
CROQuant: Complex Rank-One Quantization Algorithm

Maël CHAUMETTE1 Rémi GRIBONVAL1 Elisa RICCIETTI2

1Inria, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP, UMR 5668, 69342, Lyon cedex 07, France
2ENS de Lyon, CNRS, Inria, Université Claude Bernard Lyon 1, LIP, UMR 5668, 69342, Lyon cedex 07, France

Résumé – Cet article présente un algorithme de quantification pour les matrices de rang un à valeurs complexes qui exploite les
invariances par remise à l’échelle du problème pour obtenir un meilleur résultat que la quantification au plus proche voisin. En
s’appuyant sur cet algorithme, on propose aussi une approche pour la quantification des matrices creuses à structure papillon à
valeurs complexes apparaissant par exemple dans la transformée de Fourier rapide. Comparé à la quantification au plus proche
voisin élément par élément, on obtient ainsi une réduction de 30% du nombre de bits nécessaires pour une précision donnée sur les
matrices papillons, tout en maintenant une complexité polynomiale en la dimension des matrices.

Abstract – This paper presents a quantization algorithm for complex-valued rank-one matrices that exploits rescaling-invariances
of the problem to obtain better results than round-to-nearest strategy. This algorithm is also used as a building block for an heuristic
strategy to quantize complex-valued butterfly-structured sparse matrices appearing for example in the fast Fourier transform.
Compared to element-wise round-to-nearest quantization, the number of bits is reduced by 30% the number of bits for a given
precision on butterfly matrices, while maintaining a polynomial time complexity in the dimension of the matrices.

1 Introduction

Quantization is a fundamental issue in computer science
and machine learning. With the ever-increasing size of models
and data, the need to reduce memory by lowering numerical
precision while maintaining acceptable performance is becom-
ing crucial. In particular, quantization reduces the memory
required to store matrices and speeds up the computations.
These advantages are widely needed for deep neural networks
that are mainly composed of huge, dense matrices.

Rank-one matrices play a central role in many compression
problems in machine learning and signal processing, e.g., the
Singular Value Decomposition [9]. Recently, an optimal quan-
tization approach for real-valued rank-one matrices exploiting
rescaling-invariances to minimize the quantization error, was
introduced in [8]. In this work, we extend these results to
the case of complex-valued matrices, an essential generaliza-
tion to treat several applications in signal processing, such as
the Fast Fourier Transform (FFT). Indeed, the FFT involves
a butterly structure, corresponding to a product of structured
sparse matrices often used to factorize dense matrices, such
as Hadamard and discrete cosine transform matrices [10], to
speed up matrix-vector products and reduce memory space
[12]. Quantization of such matrices further amplifies these
computational gains. Their particular structure allows quan-
tization to be heuristically decomposed into a succession of
rank-one quantization problems exploiting our approach.

In Section 2, we formalize the quantization problem for
complex rank-one matrices and explain why this problem can-
not be solved simply with the optimal quantization algorithm
applied to the real and imaginary parts.

We propose in Section 3 an algorithm adapted to this com-

This project was supported by the SHARP project of the PEPR-IA (ANR-
23-PEIA-0008, granted by France 2030), and the project ANR MEPHISTO
ANR-24-CE23-7039. The authors would like to thank the Centre Blaise
Pascal’s platform at ENS de Lyon (Lyon, France) for computing facilities. The
platform uses the SIDUS solution [14] developed by Emmanuel Quemener.

plex setting. We show that the properties of invariance by
rescaling persist in the complex setting, and allow for more
accurate quantization than a naive nearest-neighbor round-
ing approach. Our algorithm depends on a parameter bm that
controls the accuracy and affects the computational time (the
higher bm the higher the accuracy but the longer the computa-
tional time). However, we empirically show that small values
of this parameter give good results. This algorithm is also
much faster than the brute-force method of testing all possible
combinations for each element of the rank-one matrix: the
latter provides an algorithm with exponential time complexity
in t, the number of significant bits, and in the dimensions m,n
of the matrix; whereas our algorithm has a time complexity of
O(nmmin(n,m)b2m2

2t), which is simply polynomial in the
dimension of the rank-one matrix. The exponential depen-
dence on t is tractable in this context because we are interested
in small values of t, typically t = 4 or 6 for applications in
modern float formats typically used in machine learning.

