ∈ σc(x̂), −⟨an,∇Fy (Ax̂)⟩ ∈
[
ℓ−n , ℓ

+
n

]
, (5)

where σ(x̂) = {n ∈ [N ] : x̂n ̸= 0} is the support of x̂,
and ℓ±n = −ψ′

n(0)+ψ′
n(α

±
n ). Note that the quantities α±

n , ℓ
±
n

depend on λ0. As opposed to J0, the set of minimizers of JΨ
depends on λ0, a property that we want to exploit next.

3 The ℓ0 path with B-rex
To quantify the extent to which the local minimizers of JΨ

vary with λ0 we have the following Proposition.

Proposition 3 Let x̂ be a local minimizer of J0. Then, there
exist critical thresholds

λ0(x̂)= min
n∈σ(x̂)

{
ϕ−1
n (|x̂n|)

}
, (6)

λ̄0(x̂)= max
n∈σ(x̂)c

ξ−1
n (|⟨an,∇Fy (Ax̂)⟩|) (7)

such that for all λ0 ∈ [λ0(x̂), λ̄0(x̂)], x̂ is a critical
point of JΨ. In the above two equations, ϕn(λ0) =
max (|α−

n (λ0)|, α+
n (λ0)), ξn(λ0) = min {|ℓ−n (λ0)|, ℓ+n (λ0)},

and ℓ±n = −ψ′
n(0) + ψ′

n(α
±
n ).
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Figure 1 – Representation of strict local minimizers of J0 and JΨ versus λ0. Each line (left) (resp., segment (right)) is associated to a strict local
minimizer x̂ of J0 (resp., JΨ). The ℓ0-curve corresponds to the lower envelope of this set of lines (resp., segments).

Algorithm 1: Pseudo-code of L0PathBrex
Input: kmax ∈ N, ε > 0, Npass ∈ N, Algo(x, λ0,ρ)
Output: S, Λ ▷ ℓ0-path made of (x, λ0) ∈ S × Λ
x = 0 ;
for p = 1 to Npass do

Forward Pass
while ∥x∥0 ≤ kmax do

Choose λ0 ∈ (λ0(x)− ε, λ0(x)) ▷ using (6)
xnext = Algo(x, λ0,ρ)
S ← xnext and x = xnext

end
Backward Pass
while ∥x∥0 > 1 do

Choose λ0 ∈ (λ̄0(x), λ̄0(x) + ε) ▷ using (7)
xnext = Algo(x, λ0,ρ)
S ← xnext and x = xnext

end
end
(S,Λ) = Prune(S)

The proof relies on conditions (4) and (5). In addition, it is
worth mentioning that λ̄0(x̂) = +∞ only for the local mini-
mizer x̂ = 0 (which corresponds to the global minimizer for
sufficiently large λ0) and λ0(x̂) = 0 only for local minimizers
x̂ that belong to the solution set of the unpenalized problem
(i.e.; Problem (1) with λ0 = 0). Unlike the case of J0, where
local minimizers persist for all λ0, each local minimizer x̂ of
the exact relaxation JΨ defines a segment in the (λ0, JΨ(x̂))-
plane with support [λ0(x̂), λ̄0(x̂)] and slope ∥x̂∥0. As such,
the graph in Figure 1 (left) built with J0 is transformed to the
(equivalent) one in Figure 1 (right) when exploiting JΨ.

Within this context, we propose to exploit the hyper-
parameter ranges [λ0(x̂), λ̄0(x̂)] to deploy warm-start strate-
gies for estimating the ℓ0 path. The rationale behind this idea
is that a local minimizer x̂ with λ0-range [λ0(x̂), λ̄0(x̂)] is
likely to be a good initial point if λ0 ∈ (λ0(x̂)− ε, λ0(x̂)) ∪(
λ̄0(x̂), λ̄0(x̂) + ε

)
.

Algorithm Description. The pseudo-code in Algorithm 1 il-
lustrates the main idea of the proposed L0PathBrex, which
exploits the interval where a minimizer of JΨ exists together
with the warm-start strategy described above. This is per-
formed sequentially through forward and backward passes in
order to better explore the optimization landscape so as to

refine the estimation of the ℓ0 path. Algo(x0, λ0,ρ) solves the
relaxed problem for a given initial point x0, a value λ0, and
a set of algorithmic parameters ρ ensuring the convergence
of the algorithm. As a final step, from all the local minimizer
gathered in S, the function Prune(S) extracts an estimate of
the ℓ0 path. This is achieved through the computation of the
lower (concave) envelope of all affine functions associated to
local minimizers obtained in S. This discards points in S not
involved in the estimated ℓ0 path. Moreover, it allows us to
identify the critical values of λ0 at which the solution changes.
These values are determined by the intersection of two affine
functions with different slopes (see Figure 1), associated to
two different local minimizers.

