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Résumé – La diffusion inélastique des rayons X (IXS) est une méthode puissante pour étudier les matériaux. Il est préférable
de réduire le temps d’irradiation afin de préserver au maximum les échantillons, ce qui peut affecter l’interprétation des données.
Nous proposons une approche statistique pour optimiser les paramètres expérimentaux afin de tirer le meilleur parti d’un temps de
collecte donné.

Abstract – Inelastic X-ray scattering (IXS) is a powerful method for studying materials. It is preferable to reduce the irradiation
time in order to preserve the samples as much as possible, which can affect the interpretation of the data. We propose a statistical
approach to optimise the experimental parameters in order to make the most of a given collection time.

1 Introduction
In recent years, high-brightness X-ray sources have been

increasingly used to study cultural heritage materials for their
unique ability to probe their chemical properties [1]. New
spectral imaging approaches may require long exposure to
irradiation, which constrains or sometimes hampers the study
of precious and/or sensitive samples. Inelastic X-ray scattering
(IXS) is a clear illustration of this difficulty. IXS imaging has
emerged as a promising technique for characterising cultural
heritage artifacts, in particular artists’ pigments [4]. However,
its unique capability to speciate low atomic number (‘light’)
elements is counterbalanced by the very low probability of
interaction between the probe and matter, leading to long
irradiation time to collect interpretable data [2, 5].

In IXS spectral images, each pixel value is a spectrum, that
is, a number of photons per unit time as a function of energy.
Let T be the maximum time that one could spend on one pixel,
i.e. on one spectrum, denominated time budget. T can be bro-
ken into T = M × t with M the number of energy points and
t the acquisition time per energy point. Given the preciousness
of cultural heritage objects, experimenters strive to reduce T
as much as possible [3]. To achieve this, a compromise is often
qualitatively set between experimental parameters to make the
best use of T based on compositional priors about the sample.
Here, we propose a statistical method for rigorously selecting
the optimal parameters (t,M). Synthetic spectral images are
modelled for different (t,M). By solving an inverse problem,
we recover the species distribution from the ground truth. The
optimal experimental parameters (t,M) are then obtained by
minimizing the mean squared error between the ground truth
and the results of the inverse problem, under the constraint
that T = t × M is bounded. Beyond the optimal number
M of energy points to use, we also provide an optimal set of
M energy points from an exhaustive energy grid collected at
N ⩾ M points.

2 Statistical framework

2.1 Ground truth
Artists’ pigments are generally mixtures of distinct minerals

resulting from raw materials. The resulting 3D IXS image can
be described by K (mineral) phases, defined here as groups of
pixels sharing the same chemical composition. Each phase is
characterized by a pure spectrum, called phase spectrum I0k
with k ∈ [[1,K]]. The I0k ’s are the number of photons per unit
time as a function of a discrete energy vector {en}n=1,...,N ,
with N the total number of energy points. The ground truth
of an IXS image is an image where each pixel is associated
with a combination of phase spectra, so as to generate a piece-
wise linear image. Partial volume effects are generated at the
phase boundaries resulting from signal sampling on pixelated
detectors [8]. The signal (spectrum) for each pixel x is then
formulated as:

I0(x, en) =
K∑

k=1

p0k(x)I
0
k(en), (1)

with p0k(x) the factorization coefficients representing the
weights of each phase k in pixel x.

2.2 Observed signals
The signal is captured by photon-counting pixel detector

systems producing a shot noise. For each energy point en and
each pixel x, the observed signal is a discrete random variable
following a Poisson distribution:

S(x, en) ∼ P(t× I0(x, en)), (2)

with t the acquisition time per energy point. All random
variables S(x, en) are independant.

2.3 Solving the inverse problem
To retrieve the ground truth, i.e. the p0k(x), from the noisy

observations S(x, en), we are facing an inverse problem that
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we solve using a least squares estimator— although it does not
maximize the likelihood function, it is unbiased and allows
an explicit solution unlike Poisson regression. More precisely,
for each pixel S(x, en), denoting S(x) = (S(x, en))n ∈ RN

the observed signal, we are looking for:

p̂(x) = argmin
p∈RK

||S(x)− Ap||2, (3)

where the matrix A ∈ RN×K is the linear measurement opera-
tor given by

A = t× I0 = t×

 I01 (e1) · · · I0K(e1)
...

. . .
...