In Section 4, we discuss the quantization of complex butter-
fly matrices that play a central role in the FFT. Our algorithm
provides quantization that is also more efficient than the naive
rounding approach. At a given accuracy, our algorithm will
need 30% fewer bits than the naive rounding method.

Notations. Ft is a set of floating-point numbers with t-bit of
significand, as in [8]. We denote vectors in lowercase boldface
(x) and matrices in uppercase boldface letters (X). ∥·∥ is
the Frobenius norm. Re, Im denote the real and imaginary
parts of a complex number, which we quantize separately. We
therefore define CFt := Ft + iFt.

2 Problem formulation and baselines
Given x ∈ Cm and y ∈ Cn, we formulate the quantization

problem as the following minimization problem:

x̂, ŷ ∈ arg min
x̂∈CFm

t ,ŷ∈CFn
t

∥xyH − x̂ŷH∥2︸ ︷︷ ︸
Cx,y(x̂,ŷ)

. (1)

1

mailto:mael.chaumette@ens-lyon.fr
mailto:remi.gribonval@inria.fr
mailto:elisa.riccietti@ens-lyon.fr
https://www.pepr-ia.fr/en/projet/sharp-english/

Like in [8], the naive approach, called round-to-nearest (RTN),
involves mapping each element of x and y to its nearest neigh-
bor in CFt. We define the function round(·) that maps the
real and the imaginary parts of a complex number to their
nearest neighbor in Ft. For a vector, the round function is
applied element-wise. This method does not take into account
that the problem is invariant by rescaling: ∀λ ∈ C∗,xyH =
(λx)(1

λ
y)H . Another possible method is to apply separately

the optimal algorithm of [8] to the real and imaginary parts
of x and y. However, this method is not optimal either, since
it omits cross-terms in the product of the complex numbers.
We therefore need to find another method to obtain optimal
quantization of complex rank-one matrices.

3 Proposed quantization algorithm

In this section, after characterizing the optimal solution to
the quantization problem (1), we build an algorithm providing
an efficient approximate solution, discuss its complexity, and
finally present its performance against the RTN method.

Characterizing the optimal solution. The following lemma
is a key result to address (1).

Lemma 1. Given x ∈ Cm, y ∈ Cn and t ≥ 1, it holds

inf
x̂∈CFm

t ,ŷ∈CFn
t

∥xyH − x̂ŷH∥2 = inf
λ∈C

f(λ) (2)

with f(λ) := max
x̂∈round(λx)

∥xyH − x̂ round(µ(x̂)y)H∥2 (3)

where µ(x̂) :=

{
⟨x,x̂⟩
∥x̂∥2 if x̂ ̸= 0

0 otherwise
(4)

The lemma and its proof are the complex-valued analog of
[8, Lemma 4.2], that was shown to allow reducing the 4mn-
variable optimization problem (1) to a one-variable problem:
to find an optimal λ∗ of f defined in (3), assuming it exists.

Using the piecewise constant nature of f . Since the function
λ 7→ round(λx) is piecewise constant, f is also piecewise
constant, so finding a minimizer on C amounts to finding
on which of the corresponding pieces f attains the smallest
value. The simplest way to individuate these pieces is to
study the breakpoints of the function λ ∈ C 7→ round(λx)
where x ∈ Cm. These breakpoints correspond to λ values
for which there is at least one entry xj such that round(λxj)
corresponds to a tie in the choice of the nearest neighbor for
the real or the imaginary part.

Characterization of breakpoints through breaklines. The
following result describes these breakpoints.

