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Résumé — Dans cette contribution, nous proposons d’étudier 1’estimation de modes dans le plan temps-fréquence en adoptant un
modele paramétrique. Le probleme inverse a résoudre est celui de I’estimation du nombre, et des parametres, des composantes.
Pour le résoudre, nous proposons un algorithme glouton qui ajoute de maniere itérative des composantes, tout en effectuant une
optimisation coarse-to-fine a chaque étape. Les résultats numériques permettent d’illustrer les performances de la méthode proposée,
pour la restitution des composantes comme des fréquences instantanées.

Abstract — In this paper, we propose to study mode recovery in the time-frequency plane from a parametric perspective. Formulat-
ing the inverse problem to solve, we seek to retrieve the number of components as well as their parameter. To that end, we propose a
greedy algorithm that iteratively add new components to the solution, while providing at each step a coarse-to-fine optimization to
avoid local minima. Numerical results allow assessing the performance of our method, with respect to component and instantaneous

frequency retrieval.

1 Introduction

1.1 Context and problems

Most of the signals we encounter in nature can be modeled
by a multi-component harmonic model, which consists of su-
perimposing signals modulated in amplitude and frequency [9].
This is for instance the case of audio sounds (music, speech),
physiological signals (phonocardiogram, electrocardiogram),
gravitational waves, just to name a few. Nonstationary, in the
sense of frequency variability as a function of time, is therefore
an inherent property of these signals. Estimating and tracking
these components as a function of time has been an issue in
signal processing for several decades. Estimating these com-
ponents will enable us to better understand the signals we
measure, and also to obtain compact (sparse) time-frequency
representations that are as faithful as possible to the physical
phenomena that generate them.

The standard method for estimating signal components is the
ridge estimation from the time—frequency representation [6].
The ridge method is based on the detection of local maxima at
each time ¢ of time—frequency representation, which enables
the tracking of signal components over time. Several variants
of the ridge methods attempt to optimize and refine detection
by designing a robust peak detector [12]]. However, these
approaches reach their limits when the components are very
close, which will create interference in the time-frequency
plane, and when the components cross, and also in the presence
of high noise levels [13]. Hence, the interest in exploring other
approaches to estimating the components of non-stationary
signals, since it remains an open question, which is the main
aim of this paper. In this work, we propose to approach the
component retrieval by posing an optimization problem that
estimate the optimal parameters of the components that best
fit a given observation, i.e. the time-frequency representation.

1.2 Prior works

Recently, a new approach was introduced based on sparse
inverse problem to estimate linear chirps in time—frequency
plane [14]. Authors propose a gridless approach by using the
Sliding Frank-Wolfe [7] algorithm to solve the problem. Com-
pared with conventional methods based on grid-based ridge
estimation, this approach enabled robust estimation of linear
chirps even in the presence of very high noise levels. However,
there remains the question of more complex signals, which
can contains one or more components that are not linearly
modulated in time and frequency.

Taking a step back, the problem can be related to curve
estimation in image, which has been addressed in a variety of
contexts (e.g., remote sensing [3l] or vascular imaging [[L1]]).
However, the formulation in the TF plane, while sharing some
aspects with these problems (one can, e.g., write an inverse
problem that describe the optimal parameter set), there are
some peculiarities of the TF variant.

In the same vein as [[14]], in this work, we are interested in
the detection of ridges in the time-frequency plane using a para-
metric approach that consists in finding the signal components
and their parameters by solving an inverse problem.

2 Methods

2.1 Inverse problem and criterion

At first, we define the assumptions made about the signals
of interest, as well as the criterion we seek to minimize. We
assume the observed signal x(t) is of the form:

N
2(t) = c(t,0,) + ¢, (1)

n=1

with € an ii.d. Gaussian noise, and ¢(t, ) the chirp de-
termined by its parameters 8. For the sake of prototyping
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Figure 1 — Toy case depiction of the problem considered in this paper. Left panel: representation of y = |V, x| in the case of N = 2
components, whose instantaneous frequencies are in color (blue for component C1, orange for component C2). Middle panel:

depiction of the values taken by C'(®,y) when moving the left extremity of C1, (

(1)

o fo’)- Right panel: values of C(©,y) when

varying the starting time of C1, noted tgl), together with the ending time of C2, noted tf), (right). In both middle and right panels,
all other values of ® fixed remain fixed, and the star depicts the true parameters location.

the optimization method, we focus on quadratic chirps, so
def. o . .
0 = {a,to, fo, 1, f1} such that a is its intensity and its ex-

tremities in time are (g, ¢1) and in frequency (fo, f1).
Ji—Jfo

—t 1 .2
(tl _ t0)2 ) {to<t<ti} ()
Then, the problem we handle is the retrieval of the number N
and parameters @ of the components within x.