I01 (eN ) . . . I0K(eN )

 . (4)

We get the following solution: ATAp̂ = ATS. Since the phase
spectrum are non-collinear, the matrix A has rank K ≤ N ,
ATA is invertible, and we obtain a unique solution:

p̂(x) =
1

t
(G0)−1(I0)TS(x) (5)

with G0 = (I0)TI0, the Gram matrix of the I0k ’s, that is a
symmetric positive K×K matrix. The least squares estimator
is indeed unbiased, since we have

E(p̂(x)) =
1

t
(G0)−1(I0)TE(S(x)) = p0(x).

2.4 Optimisation of experimental parameters
We have already seen that the estimated factorization coeffi-

cients p̂ are unbiased, but we also want to control their variance
that is the mean-squared error of the phase composition of the
material. The covariance of the estimated factorization coeffi-
cients is given by

Cov(p̂(x)) =
1

t2
(G0)−1(I0)TCov(S(x))I0(G0)−1, (6)

with
Cov(S(x)) = Diag(tI0(x, en)), (7)

as {S(x, en) ∼ P(t × I0(x, en))}n=1,...,N are independent.
We have the following inequality between positive symmetric
matrices: Cov(S(x)) ⩽ tCIN , with C = max

x,en
I0(x, en) a

constant and IN the identity matrix of RN . We thus get:

Cov(p̂) ≤ C

t
× (G0)−1. (8)

And therefore

E
(
∥p̂(x)− p0(x)∥2

)
≤ C

t
× Tr

(
(G0)−1

)
. (9)

To include the selection of M energy points among the N
at a fixed t, we define the function

F(ω) = Tr(G0(ω)−1), (10)

where the vector ω ∈ ΩM = {(ω1, . . . , ωN ) ∈
{0, 1}N with

∑N
n=1 ωn = M} is the energy points selection

vector, and the matrix G0(ω) is the Gram matrix restricted to
the selected energy points:

G0
k,l(ω) =

N∑
n=1

ωnI
0
k(en)I

0
l (en), (11)

with k, l ∈ [[1,K]]. For a fixed t and M , the goal is to
identify the ω ∈ ΩM that minimizes F(ω), resulting in an
optimal selection of energy points. Evaluating all possible
ω ∈ ΩM energy subsets for each M is computationally in-
tensive. Therefore, we reformulate the problem in a continu-
ous relaxed convex form, allowing the use of an optimization
approach based on the Frank-Wolfe algorithm [6]. The min-
imization of the function F(ω) = Tr(G0(ω)−1) (that can be
shown to be a convex function) is performed on the convex set
ω ∈ Ω′

M = {(ω1, . . . , ωN ) ∈ [0, 1]N with
∑N

n=1 ωn ≤M}.
At each iteration J of the Frank–Wolfe algorithm, we mini-
mize the linear approximation of the problem by selecting the
M smallest values of ∇F — for which we have an explicit
formula with negative components. We denote the result of
the Frank-Wolfe algorithm as ω∗

M (Algorithm 1).

Algorithm 1: Frank-Wolfe algorithm

Initialization ω := {MN , . . . , M
N }

while J < Jmax do
Compute the gradient∇F(ω)
Assign the M smallest values of∇F to 1, and 0

otherwise, in z.
Update ω ←− ω + 2

J+M (z− ω)
Update J ←− J + 1

end
Sort ω
return Indices of the M largest values of ω

From Equation (9), we see that, as the exposure time per
energy point t increases, the MSE on the obtained factoriza-
tion coefficients will decrease. This is explained by the fact
that the physical model is a Poisson noise. From Equation
(10), and computing the gradient of F, we observe that it is a
decreasing function of ω. Therefore, increasing the number of
energy points decreases the MSE. This is explained by the fact
that adding more information in the inverse problem allows
reducing the uncertainty. Now, when T = t×M is fixed, it
is not clear what the optimal choice of (t,M) is since both
should be as large as possible to minimize the MSE. We solve
this problem in the next section using a digital twin approach.