Lemma 2. Consider x ∈ Cm. For each entry xj := u+ iv,
j = 1, ...,m, the breakpoints of λ ∈ C 7→ round(λxj) are
straight lines in the complex plane with equations{

u Im(λ) = −vRe(λ) + s(k + 1
2)2

−b−t

v Im(λ) = uRe(λ) + s(k + 1
2)2

−b−t

∀k ∈ J2t−1, 2t − 1K, ∀s ∈ {−1,+1}, ∀b ∈ Z

(5)

The proof is an adaptation of the proof in [8, Lemma 5.1].
We call breaklines the lines defined by (5). There are infinitely
many such breaklines approximating “accumulation lines” de-
fined by taking b→ +∞, with equations u Im(λ)+vRe(λ) =
0 (resp. v Im(λ)− uRe(λ) = 0).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Re()

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Im
(

)

0.000

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

Figure 1 – Function λ ∈ C 7→ ∥xyH−x̂(λ)ŷ(λ)H∥
∥xyH∥ with x̂(λ) :=

round(λx), ŷ(λ) := round(µ(x̂(λ))y) and µ(x̂(λ)) defined in
(4). Breaklines of the function λ ∈ Ω(x) 7→ round(λx) in black
(corresponding to b ≤ 5 in Lemma 2), centroids in green, accumu-
lation lines in orange and the centroids on the accumulation lines in
magenta. The search space Ω(x) is delimited by the red lines. Here,
x,y ∈ C2 were drawn with real and imaginary parts following a
uniform distribution in [0, 1] and t = 3.

Minimizing f : restricting to a compact domain. Further-
more, it is easy to show that f(2λ) = f(iλ) = f(λ) for every
λ ∈ C, so studying function f can be limited to any compact
domain Ω ⊂ C generating a tiling of the complex plane via
dilations and quarter turn rotation (i.e., with the sets ik2jΩ,
0 ≤ k ≤ 3, j ∈ Z). Figure 1 illustrates that such a domain can
be chosen to be a trapezium with sides defined by breaklines
of f . We denote it Ω(x). Figure 1 also shows the typical shape
of f on Ω(x) with its breaklines (corresponding to b ≤ 5), and
accumulation lines displayed in orange.

Construction of the algorithm. As in the real-valued case,
since f is piecewise constant, minimizing it amounts to find
on which of the polygonal pieces (delimited by its breaklines)
it attains its smallest value. One also needs to consider the
(constant) values of f on finitely many line segments lying on
the intersection of the accumulation lines with Ω(x). However,
contrary from the real-valued case where it suffices to visit
a finite number of breakpoints, here in the complex-valued
case there are infinitely many pieces even in the bounded
region Ω(x). It is therefore not possible to explicitly evaluate
f in all these pieces in order to find x̂∗ and ŷ∗. For this
reason we define a parameter bm, and choose to consider just
the breaklines corresponding to b ≤ bm in Lemma 2. This
defines a finite number of pieces, which we can enumerate
and iterate over using the python library shapely1. Each of
the resulting pieces has a centroid, and the collection of such
centroids, completed with the midpoints of the line segments
described above (displayed in magenta on Figure 1) is denoted
Cbm(x). Algorithm 1 describes the resulting near-minimization
algorithm.

Role of the parameter. The larger the parameter bm, the closer
the resulting pair (x̂, ŷ) is to being optimal, but this will have
an impact on time complexity because this will increase the
number of tested centroids. We will see below that bm = 1 is
enough to get better results than the RTN approach.

1. https://shapely.readthedocs.io/en/stable/

2

Algorithm 1: Complex rank-one quantization algorithm
Data: x ∈ Cm, y ∈ Cn, t ≥ 1, bm ∈ Z.
Result: x̂∗ ∈ CFm

t , ŷ∗ ∈ CFn
t , λ∗ ∈ C.

