Investigating a Feature Unlearning Bias Mitigation Technique for
Cancer-type Bias in AutoPet Dataset
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Résumé — La mise en commun de jeux de données contenant différents types de cancer est cruciale pour améliorer la précision
du diagnostic, en particulier dans les situations ol la quantité de données est limitée, car les modeles d’apprentissage profond
s’améliorent généralement lorsque la quantité de données d’entralnement augmente. Cependant, cet avantage inhérent est souvent
entravé par I’introduction de variance due a des biais, tels que la sous-représentation ou la sur-représentation d’une maladie. Dans
cet article, nous proposons un modele invariant au type de cancer, capable de segmenter efficacement les tumeurs du lymphome et
du cancer du poumon indépendamment de leur fréquence ou de leur représentation. Pour ce faire, nous formulons le probleme
comme une tache d’apprentissage par transfert, en utilisant un réseau discriminateur et une fonction de perte de confusion pour
préserver les caractéristiques génériques tout en désapprenant celles spécifiques au domaine. Nous démontrons que la méthode
atteint des performances état de I’art tout en améliorant 1’équité entre les sous-groupes sensibles et en étant efficace dans les
scénarios présentant un fort déséquilibre entre les sous-groupes.

Abstract — The integration of datasets from different cancer type sub-groups is crucial for enhancing diagnostic accuracy,
particularly in situations where data is limited, as deep learning models generally improve with more data. However, this inherent
benefit is often hindered by the introduction of variance due to biases, such as the under-representation of one disease or the
over-representation of another. In this paper, we propose a cancer-type-invariant model capable of effectively segmenting tumors
from both lymphoma and lung cancer, irrespective of their frequency or representation. To this end, we frame the problem as a
transfer learning task, utilizing a discriminator and a confusion loss to preserve generic features while unlearning domain-specific
ones. We demonstrate that the method achieves state-of-the-art performance, improves fairness across sensitive subgroups, and is
effective in scenarios with high subgroup imbalance.

1 Introduction

Medical image segmentation, which involves generating
per-pixel predictions, plays a crucial role in early disease de-
tection, diagnosis, and follow-up. While convolutional neural
networks have achieved significant success in this area, a crit-
ical challenge remains : ensuring fair performance across
patient subgroups, beyond simply achieving state-of-the-art
results. Unfortunately, many models exhibit biases, leading
to performance disparities among these subgroups. The often-
overlooked unfairness aspects of CNNs can significantly com-
promise the reliability and equity of medical diagnoses.

Bias in medical datasets, including gender, racial, or scan-
ner bias, can be categorized by their source or stage within
the learning pipeline, as outlined in [3|]. Training data bias
occurs when the data doesn’t accurately represent the target
population, causing a mismatch in subgroup frequency or
representation. This issue is exemplified by public datasets
like AutoPET [4], a large-scale resource for lesion segmen-
tation in Fluorodeoxyglucose Positron emission tomography
/ Computed Tomography (FDG-PET/CT) scans, containing
over 1,000 scans from lymphoma, melanoma, and lung cancer
patients. A model trained primarily on lung cancer cases in
AutoPET performs well in detecting pulmonary nodules but
struggles with lymphoma, which involves different anatomical
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regions like lymph nodes. This discrepancy, caused by the
over-representation of certain diseases, leads to biased seg-
mentation performance. Thus, addressing training data bias,

Figure 1 — Example of a whole-body FDG-PET/CT scan in
AutoPET, where (left) shows a fused PET/CT scan and (right)
illustrates the manual segmentation of malignant tumors [4]].
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ing the problem as a transfer learning task, treating each sub-
group as a separate domain. This involves developing a domain
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adaptation framework that preserves common features while
discarding domain-specific ones as proposed in [2, [6]. For
instance, [2] harmonized data from different scanners, and
[6] adapted a skull-stripping model from adults to newborns.
In this paper, we apply similar techniques to bridge the gap
between lung cancer and lymphoma datasets, addressing repre-
sentation and prevalence biases. These cancers are chosen due
to their similar image intensity characteristics but anatomical
differences, with lung cancer appearing as pulmonary nodules
and lymphoma as lymph nodes. This divergence and under-
lying biases allow us to explore developing models robust to
both similarities and differences across diseases.

