Some recent advances in Variational Inference
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Résumé — Les développements récents en inférence variationnelle visent a dépasser les limites des approches traditionnelles en
adoptant des techniques telles que 1’échantillonnage préférentiel et 1’utilisation de nouvelles divergences, en lien avec des stratégies
de reparamétrisation. Cet article propose une présentation générale de I’inférence variationnelle illustrée par un exemple numérique
dans le cadre d’un modele classique de traitement du signal, puis fait le point sur certaines innovations récentes telles que 1’inférence
variationnelle par poids d’importance et I’inférence variationnelle avec les divergences alpha.

Abstract — Recent advances in Variational Inference (VI) have aimed to overcome the shortcomings of traditional methods
by adopting refined techniques such as importance weighting and alternative divergence metrics, leveraging reparameterization
strategies. In this paper, we present a comprehensive introduction to VI, illustrated through a numerical experiment based on a
simple and classical signal processing model. We discuss significant innovations in the field, particularly highlighting Importance
Weighted VI and alpha-divergence VI, while outlining both their theoretical foundations and practical benefits.

1 Introduction

Variational Inference (VI) has emerged as an essential method
for approximate Bayesian inference [2]], enabling scalable
probabilistic modeling in scenarios where exact inference is
computationally infeasible. Following, e.g., the seminal work
of [11], VI has also become instrumental in Al research. At its
core, VI approximates complex posterior distributions using a
family of simpler, tractable densities. A primary drawback of
traditional VI is the limited expressiveness of the variational
family, which can lead to inaccurate posterior approximations.
Recent advances, including Importance Weighted VI IWVI)
and alpha-divergence VI, have focused on improving the flex-
ibility of VI methods. IWVI tightens the variational bound
using multiple importance-weighted samples, while alpha-
divergence VI modifies the learning objective to allow better
posterior coverage. This paper begins with an accessible in-
troduction to VI, illustrated through an example relevant to
the signal processing community. We then examine recent ad-
vances, highlighting both theoretical perspectives and practical
implications.

2 Variational Inference

General principles. Consider a probabilistic latent variable
model in which the data y € Y is generated by a hidden
variable x € X. We assume a joint density py(y,x) =
po(y | X)po(x) parameterized by 6 € T, where py(x) is
the prior density of the latent variable and py(y | x) denotes
the conditional density function of y given x. Typically,
two central problems arise in this context: computing the
likelihood py(y) and obtaining moments or samples from
the posterior pg(x | y). In most interesting models, both
tasks are intractable. Variational Inference (VI) sidesteps
this computational difficulty by approximating the true pos-
terior py(x | y) with a density ¢*(x) selected from a family
of simpler, tractable densities @ = {q, © € H}. The

quality of the resulting approximation is quantified by a cho-
sen criterion, usually the Kullback-Leibler (KL) divergence
Dx1.(q4(-) || po(- | y))- In this framework, VI can be framed
as the maximization of the Evidence Lower Bound (ELBO),
defined as

ELBO(0, p,y) = /
X

Po(y, X)>
In | ——— | qo(x)dx. (1)
< dep (x) o(x)
By writing pg (y, x) = pe(x|y)pe(y) and using the properties
of the logarithm, we get

ELBO(0, »,y) = Inpy(y) — Dxr(q,(-) [|po(- | ¥)). (2)

In particular, ELBO(6, »,y) < Inpy(y) and minimizing
Dxr.(gy(-) | pa(- | ¥)) with respect to ¢ aligns the ELBO
with In pg(y). Thus, jointly maximizing the ELBO for 6 and

 approximates the Maximum Likelihood Estimator (MLE).