We study the casting and inversion of through time-
frequency representations, focusing here on the Short Time
Fourier Transform (STFT), defined as

c(6,t) = acos (2mt <fo +

Vo (T, f) = (&, M;T,g) = /}Rx(t)me_%”fdt,
3)

i.e., the STFT locates the signal in the plane at time 7 and
frequency f following a modulation by f and a translation
by 7 of the signal seen by a Gaussian windows g. The STFT
being additive, one can recast @) as:

N
Vo =Y Vye(8) + Vye. (4)
n=1

We denote y = |V z| the modulus of the STFT of z after
sampling (i.e., in the discretized TF plane), and the set of
parameters piloting x as ©® = {6,,})_,. Then, the forward
operator is ¢(©®) = ’25:1 Vye(0)|, i.e., (®) is the modu-
lus of the STFT of the signal span by ©® = {0,,}N_,. We can
then formulate the retrieval of the optimal parameter set as the
minimization of:

C(@,y) = [2(©) - yl.

&)

Remark. This criterion is similar in formulation to other
{5-minimization problems, but the following points need to be
acknowledged:

— (@) assumes implicitly, through ¢3 minimization, an ad-
ditive i.i.d. Gaussian noise in the TF plane. This is
a convenient assumption that remains inexact, see the
numerous studies on the nature of the STFT of white
noise [18[1]].
® is not a linear operator, as the modulus operates
outside the sum ; in other words ®(®;) + ®(O;) #
®(®;UB3). This is in fact due to interferences between
components of the signal.

2.2 Estimation

Minimizing (3 is not a trivial problem: the number of com-
ponent N is unknown, and even for a known N, C' possesses
several local and global minima. This is depicted in Fig.[I]
which shows that even for a toy example, the criterion exhibits
the effects of interferences. This tormented landscape makes
optimization a difficult task, which is why we adopt the two
following ideas:

1. Greediness, in order to add components one by one to
the solution. Each addition delimits a new iteration of
the algorithm, until no new component can be found.

2. Coarse-to-fine optimization: in order to avoid local min-
ima, we seek solutions in an extended neighborhood at
first, then locally and more finely. Besides, we do not
assume the estimations performed earlier are definitive,
so they are brought back into optimization at each step.

So, the algorithm we propose is based on the repetition of three
main steps.

1) Addition of new component.

r(y,®) def. y—®(©), we select the largest connected compo-

nents in the set {’7’, I r(y(T, ), @) > mean(y) + std(y)}.

The boundaries in time and frequency of the component pro-
vides an initial estimate of the new 6 added to the solu-
tion. Note that the sought-after solution is bounded such that
[t1 — to| > Ay, i.e., there is a lower bound on the duration of
the component. If no component long enough is found, the
algorithm is stopped.

2) Coarse optimization. We need to first explore a large
panel of solution, possibly belonging to different basins of
attraction (see Fig. [I). To do so, we perform random walks
based on the Metropolis-Hastings (MH) algorithm [4]], which
allows a cheap and large domain exploration. We choose to
run @) parallel MH chain and to retain the one providing the
lower value of C. As we do not deal with convergence, a fixed
number of MH step and variance of the perturbation (1/10 of
the size of the parameter space) are used.

3) Fine optimization. From the best MH result, we finally
run the L-BFGS-B algorithm [2], which allows managing
efficiently both boundaries in the parameter space and com-
putational resources. At this step, the gradient is numerically
approximated.

The algorithm stops either when it is unable to find new

From the residual



1. Addition of components

2. Coarse optimization (parralel MH) 3. Fine optimization (L-BFGS-B)

Figure 2 — Step-by-step depiction of the proposed algorithm.

Each line corresponds to a new iteration, while the columns
depicts the steps described in Alg.[I] In the left panels, the
light red region is the largest connected component found in
the residual, and in the middle panels the transparent curves
are other outcomes of MH that were not selected at step 2.
The algorithm stops as it cannot found long enough connected
components after 3 iterations (not shown).

components, or when C' does not diminish between iterations.
The overall procedure is summarized in Alg. [I} and Fig. 2]
depicts the stepwise course of the algorithm.

Algorithm 1: Proposed algorithm

Require: y = |V, x|, minimum time duration A,
number of parallel MH chain Q.
Ensure: ©
do (iteration n):
1. Add a new components from r(y, C;)"_l)
If no component last longer than A;: stop
2. Coarse optimisation () parallel MH chains).
3. Fine optimization (L-BFGS-B), yielding O,.