The paper is organized as follows: Section [2] presents the
AutoPET dataset, Section [3] describes the proposed debiasing
method, Section 4| provides experimental results on the Au-
toPET dataset with varying data imbalance frequencies, and
Section [5|concludes with future work and perspectives.

2 Autopet Dataset

Dataset Description. The AutoPET dataset contains 1,014
FDG-PET/CT scans from 900 patients, including 489 scans
with malignant melanoma, lymphoma, lung cancer, and nega-
tive controls. Acquired at University Hospital Tiibingen and
LMU Munich, it was part of the 2022 MICCAI challenge [4].
While the dataset includes 489 annotated scans, we focused
our experiments on 154 lung cancer and 132 lymphoma scans,
as they present a well-defined bias scenario. The melanoma
and negative control cases were excluded to limit domain com-
plexity and focus our study on subgroup fairness.

Dataset Preprocessing. PET scans were normalized to
[0, 1], and CT scans to [-1000, 1000] using Hounsfield units
[1] and SUV [9]. The dataset was resampled to a uniform
resolution of [2.62mm, 2.62mm, 2.62mm]| with B-spline in-
terpolation for CT and PET scans, and nearest neighbor for
segmentation maps. These preprocessing steps were applied to
154 lung cancer and 132 lymphoma scans, which were used in
this study. Nuclear medicine physician feedback indicates that
these cancers share similar intensity values but differ anatomi-
cally, with lung cancer presenting as pulmonary nodules and
lymphoma in lymph nodes (neck, mediastinum, abdomen).
This study focuses on these two diseases to address biases
from data imbalance.

3 Bias Mitigation pipeline

In this section, we present the explored debiasing model
for medical image segmentation, detailing its components:
the U-Net segmentation network [8]], the discriminator [2],
and the batch resampling algorithm [[7]. We also discuss its
training mechanism and optimization strategy. The adopted
architecture is shown in Figure[2]

Segmentation model. The model uses a patch-based 3D
U-Net for tumor segmentation (Figure 2, with an encoder of
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Figure 2 — Unlearning Architecture: Patch-UNet performs the
segmentation task. The green block, a discriminator, concate-
nates (green dot) features from the U-Net’s bottleneck and
output to classify the bias domain. During unlearning, the
discriminator is frozen, and a confusion loss is applied to en-
force uniform distribution at the input level, thus unlearning
cancer-type features in the U-Net layer.

convolutional layers (stride 2) and a decoder with transpose
convolutions for upsampling. It processes parallel 3D patches
[160, 160, 160] from CT and PET modalities, producing a
binary tumor segmentation map, with training focused on
positive (tumor) and negative (healthy tissue) patches.

The discriminator The Discriminator is a CNN for 3D
data, with five convolutional layers and fully connected layers
for classification [2} 6]. It uses instance normalization and
progressively increases the number of channels. The model
starts with 32 channels and expands to 512 before concate-
nating an auxiliary input y, output of the U-Net’s bottleneck.
After further processing, it outputs a binary classification of
the sub-groups : Lung cancer and Lymphoma.

Batch Resampling (**) This strategy modifies the training
sampling process to eliminate discrimination before training
[7]. During each training batch, data is stratified by sensitive
subgroups, and samples are selected to ensure equal representa-
tion of each protected group. Specifically, the batch resampling
algorithm adjusts the sampling probabilities for each subgroup
to prevent bias caused by imbalanced data distributions, ensur-
ing fairness in the training process.

Loss Functions To train the network, we use three main
loss functions. The downstream task loss L, optimizes the
segmentation task and is defined as: £ = (1—\)LDice+ALce
This loss combines Dice and cross-entropy losses, with A
dynamically adjusted during training, increasing with each
epoch. The domain loss L trains the descriptor to distinguish
between sub-groups, guiding the unlearning process, and is
based on the classification cross-entropy loss from [2]]. Finally,
the confusion loss encourages the model to "confuse" the sub-
group identities, unlearning group-specific features. Defined as
Leonf = — % 22;1 log(py,), it uses the output probability p,,
from the discriminator, where [V is the number of sub-groups.