1 Initialize x̂∗ ← 0, ŷ∗ ← 0;
2 if x,y ̸= 0 then
3 Build set of centroids Cbm(x) (Lemma 2, λ values

on accumulation lines and call to shapely);
4 for λ ∈ Cbm(x) do
5 x̂← round(λx);
6 µ← ⟨x,x̂⟩

∥x̂∥2 ;
7 ŷ ← round(µy);
8 if Cx,y(x̂, ŷ) < Cx,y(x̂

∗, ŷ∗) then
9 x̂∗ ← x̂, ŷ∗ ← ŷ, λ∗ ← λ;

Complexity. The complexity of our algorithm is determined
in several stages. Firstly, the number of breaklines is bounded
by 4mbm2

t−1. Then, according to [6], the maximum number
of regions defined by k straight lines is k(k+1)

2 + 1. In our
case, we can conclude that there are O(m2b2m2

2t) centroids.
For each centroid, we need to calculate Cx,y(x̂, ŷ), which has
a cost ofO(m+n), by exploiting the same trick as in the real-
valued case [8]. The total cost of the algorithm is therefore
O
(
(m+ n)m2b2m2

2t
)
. But, since x and y play symmetrical

roles, we can swap their roles by looping on Cbm(y), which
will result in a time complexity ofO

(
(m+ n)n2b2m2

2t
)
. Thus

Algorithm 1 has a time complexity O(nmmin(n,m)b2m2
2t).

Experiments and results. Experiments are run on an Intel(R)
Xeon (R) Gold 5218 CPU @ 2.30GHz. Our implementa-
tion is available in open source [1]. We consider 100 pairs
(x,y) ∈ C12 × C12, where the real and imaginary parts of
each component follow a uniform distribution on [0, 1]. We set
t = 4. Table 1 shows the average of the relative quantization
error of our algorithm ρbm := ∥xyH−x̂∗(ŷ∗)H∥

∥xyH∥ and of the com-
putation time for different values of bm. The computation time
increases rapidly, while the relative variation between the error
at bm = 1 and bm = 6 is around 5%. This empirical proof
encourages us to use bm = 1 in the rest of our experiments.

Table 1 – Average of the quantization error and the of calculation time
of Algorithm 1 over 100 pairs (x,y) ∈ C12 × C12 with uniformly
distributed real and imaginary parts in [0, 1] for different values of bm

with t = 4.

bm = −2 bm = 1 bm = 3 bm = 6

Error (×10−2) 2.398 2.308 2.202 2.173
Time (s) 0.913 22.46 64.07 161.5

We compare the quantization error ρbm of our algorithm and
the RTN strategy error ρrtn := ∥xyH−round(x) round(y)H∥

∥xyH∥ in
Figure 2 with the same setup. As in the real-valued case [8],
the performance of Algorithm 1 depends on n, unlike that of
RTN, but it is more efficient especially for small n. Indeed,
when n = 4, ρbm is approximately 5 times smaller than ρrtn.
Furthermore, as n increases, the point clouds become more
concentrated.

We also highlight that the naive application of the optimal
real-valued algorithm to the real and imaginary parts of x and
y (results not displayed) yields a quantization error approxi-
mately 10 times larger than ρbm .

10
2

10
1

rtn

10
2

10
1

b m

t = 6

t = 4

t = 2
n = 4
n = 16
n = 24

Figure 2 – Scatterplot of ρbm , ρrtn for 100 pairs (x,y) ∈ Cn ×
Cn with uniformly distributed real and imaginary parts in [0, 1] for
different values of n and t with bm = 1.

4 Application to butterfly quantization

We now exploit our algorithm to quantize butterfly matrices
similar to those appearing in the FFT. The FFT accelerates
the discrete Fourier transform (DFT) using the Cooley-Tukey
algorithm [2]. The main idea is to use the divide-and-conquer
strategy, which recursively factorizes the DFT of size n× n
into log2(n) sparse matrices (for simplicity we consider here a
dimension n that is a power of two, but more flexible butterfly
factorizations can be defined [11]), the butterfly matrices. If
we denote F ∈ Cn×n the DFT matrix, then its factorization
associated to the Cooley-Tukey algorithm is

F = B1 · · ·BL

where L := log2(n) and the Bi are structured sparse matrices
with the so-called Kronecker-sparse structure [11].

To quantize the factors Bi, in the spirit of what was done
in the real-valued case [8], we aim to leverage Algorithm 1 to
work on a product of complex-valued butterfly factors.