Variational Expectation-Maximization algorithm. Alter-
natively maximizing the ELBO with respect to ¢ and 6 is
known as the Variational Expectation-Maximization (VEM)
algorithm. This method initializes the parameter 6 at some 6
and alternates updates of ¢ and 6 through an ascent procedure:
1. pr41 = argmax ELBO(0k, ¢,y),
peH

2. 041 = argmax ELBO(0, r11,y)-
0cT

Variational EM can be viewed as a generalization of the clas-
sical Expectation-Maximization (EM) algorithm. When the
variational family @ is sufficiently expressive to include the
posterior py(- | y) for all § € ©, these two steps simplify to:

1. thk,(') = pak(' | Y)’
2. Opy1 = ar% nTlax Eq,, Inpo(x,y) |yl
€

EM involves the density py, (- | y), which is often intractable.
VEM addresses this by using an approximating family. A key
distinction is that EM increases the likelihood at each step,
whereas VEM optimizes a lower bound (see (2)).
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3 A signal processing example

We now provide an illustrative example where both the EM
and the variational EM based on the so-called mean-field ap-
proximation have closed forms.

Setting. Consider the AR(1) model observed with additive
noise. Denoting real-valued observations by y = Y. =
(Y2)1<t<7 and hidden variables by x = Xo.7 = (Xt)o<t<T,
the model is defined as

Xip1 = VX + ¢y,

Y = (X + s,

Er ~ N(Oa O-%L)?

3
UtNN(0a03)7 ®

where § = (¢,(,03%,02) denotes the unknown parameters.
For simplicity, we assume that X is known (or it can be set to
zero). The joint density is thus given by

po(x,y) = [ [ po(¥a | X)po (X | X4 1),

t=1

where pg(Y; | X;) = N(Y; | (X4, 02) and po(X; | Xi1) =
N(Xy | pXi_1,07).

Expectation-maximization. The EM algorithm amounts to
iteratively maximizing the integral function

0 — Qo(0) = /}RT In(pe: (x,y)) po(x | y) dx.

It is tractable in this model, since @y only involves
Eg[Xt | Yi:T], EQ[XE | Yl:T] and EO[Xtthl | Y]_;T], all of
which can be computed using the Kalman filter and smoother.
Optimizing Qg (#') with respect to 8’ yields the EM iterative
update 0* = (v*,¢*, (07)*, (62)*) for this AR(1) model:

_ ZtT:1 Eo[X¢ X1 | Yi7]
o Bo[X7 1 | Yiar]

_ 23:1 Y Eg[ X, | Yi.7]
Y1 Bo[X? | Vi)

d)*

)

C*

T
03 = 7 SO Eal(Xe — 0 Xo0)? |V,

t=1

T
(02" = 2 S Bol(¥i — CX0)? | Vi)

t=1

Variational EM. To approximate the posterior density
po(X1.7 | Y1.7) in the traditional VI framework, we choose
the mean-field variational family:

T
qtp(XlzT) == H QLpt (Xt)7
t=1

where we denote ¢ = (¢1)1<¢<r With ¢, = (p¢,v¢) and
4o, (X) = N(X | e, ve). By convention, we set pig = Xo,
v2 = 0. In this setup, ELBO(6, ¢, X1.7) (see (1)) admits a
simple closed form and the variational means (41} )1<;<7 that
maximize it satisfy the tridiagonal system of equations

ag(pi—1 + pi41) + bopy = coYr, te[1,7-1],

aguy_y + bywp = co¥r,

where ag = —021, by = 02( + 02(1 +?), by = 07( + o2
and ¢y = o2(. This system of equations can be solved using
the Thomas algorithm, a special case of Gaussian elimination.
Regarding the variances, we have

2 2 2 2

vIh

/ Y
bt‘)

ag

vh = te1,T-1].

The optimization of ELBO(6, ¢, X1.7) with respect to 6 also

has an explicit solution 6% = (¢*,(*, (07)*, (02)*):

T T
W = D i Mtfhi—1 * Dot Yept
= o7 , =7 ’
S (i + 07 y) > (uf +0?)

T
(i) = %Z {(Ht — 1) + (V) opy + O-t2:|7

t=1

@2 = 2 30 [0 = ) + ()%02].