Experimental Setting. To train the unlearning pipeline, we
randomly split the data into train, test (15%), and validation
sets (See Table [T). We establish a baseline by training on
one subgroup (Subgroup-only) and evaluating on the other.
The unlearning pipeline is evaluated in three training schemes:
Balanced Scheme trains on balanced data, while Moderate
Exclusion and Limited Access involve training with 50% and



Training
Lung Cancer Lymphoma
LungCancer-Only 108 -
Lymphoma-Only - 92
Balanced Scheme 108 92
Moderate Exclusion 108 50
Limited Access 108 23

Validation Testing
Lung Cancer Lymphoma | Lung Cancer Lymphoma
23 - 23 20
- 20 23 20
23 20 23 20
23 10 23 20
23 5 23 20

Table 1 — Dataset distribution for each training scheme: Balanced Scheme: Training with nearly equal samples from Lung Cancer
and Lymphoma groups. Moderate Exclusion: Training with a moderate reduction in Lymphoma samples (50% of Lymphoma
samples). Limited Access: Training with significantly fewer Lymphoma samples (25% of Lymphoma samples)

Subgroup test set (number of patients)

Lung Cancer (23) | Lymphoma (20) | Lung Cancer+Lymphoma (43)

Method / metrics \ Batch Res. \ Unlearn

Mean dice + std

Mean dice £std | Av. SER STD ESSP

Subgroup-only

(1) LungCancer-Only 0.72 = 0.18 0.45 +0.28 059 0.13 1.92 0.47
(2) Lymphoma-Only 0.57 £ 0.19 0.64 +0.25 059 0.03 1.19 0.55
Balanced Scheme

A3 Mixed Train- 0.74 £ 0.15 0.64 +0.23 0.69 0.04 1.37 0.63
RandomRes.

(4) Mixed Train-BatchRes v 0.73 £ 0.15 0.63 +£0.23 0.68 0.04 1.37 0.62
(5) Mixed Train-Unlearn v 0.76 £ 0.15 0.67 £0.22 071 0.04 1.35 0.66
(6) Mixed Train-Unlearn- v v 0.74 + 0.13 0.68 + 0.24 0.71 0.03 1.25 0.67
BatchRes

Moderate Exclusion

@) Mixed Train- 0.76 £0.14 0.64 +£0.24 0.70 0.05 1.48 0.62
RandomRes.

(8) Mixed Train-BatchRes v 0.72 £0.15 0.64 £+ 0.25 0.68 0.03 1.25 0.63
(9) Mixed Train-Unlearn v 0.71 £ 0.17 0.64 £ 0.25 0.67 0.03 123 0.63
(10) Mixed Train-Unlearn- v v 0.73 + 0.14 0.67 + 0.21 0.70 0.02 1.19 0.67
BatchRes

Limited Access

an Mixed Train- 0.75 £ 0.15 0.54 +0.27 0.65 0.10 1.85 0.54
RandomRes.

(12) Mixed Train-BatchRes v 0.74 £ 0.14 0.56 + 0.26 0.66 0.09 1.73 0.55
(13) Mixed Train-Unlearn v 0.72 +0.18 0.58 +0.26 0.65 0.07 1.52 0.57
(14) Mixed Train-Unlearn- v v 0.73 £ 0.15 0.60 + 0.25 0.67 0.06 1.48 0.59
BatchRes

Table 2 — Comparison of Dice coefficient values across methods with different training schemes: LungCancer-Only: Training
exclusively on lung cancer samples. Lymphoma-Only: Training exclusively on lymphoma samples. Mixed Train-RandomRes.:
Training on a mixture of lymphoma and melanoma samples. Mixed Train-batchRes: Training on a mixture of lymphoma and
lung cancer samples with batch resampling. Mixed Train-unlearn: Training on a mixture of lung cancer and lymphoma samples
with random resampling using the unlearning model. Mixed Train-unlearn-BatchRes: Training on a mixture of lung cancer
and lymphoma samples using the unlearning model with batch resampling. Unlearn is using the model and optimization scheme
mentioned in (*) whereas batch resampling is adopting the batch resampling method in (**)