Quantization algorithm for butterfly matrices. First, let us
take a detour into optimal quantization for a product of two
(possibly sparse) matrices X,Y ∈ Cn×r: the quantization
problem then reads

X∗,Y ∗ ∈ arg min
X̂,Ŷ ∈CFt

∥XY H − X̂Ŷ
H
∥2 (6)

where CF t is the set of matrices with coefficient in CFt and
the same support as X,Y . The support of a matrix A is the
set of coordinates (i, j) where Ai,j ̸= 0. To the best of our
knowledge, there is no method for finding the optimal quan-
tization for this problem. However, if the rank-one matrices,
xiy

∗
i , where xi and yi are the corresponding columns of X

and Y , 1 ≤ i ≤ r, have disjoint supports, then the problem
(6) can be decomposed into r independent complex rank-one
matrix quantization problems:

∥XY H − X̂Ŷ
H
∥2 =

r∑
i=1

∥xiy
H
i − x̂iŷ

H
i ∥2. (7)

Each sub-problem can be addressed using Algorithm 1.
We can leverage the two-factor setting: the crux is that

when considering certain so-called chainable Kronecker-
sparse factors [11], for any subset of consecutive factors, the

3

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
t

10
2

10
1

Er
ro

r

Fixed (fit: 2.7 × 2 1.0t)
Stochastic (fit: 1.7 × 2 1.0t)
RTN (fit: 1.1 × 2 1.0t)
Pairwise (fit: 0.8 × 2 1.4t)
LTR (fit: 0.6 × 2 1.3t)

Figure 3 – Quantization error on the butterfly decomposition of 10
random matrices as a function of t (n = 256, bm = 1).

product between X = Bl0 · · ·Bl1 ∈ Cn×n and Y H =
Bl1+1 · · ·Bl2 ∈ Cn×n, with 1 ≤ l0 ≤ l1 ≤ l2 ≤ L, can
be written as a sum of n rank-one matrices with disjoint sup-
port [10]. As suggested for the real-valued case [8], this can
be used to heuristically decompose the product of L butterfly
matrices into several products of two matrices to apply the opti-
mal quantization of the problem (6). The quantization of each
product will therefore be optimal, but the global quantization
will not. As in [8] we consider two heuristics:
— pairwise: writing (B1B2)(B3B4) · · · (BL−1BL), quan-

tization is applied to each pair of consecutive factors (if L
is odd, the last matrix is quantized using the RTN strategy).

— Left-to-Right (LTR): writing B1 (B2(· · · (BL−1BL))),
quantization is performed from left to right (details in [8]).

We also implement stochastic rounding [4] and fixed-point
rounding [5], which work like RTN, i.e., quantization is ap-
plied element-wise without any rescaling.

Evaluation on random butterfly matrices. To compare these
methods, we generate 10 random collections of Kronecker-
sparse factors B1, . . .BL and quantize them with the methods
described before to obtain B̂1 · · · B̂L. Figure 3 shows the
evolution of the quantization error ρ := ∥B1···BL−B̂1···B̂L∥

∥B1···BL∥
for different values of t and bm = 1. Despite the matrix product
parenthesis heuristic, pairwise and LTR are more efficient than
RTN, stochastic and fixed-point. Indeed, we see that LTR
and pairwise need about 4 bits to achieve an error close to
10−2 while RTN, fixed-point and stochastic must have more
than 6 bits to achieve this error. In general, according to the
exponential fit, pairwise and LTR need 1− 1

1.4 ≈ 30% fewer
bits than RTN, fixed-point and stochastic to achieve the same
quantization error.

Evaluation on the quantization of the FFT. We also apply
the five quantization algorithms to the (exact) Cooley-Tukey
factorization F = B1 · · ·BL ∈ Cn×n where F is the DFT
and look at the error made if we apply the quantized version of
F to a vector x instead of applying the original high-resolution
DFT.

Let x ∈ Rn be the signal and y := Fx ∈ Cn its Fourier
transform. We also define ŷ := F̂ x = B̂1 · · · B̂Lx. The
average of ρfft :=

∥y−ŷ∥
∥y∥ to over 10 standard Gaussian signals,

with the five considered algorithms are displayed in Table 2
with n = 256, t = 5 and bm = 1. Like for the butterfly quanti-
zation error, the LTR and pairwise methods are more efficient
than the RTN, stochastic and fixed-point quantizations.