t=1

~

Experiment. We generate synthetic data of length 7" = 500
from the model , with Xy = 1.2, ¢ = 0.88, { = 1.23,
o7 = 1.34, and 02 = 0.95. We use EM (with the Kalman
filter) and traditional VI (VEM) to infer the parameters § =
(¢,¢,0%,02). Initial values for 1 and ¢ are drawn from a
standard Gaussian, while o7 and o2 are drawn uniformly in
[0.1,10]. We give each method a time budget and a fixed
number of iterations. Within the allotted time, we repeatedly
run each method from random initializations, stopping after
the predetermined number of iterations and retaining the last
parameter estimates. Among the available repeated runs, the
one with the best likelihood is our final estimator. This pro-
cedure is repeated 20 times to visualize the distribution of
the obtained estimators through boxplots in VEM
takes advantage of more available runs up to 8 iterations. EM
eventually achieves higher accuracy than VEM, but the gain
mainly leads to overfitting. The difference between the ELBO
and the true likelihood is called the variational gap, a smaller
gap is synonym of a tighter and more reliable approximation.
Here, the gap remains significant, meaning that the mean-field
approximation fails to converge to the actual posterior. Notice
that VEM runs almost three times as fast as EM (both scale as
O(T)) with similar memory requirements, making it signifi-
cantly more scalable while maintaining comparable estimation
quality on this example. In more intricate models, the E-step
of the EM can be intractable. A proper choice of variational
family then allows to perform gradient-based optimization of
the ELBO with respect to both the model parameter ¢ and
variational parameter ¢ using the reparameterization trick [[11].
This makes VI a particularly efficient and scalable inference
technique, even for the very high-dimensional models used in
current Al applications.

4 Importance Weighted VI

Monte-Carlo objectives as variational bounds. Let the

~

sequence (P(8,y,N))n>1 be an unbiased estimator of the

~

normalizing constant py(y), i.e., E[P(6,y, N)] = po(y). De-
fine the associated Monte-Carlo objective (MCO) [15] by

Ls(0,y,N) =E[P(8,y,N).
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Figure 1 — Synthetic data with 7' = 1024, runtime budget of 10 sec
to perform a fixed number of iterations as many times as possible.
Boxplots show the best likelihood across 20 experiments. The colored
numbers below the boxplots correspond to the average number of
runs in each experiment.
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By Jensen’s inequality, we have L5(6,y, N) < Inpy(y).
When the estimator 73(9,y,N ) is consistent, the MCO
L5(0,y,N) converges to Inpg(y) at a rate that can be
spec1ﬁed under relatively mild assumptions [13]. By set-
ting PELEO (6, 0, y, N) = p(y, xn)/gp(Xn), we recover
the ELBO as a special case. The Importance Weighted
Auto-Encoder (IWAE) bound [3]] is obtained by taking
PV, p,y,N)= L3N pe(yv"%’ , and yields the MCO:

=1 q,
Zpe Y, X )] (4)
Q@ Xz

i=1

‘CIW(ea ©,y, N) = Eq%” [ (
Note that we have ELBO(6, p,y) = Liw (0, ¢,y, 1).

Theoretical insights on the IWAE estimator. While it may
not be obvious at first glance, the IWAE estimator indeed
minimizes a KL divergence [9] and provides a tighter bound
on the evidence than the traditional ELBO [3]]. Specifically,
for all N € N*, we have

ﬁIW(ev(Pay,N) S ﬁIW(ea@aY»N + 1) S hlpe(}’)~

Remarkably, Liw(0,¢,y, N) converges to the true log-
evidence In py(y) as the number of samples N goes to infinity,
independently of the expressiveness of the variational family
Q. While approaching the evidence more closely may sound
beneficial, it must be noted that the per-iteration computa-
tional cost of IWVI grows with N. More importantly, it has
been shown in [16]] that increasing N can degrade inference
performance in certain settings due to a worsening signal-
to-noise ratio of the gradient estimator. The asymptotics of

Importance-Weighted Variational Inference (IWVI) have since
been studied extensively in [4]. The analyses reveal new in-
sights and establish consistency and asymptotic efficiency of
parameter estimates under smoothness conditions, as both the
sample size N and the size of observed data tend to infinity.

5 Alpha-divergence VI

Shortcomings of the KL divergence. Although minimizing
the forward KL divergence often yields accurate and efficient
estimation of the posterior mean, it may fail to capture com-
plexity expressed in higher order posterior moments [[14} [17].
Recall the expression

Dic (a0 [ |¥)) = [ (“"))) 4o (x) dx.

po(x|y

This learning objective heavily penalizes variational approxi-
mations that put mass in regions of X where pg(x |y ) vanishes.
As aresult, g, is forced towards high-density regions of the
posterior, effectively leading to a mode-seeking behavior and
potentially neglecting lower-density regions. Note that the
opposite behavior is expected if we consider the reverse KL
divergence, Dxr,(po(- | ¥) || ¢ (+)). In that case, g, is discour-
aged from being zero in regions where the posterior density is
non-negligible. This drives the variational approximation to
extend over the full support of py(x | y), promoting a mass-
covering behavior.