While C(©,,,y) < C(©,_1,y)

Remark. The proposed algorithm shares some aspects with

existing methods in the literature, namely:

— Matching pursuit and extensions for component unmix-
ing. We however do not rely on a dictionary of 6 to
perform inference, and that would be suboptimal in our
context, as there is no reason for the 0 to live on a pre-
defined grid.

— Sliding Frank-Wolfe [7] regarding the iterative and con-
tinuous aspect of our optimization. However, we do not
enforce sparsity: it would require the setting of some
regularization parameter, whose choice can itself be the
object of a homotopy method, which in turns need to be
problem-tailored, as in [3].

3 Numerical results

We now propose an evaluation study for Alg.|l} Sampling
random 6 parameters and ensuring the resulting quadratic
chirps cross two by two, we vary the number of components
N and the signal-to-noise ratio (SNR), defined as 20log(7/€).
We are then interested in evaluating our ability to:

N=2 N=3 N
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Figure 3 — Summary of experiments. From top to bottom are
represented the distance between estimation and ground truth
according to d. (7), to d, (6), and the estimated number of
components N. Experiments are repeated over 50 random
sampling of chirps (see Fig.[) and the solid lines represent the
average, while the area depicts the boundary between the first
and 9th decile.
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Figure 4 — Example of results obtained at SNR = 15dB.
The background corresponds to y = |Vz|, and the results
corresponds from left to rightto N =2, N = 3and N = 4.

— accurately find local maxima at any given time, i.e.,
estimate instantaneous frequencies correctly,

— recover N accurately,

— attribute the local maxima to the correct component.

We evaluate the quality of estimation through their curve
representation in the TF plane, so we propose to use specific
distances to that end. This representation is assumed to be
discretized for all time step at which it exists.

At first, we define a pointwise distance between a reference
curve ¢ and an estimated curve e as:

dp(z,€) =y _min e[t] —e[t']], (©)

with ¢ and ¢’ discrete time indexes. Then, we can define a
distance between set of curves. Let us assume we have a set
of reference curves R = {z;,}2< | and a set of estimations

& = {e;},, then the component-wise distance between R
and & is:

K
dc(mv 6) = 1I<nliélL dp (lk, el)- @)

k=1



In other words, from a curve in the reference set, one first find
its match in the estimation in terms of pointwise distance, and
this contributes to the distance between sets.

Alternatively, we consider a pointwise distance between sets
that is indifferent to curve attribution, i.e. computing d,, (€)
assuming all points in R and & belong to the same component.
These distances will help us assert the quality of frequency
retrieval, regardless of component attribution.

We compare our method with the ridge tracking (RT) pro-
posed in [10]] as a baseline. This method requires a prior
knowledge of the number of component to seek, and provide a
frequency estimate per component at all time step. To properly
delimit components, we threshold them above the spectrogram
mean, thus yielding possibly fewer components than expected.

Numerical results are summarized in Fig. [3§]and some exam-
ples are depicted in Fig.[4] First observations yield an expected
lower quality results with lower SNR, or with more compo-
nents. More generally, we make the following observations:

— the RT method identifies quite well instantaneous fre-
quencies, at the cost of label switching: sets of instan-
taneous frequencies are sometimes gathered together
despite being separate in |V, x|.

— the method we propose is by comparison more able to
follow components, but remains affected by negative
interferences (chirps are “too short" when crossing).

— the RT method most often underestimates the number
of component, while our method generally overestimate
it: in some cases, two chirp crossing can be seen as two,
three or four chirps.

— overall, our proposed method yields less variability with
respect to the proposed metrics, and seems more robust
to both noise and the increasing of V.

4 Discussion

In this paper, we modeled the instantaneous frequency es-
timation problem as a parametric estimation problem, and
proposed a greedy approach to solve it. While this work is
still preliminary (e.g., the impact of the algorithm parameter
has to be thoroughly assessed), it has shed light on several
aspects of the problem. We have shown that even in a simple
case, component recovery can be surprisingly difficult, due to
non-linearities induced by interferences. In that regard, mini-
mizing a {5 norm, while being straightforward, is perhaps not
the best choice. Considering the relation between the STFT
and random fields (see, e.g., [8]] describing the covariance
structure of the STFT), a specific norm accounting, e.g., for
the covariance structure of the STFT might be promising. We
also aim at comparing, and using, more recent ridge tracking
method either for comparison or as part of the optimization
process.

Notably, the parametric model and estimation allows pro-
viding, for any component, an off-the grid estimation of the
instantaneous frequency. In other words, we do not depend on
the grid used in the TF plane, as long as the transform and its
parameter allows for a sufficient resolution. This aspect of the
problem is in link with the main step forward regarding the
formulation of the problem, that can be recast as an instance of
a sparse off-the-grid inverse problem, benefiting from relevant
algorithms [7]] and recovery guarantees.
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