4 Numerical results
We now present the experimental validation of

Algorithm L0PathBrex on ℓ0-regularized LS
(Fy(Ax) = 1

2∥Ax − y∥22) and LR (Fy(Ax) =∑M
m=1 log (1 + exp([Ax]m))− ym[Ax]m) criteria.

Tested Algorithms. We compare L0PathBrex with two
methods of the L0Learn package [11, 8]: ‘CD’, a cyclic co-
ordinate descent, and ‘CDPSI’, which performs local combi-
natorial search on top of CD. Both algorithms provide a ℓ0
path. In L0PathBrex, we consider two variants with differ-
ent Algo(x, λ0,ρ): the iteratively reweighted ℓ1 (IRL1) [14]
and the forward-backward splitting (FBS) algorithm [1].

Data generation. The instances (A,y) are generated follow-
ing [11, 8] for LS and LR, respectively. For LS, we construct
the rows of A ∈ RM×N , with (M,N) = (500, 1000), as inde-
pendent samples drawn from a multivariate normal distribution
with zero mean and a covariance matrix Σ ∈ RN×N , where
each entry is defined as Σij = ϱ|i−j| for some ϱ ∈ (0, 1).
The observation vector is given by y = Ax∗ + ε, where
x∗ ∈ RN has k∗ evenly spaced nonzero entries, each set to 1,
and εi ∼ N (0, σ2). The signal-to-noise ratio (SNR) is defined
as SNR = Var(Ax∗)

Var(ε) = (x∗)TΣx∗

σ2 .

For LR, A and x∗ are generated similarly to the LS case.
The label vector y is binary, with ym ∈ {−1, 1}, where
ym = 1 is determined with probability P (ym = 1 | am) =
1/1 + e−s⟨am,x

∗⟩. There, am denotes the m-th row of A, and
s > 0 controls the SNR.

3



Figure 2 – ℓ0-curves (log scale) associated to obtained ℓ0 paths for LS (left) and LR (right). The parameters are (k∗, ϱ, SNR) = (25, 0.9, 10) for
LS and (k∗, ϱ, s) = (25, 0.9, 1) for LR. We ran L0PathBrex with kmax = 2k∗, Npass = 20, and λ2 = 0 for LS and λ2 = 0.01 for LR.

Fy IRL1 FBS CD CDPSI

LS 1.0010 1.0011 1.0088 1.0004
LR 1.0272 1.0463 1.0583 1.0574

Table 1 – Normalized ℓ0-curve area (20 of instances of (A,y)).

Results. In Figure 2, we present the ℓ0-curve associated to
the obtained ℓ0 paths. Note that the pruning step Prune(S) in
Algorithm 1 is also applied to the set of solutions given by CD
and CDPSI. We use a logarithmic scale for better visualization,
which results in the loss of concavity in the ℓ0-curve. In the
LS case (left panel of Figure 2), algorithm L0PathBrex,
with both IRL1 and FBS, as well as CDPSI, produces similar
ℓ0-curves, which are clearly better than the one obtained by
CD. For the LR case (right panel of Figure 2), we observe
that L0PathBrex, with both IRL1 and FBS, achieves a more
optimal ℓ0-curve compared to both CD and CDPSI, leading to
solutions with the lowest objective value for J0. Furthermore,
in this case, IRL1 outperforms FBS.

Next, we consider 20 instances of (A,y) generated un-
der the same parametric setting. We use the area under the
ℓ0-curve as an assessment metric (the smaller, the better reg-
ularization path). In Table 1, we present the average of the
normalized area: for each data generation we normalized the
area obtained by each method with the minimal one. We ob-
serve that for LS, the CDPSI gives the better path, followed
by the proposed L0PathBrex with IRL1 and FBS and then
CD, which always attaints the worst path. In constrast, for
LR, L0PathBrex with IRL1 leads to the best performance
among the four tested methods.

Regarding computational time, while L0Learn computes
an entire solution path within milliseconds, the proposed
L0PathBrex require few minutes. Yet, this must be inter-
preted with care, as L0Learn is implemented in C++, whereas
L0PathBrex is written in Python. Moreover, the com-
putational time is also influenced by the choice of the inner
optimization routine.

5 Conclusion
In this paper, we proposed a new algorithm (L0PathBrex)

to estimate the ℓ0 path in ℓ0-regularized optimization problems.
Our methodology leverages the properties of the Bregman ex-
act continuous relaxations of the original problem to deploy

warm-start strategies in a tree-search fashion. Numerical ex-
periments show that the proposed method achieves similar
results to the CDPSI method of the L0Learn package on LS
problems while outperforming it for LR problems.
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