3 Simulation results

3.1 Synthetic and experimental data
IXS spectra were experimentally collected on K = 5 artists’

pigments at the GALAXIES beamline of the SOLEIL syn-
chrotron facility [7] over N = 124 energy points, covering
≈ 24–76 eV [4]. The spectra were smoothed and assigned to
I0k . The phase spectra were labelled: 1-light turquoise, 2-zinc
white, 3-burnt umber, 4-indigo veritable and 5-indian yellow
(Figure 1A). A 2D synthetic image was produced using draw-
ing software to represent the pure and mixed areas composed
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Figure 1 – Construction of the ground truth as a combi-
nation of experimental and numerical data. (1) The phase
spectra I0k are experimentally collected on raw materials and
denoised. (2) A phase map is produced synthetically. (3) The
hybrid datacube is created by injecting the I0k ’s into the phase
map p0k(x), yielding the ground truth.

by the five artists’ pigments. Phase maps are obtained by (1) as-
signing p0k = 1 where the pigments are pure and p0k = 0.5
where the lines cross (Figure 1B) — in accordance with the
most common case studies, (2) convolving the resulting phase
map with a kernel of size 3 × 3 to model the partial volume
effect at the shapes boundaries. By injecting the experimental
spectra of the pure phases I0k in the synthetic phase map, a
hybrid ground truth is obtained (Figure 1C).

3.2 Comparing different energy grids
We applied the digital twin, keeping T fixed and varying

M between K = 5 and N = 124, using either a regular grid
of M energy points or the optimised grid obtained with the
Frank-Wolfe algorithm. The noisy images were factorized
using the least squares estimator method by injecting the I0k ’s
subsampled at the corresponding energy grid point. To eval-
uate the best distribution of energy points, the mean squared
error (MSE) is defined as a function of M :

MSE(M) =
1

Lx × Ly

∑
x

∥p̂(x)− p0(x)∥2, (12)

where p̂(x) is in fact a function of G0, that is itself a function
of M . We note Lx × Ly , the image size.

For different regular grids of M points, the MSE is calcu-
lated (Figure 2, red curve). An unstable behavior is observed
for low M , attributed to the inability of the regular grid to
capture discriminating spectral features, such as the peak at
≈ 60 eV in the 3-burn umber spectrum, when collecting at
sparse energy points. As M increases, the MSE tends to con-
verge towards a constant value, demonstrating the equivalence
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Figure 2 – Mean squared error as a function of M at T
fixed. (A) Experimental MSE of data projected onto the regu-
lar energy grid and the Frank–Wolfe grid, along with the upper
bound of MSE at energy points selected by the Frank–Wolfe
algorithm as a function of M . Experimental curves represent
the mean of 15 numerical experiments, with the correspond-
ing 95% confidence interval. The resulting phase maps for
M = K for data projected onto the regular grid (B) and onto
the Frank-Wolfe grid (C).

of hyperspectral (low t, high M ) and multispectral (high t,
low M ) collection modalities when M ≳ 40

The Frank-Wolfe algorithm was applied to the phase spec-
tra to calculate an optimal energy grid minimising the MSE
(Figure 3). We observe that when a point is selected, it has a
high chance of being kept when M increases. The resulting
grid was evaluated using the digital twin (Figure 2, blue curve).
Compared to experimental practice, our optimal approach is
more efficient. In particular, at M = K, the difference in
the ability of the two grids to recover the phase distribution is
clear when we look at the phase maps obtained (Figure 2B, C).
In addition, the trend in experimental MSE derived from the
Frank-Wolfe optimised grid shows that the scenario in which
M is minimal (and therefore t maximal) is the one that min-
imises the MSE. We note that the upper bound (Equation 9)
for high M appears to be less optimal than the experimental
MSE derived from the regular grid. Although the Frank-Wolfe
optimisation seems successful, the factor used in the upper
bound is rather coarse.

4 Conclusion
Compared with traditional experimental scenarios, the op-

timal selection of (t,M) parameters considerably improves
data processing when irradiation time is limited. It is inter-
esting to note that the best compromise is to collect low M
at high t (that is, the multispectral modality rather than the
hyperspectral one).The guidelines extracted from this work
make it possible to safely collect IXS images of artists’ pig-
ments. We believe that such approaches could be extended to
other imaging devices and samples and integrated into routine
pre-run phases.
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Figure 3 – Optimal selection of energy points. The selected
optimal energy points, ω∗

M , are highlighted with markers. The
Frank-Wolfe algorithm with 1,000 iterations was used for each
M based on the I0k ’s. The marker density appears higher for
energy points below 30 eV due to the smaller energy step size
in the corresponding range. We also show the spectra above to
visualize the position of the selected energy points.
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