Alpha-divergences. The class of alpha-divergences provides
a flexible framework that encompasses both the forward and
reverse KL divergences as special cases and allows tuning
between mode-seeking, and mass covering tendencies through
a scalar hyperparameter o € R\ {0, 1}. Following the con-
vention established in [5], we define

Da(gp [ po(-y))
1 1—
=— o o dx —1].
The definition can be extended by continuity to @ = 1, in
which case we recover the forward KL divergence, and oo = 0
which corresponds to the reverse KL divergence. Other notable
special cases include the Hellinger distance at « = 0.5 and
chi-square divergence at o = 2.

Variational-Rényi bounds. Minimizing D, (g, || pe(- | y))
for @« # 1 (or, equivalently, maximizing lnpy(y) —
Do (g, || po(-|y))) can be done by maximizing the Variational-
Rényi (VR) bound [12]],

i - n ( /X a3 () (v, X)dx) .

Similarly to @), a multi-sample version of the VR bound can
be defined. The VR-IWAE bound [6] writes

‘COL (97 P, Y) =

Lo(0,0,y,N)

1 Y pe(y,x)\
e (e ) o



Variational parameters optimization. The improved flexi-
bility offered by the class of alpha-divergences comes at the
price of greater complexity and additional challenges when
optimizing the parameters, notably biased gradient estimators.
Alternatively to gradient-based optimization of the VR-bound,
an iterative optimization scheme was proposed in [7]], with the
following update rule:

P41 = arg maX/ Ca(x:6, 1) In ( () ) dx, (6)
X

@eH Aoy, (X)

where (,(x; 0, ) o< g3 (x) py~*(y,x) is a probability density.
Assuming that the update (6)) can be computed exactly, the al-
gorithm is monotonic in the sense that D, (g, , || po(-|y)) <
Da(qp, [|Po(- | ¥)). When the variational family Q is
an exponential family with natural parameter ¢, sufficient
statistic .S and log-partition function A, that is, g,(x) =
h(y)exp ({¢, S(x)) — A(¢)), it can be parameterized by its
mean = VA(y). The updates can be expressed through f:

. /X S(x) Ca(x: 0, 1) dx. ™

The natural parameters (py)r>1 can be recovered by com-
puting ¢ = (VA)~!(ug). Under relatively mild assump-
tions, the sequence (y)r>1 converges to a minimizer of the
alpha-divergence at an asymptotically exponential rate [1]].
However, the integral in (7) is generally intractable and we
must resort to Monte-Carlo estimation to approach it. The
resulting estimator is biased, due to the normalizing constant
fx a5 (x) pé_o‘(y, x)dx in (4(-; 0, ¢). An alternative update
rule involving only unbiased estimators can be considered [1]],
but this scheme seems to be far less stable and its interest pri-
marily lies in fine-tuning pre-trained models. In the context of
Variational Auto-Encoders (VAEs), a link can be drawn with
gradient-based optimization of the VR bound [7, [12]].

Joint optimization of § and . Recall first that the EM algo-
rithm corresponds precisely to the case where joint optimiza-
tion is performed alternatively (and exactly), the true posterior
lies within the variational family, « = 0, and N = 1. In the
general case, gradient-based updates are generally preferred.
For example, promising empirical results were reported in [12]],
using VAEs. Later theoretical analyses [6} 8] extended the re-
sults from [[16] on the IWAE bound to the VR-IWAE bound
defined in (3), demonstrating clear advantages to choosing
a € (0,1). However, in high-dimensional settings, gradient
estimators collapse unless N grows exponentially with the
dimension [8]], reinforcing concerns stated in [[10]. In short,
the theory tends to confirm that there is little benefit in using
N > 1in very high-dimensional parameter settings.
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