Table 2 – ρfft with different quantization strategies for n = 256, t = 5
and bm = 1.

LTR pairwise RTN Stochastic Fixed

ρfft × 10−2 0.697 0.293 2.353 2.747 3.263

5 Conclusion

In this paper, we proposed an efficient quantization al-
gorithm exploiting rescaling-invariances for complex-valued
rank-one matrices. We showed that this approach enables more
accurate quantization than a naive element-wise rounding. Ap-
plying this algorithm to butterfly matrices, which play a key
role in many fast transforms such as the Fast Fourier Trans-
form, we demonstrated the possibility to reduce quantization
error for a given number of bits, or alternatively to reduce by
30% the required number of bits for a given precision.

Our algorithm depends on a parameter that controls the ac-
curacy but also impacts the computation time. Empirically,
this parameter is not very limiting, but since the real-valued
case leads to a fully optimal algorithm with bounded complex-
ity, a natural challenge is to understand whether this remains
possible in the complex-valued case via further mathematical
analysis steps. Furthermore, throughout this paper, we have
neglected underflow and overflow [3, 13]. A similar study
taking these phenomena into account would be interesting.

This work opens the way to several perspectives: the first is
the quantization of the product of matrices of any rank. The
application to butterfly matrices leads us to consider applying
our algorithm to other matrix decompositions, such as the
Toeplitz matrices that models, for example, the covariance
matrix of some time series [7]. Another challenge is to extend
this work to quantize ReLU networks, which satisfy similar
rescaling-invariances.

References
[1] M. Chaumette, R. Gribonval, and E. Riccietti. Code for reproducible

research - CROQuant: Complex Rank-One Quantization Algorithm.
https://inria.hal.science/hal-05133647, June 2025.

[2] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Math. Comp., 19(90):297–301, 1965.

[3] A. Cuyt, P. Kuterna, B. Verdonk, and D. Verschaeren. Underflow revis-
ited. Calcolo, 39:169–179, 2002.

[4] E.-M. El Arar, D. Sohier, P. de Oliveira Castro, and E. Petit. Stochastic
rounding variance and probabilistic bounds: A new approach. SISC,
45(5):C255–C275, 2023.

[5] M. Gerken. On fixed-point quantization schemes. In 38th MWSCAS,
volume 1, pages 350–353 vol.1, 1995.

[6] R. Graham, D. Knuth, and O. Patashnik. Concrete mathematics, a
foundation for computer science. Math. Gaz., 75(471):117–119, 1991.

[7] R. M. Gray. On unbounded Toeplitz matrices and nonstationary time
series with an application to information theory. Information and control,
24(2):181–196, 1974.

[8] R. Gribonval, T. Mary, and E. Riccietti. Optimal quantization of rank-
one matrices in floating-point arithmetic—with applications to butterfly
factorizations. June 2023. working paper or preprint on HAL.

[9] Q.-T. Le, E. Riccietti, and R. Gribonval. Spurious valleys, np-hardness,
and tractability of sparse matrix factorization with fixed support. SIMAX,
44(2):503–529, 2023.

[10] Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval. Fast learning of fast
transforms, with guarantees. In ICASSP, pages 3348–3352. IEEE, 2022.

[11] Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval. Butterfly factorization
with error guarantees, November 2024. arXiv:2411.04506.

[12] L. Le Magoarou and R. Gribonval. Flexible multilayer sparse approxi-
mations of matrices and applications. JSTSP, 10(4):688–700, 2016.

[13] W. T. Padgett and D. V. Anderson. Quantization Effects -Round-Off
Noise and Overflow, pages 83–111. Springer, Cham, 2009.

[14] E. Quemener and M. Corvellec. Sidus—the solution for extreme dedu-
plication of an operating system. Linux Journal, 2013(235):3, 2013.

4

https://inria.hal.science/hal-05133647
https://inria.hal.science/hal-04125381

	Introduction
	Problem formulation and baselines
	Proposed quantization algorithm
	Application to butterfly quantization
	Conclusion