25% lymphoma samples in the training set, respectively. Im-
portantly, the test set remains consistent across all experiments
to ensure fair evaluation of the unlearning pipeline.
Optimization Strategy (*). An iterative optimization strat-
egy is used to address the conflicting objectives of domain
discrimination and confusion losses. For each data batch, three
forward and backward passes are performed: First, the main
task loss L,, is optimized to improve downstream task perfor-
mance. Next, the domain discrimination loss L, is optimized
to enhance the discriminator’s ability to distinguish domains.
Finally, the confusion loss Lcoys 1S optimized, but instead of
updating the discriminator, it updates the feature extractor to
hinder the discriminator’s performance. This adversarial ap-
proach makes the feature representation domain-invariant, as

the feature extractor learns to confuse the discriminator. Al-
ternating between these losses ensures a balance between task
performance and domain invariance, resulting in a robust and
generalizable model. The unlearning model is hence defined
as the combination of the U-Net and discriminator trained via
the above optimization technique.

Evaluation Metrics. To validate segmentation performance,
we use Dice accuracy [5] and three additional fairness met-
rics. These include the standard deviation between the aver-
age accuracy of each sub-group and the Skewed Error Rate
(SER) [7]], which represents the ratio of maximum to min-
imum error across subgroups; The Equity-Scaled Segmen-
tation Performance (ESSP) metric from [10] is defined as




ESSP = % where I ((2',y)) represents the overall ac-

curacy metric adopted for the segmentation task and A denotes
the disparity in performance between the sub-groups. ESSP
adjusts the Dice value by factoring in performance disparities,
penalizing models that show significant accuracy differences
between groups. ESSP encourages models that provide more
equitable outcomes across all sub-groups. The ESSP value is
always equal to or smaller than the average Dice value.

4 Results and Analysis

A summary of the results are reported in Table [4] Fairness
metrics are reported to valorize the rhobustness of the method
in different imbalanced schemes.

Subgroup-only: Models trained exclusively on either lym-
phoma or lung cancer (lines 1 and 2 in Table [] ) show sig-
nificantly worse segmentation accuracy on the other group,
emphasizing that training on only one subgroup fail to gener-
alize when applied to other sub-groups.

Balanced training: The average Dice coefficient across all
mixed training methods appears similar. This suggests that the
balanced scheme effectively bridges the performance gap seen
in the baselines. Nevertheless, a deeper dive into the fairness
metrics reveals inherent difference in these performance val-
ues. Specifically, the ESSP, SER, and STD metrics highlight
significant disparities in fairness across the methods. Thus,
the proposed method (line 6) demonstrates a 9 % reduction
in the standard deviation between subgroups compared to the
mixed training with random sampling (line 3). Furthermore,
the penalized Dice score, as reflected by the ESSP, shows a 3%
increase, reinforcing the method’s effectiveness in mitigating
subgroup disparities, which were very clear in the baseline
results, while maintaining strong segmentation performance.

Moderate Exclusion: The average Dice coefficient con-
verges to the perfectly balanced scenario even with a moderate
access to lymphoma class (line 6 vs line 10). A deeper ex-
amination of the fairness metrics, particularly the ESSP, SER,
and STD, reveals that combined application of unlearning and
batch resampling (line 10) yields the highest ESSP, demon-
strating its capacity to enhance fairness even with the moderate
data exclusion. Comparing Method 10 to Method 7 (the ran-
dom resampling baseline of the Moderate Exclusion scheme),
the ESSP shows an 8.06 % increase (from 0.62 to 0.67) and
exhibits a significant reduction in the standard deviation be-
tween subgroups ( decrease STD from 1.48 to 1.19 19.59 %
decrease) and therefore a significant increase in fairness.

Limited access: the average Dice coefficient converges,
indicating that even under constrained data availability, the
mixed unlearn training approaches effectively bridge the per-
formance gap observed in the baselines. However, the perfor-
mance is lower compared to the balanced scheme, highlighting
the challenges of drastic limited data. A deeper examina-
tion of the fairness metrics, particularly the ESSP, SER, and
STD, reveals notable variations : the combined application of
unlearning and batch resampling (line 14) yields the highest
ESSP, demonstrating its capacity to enhance fairness even with
limited data. Comparing mixed training with unlearning and
bias mitigation (line 14) vs mixed training on the segmentation
model with random resampling (line 11), the ESSP shows a
9.26% increase (from 0.54 to 0.59) and significant reduction

in the standard deviation between subgroups. Thus, the STD
decreases from 1.85 to 1.48, representing a 20% decrease in
STD, and therefore a significant increase in fairness.

As a result, one can say that the combined application of
unlearning and batch resampling yields the highest ESSP value
while maintaining state of the art performance, indicating an
enhanced ability to balance performance and fairness.

5 Conclusion and Future Work

In this study, we investigate a feature unlearning bias miti-
gation transfer learning technique to address Cancer-type Bias.
Our experiments demonstrated that the approach improves
segmentation accuracy for underrepresented sub-groups, even
with limited data. Future work will focus on extending our
approach to other datasets and bias types. In addition, we
aim to explore normalizing flows methods for common feature
embeddings.

6 Acknowledgement

The authors acknowledge the ANR — FRANCE (French
National Research Agency) for its financial support under
reference ANR-23-CE23-0019 (FAMOUYS)

References

[1] Tami D. DenOtter and Johanna Schubert. Hounsfield Unit. StatPearls
Publishing, Treasure Island (FL), 2023.

[2] Nicola K. Dinsdale, Mark Jenkinson, and Ana I. L. Namburete. Un-
learning Scanner Bias for MRI Harmonisation in Medical Image Seg-
mentation. In Medical Image Understanding and Analysis, pages 15-25,
Cham, 2020. Springer International Publishing.

[3] Karen Drukker, Weijie Chen, Judy Gichoya, Nicholas Gruszauskas,
Jayashree Kalpathy-Cramer, Sanmi Koyejo, Kyle Myers, Rui C. S4,
Berkman Sahiner, Heather Whitney, Zi Zhang, and Maryellen Giger.
Toward fairness in artificial intelligence for medical image analysis.
Journal of Medical Imaging, 10(6):061104, November 2023.

[4] Sergios Gatidis and Thomas Kuestner. A whole-body FDG-PET/CT
dataset with manually annotated tumor lesions (FDG-PET-CT-Lesions),
2022.

[5] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully
convolutional neural networks for volumetric medical image segmen-
tation. In 2016 Fourth International Conference on 3D Vision (3DV),
pages 565-571, 2016.

[6] Abbas Omidi, Aida Mohammadshahi, Neha Gianchandani, Regan King,
Lara Leijser, and Roberto Souza. Unsupervised Domain Adaptation of
MRI Skull-stripping Trained on Adult Data to Newborns. In 2024
IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pages 7703-7712, Waikoloa, HI, USA, January 2024. IEEE.

[7] Esther Puyol-Antén, Bram Ruijsink, Stefan K. Piechnik, Stefan
Neubauer, Steffen E. Petersen, Reza Razavi, and Andrew P. King. Fair-
ness in Cardiac MR Image Analysis: An Investigation of Bias Due to
Data Imbalance in Deep Learning Based Segmentation. In Medical
Image Computing and Computer Assisted Intervention — MICCAI 2021,
pages 413-423, Cham, 2021. Springer International Publishing.

[8] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In MICCAI, pages
234-241, 2015.

[9] Joseph A. Thie. Understanding the standardized uptake value, its
methods, and implications for usage. Journal of Nuclear Medicine,
45(9):1431-1434, 2004.

[10] Yu Tian, Min Shi, Yan Luo, Ava Kouhana, Tobias Elze, and Mengyu
Wang. Fairseg: A large-scale medical image segmentation dataset
for fairness learning using segment anything model with fair error-
bound scaling. In The Twelfth International Conference on Learning
Representations, 2024.



	Introduction
	Autopet Dataset
	Bias Mitigation pipeline
	Results and Analysis 
	Conclusion and Future Work
	Acknowledgement

