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Résumé – Les méthodes d’apprentissage profond pour la reconnaissance d’objets rencontrent des difficultés pour généraliser. Pour
savoir si deux images montrent le même objet, une représentation est calculée pour chaque image séparément. Cette approche est
insuffisante pour des applications nécessitant une attention aux détails fins. Dans cet article, nous nous concentrons sur le problème
de la reconnaissance de véhicules à partir d’images de même point de vue. Nous proposons une méthode basée sur l’appariement de
points clés qui combine des informations indépendantes et dépendantes des paires pour prédire si deux images sont des instances du
même objet. Nous proposons un protocole d’évaluation axé sur la généralisation à des types de véhicules non vus. Des expériences
approfondies montrent que la méthode proposée se généralise mieux aux types de véhicules non vus que l’état de l’art indiquant
ainsi une plus grande capacité de généralisation.

Abstract – Deep metric learning approaches for object instance recognition struggle with generalization. To infer if two images
are of the same instance, a representation is computed for each image, independently of the other. This is insufficient for reliably
finding distinctive fine-grained details. In this paper, we focus on the problem of same-view vehicle recognition. We propose a
keypoint matching-based method that combines pair-independent and pair-dependent information to predict whether two images are
instances of the same object. We propose an evaluation protocol focused on generalization to unseen types of vehicles. Extensive
experiments show that the proposed method generalizes better to unseen vehicle types than the state of the art.

1 Introduction
Recognition in computer vision consists of determining if

two images pertain to the same instance of an object while be-
ing robust to pose [7], viewpoint changes [16], occlusions [15],
and degradations [18]. Nowadays, the most popular ap-
proaches to recognition rely on deep metric learning [8]. These
approaches learn a mapping from the image space into a latent
space that clusters objects of the same instance together. When
employing a basic contrastive learning approach, networks
learn to extract common features between images. However,
without appropriate supervision, the network can overfit on
basic, common patterns (such as color and general object
shape) and fail to generalize well [8]. Additionally, obtain-
ing a comprehensive representation requires large amounts of
data [18]. When it comes to objects, they can be anything
from faces, animals, people to vehicles. The vehicle setting is
particularly challenging due to the very similar appearances
of different vehicle instances. This is exacerbated by the lack
of common information in cases when the matched objects
are from different viewpoints. In this paper, we focus on the
context of vehicles seen from the same point of view. We pro-
pose an evaluation protocol that puts forward generalization
to unseen vehicle types. Additionally, to recognize vehicle
instances, we propose a binary decision network that lever-
ages both pair-specific descriptors through Lightglue [10] and
pair-independent descriptors. Our method yields competitive
performance and generalizes better than the state of the art.

2 Related works
Deep metric learning aims to learn an object representation
such that the obtained mapping respects a similarity measure.

Positive pairs Negative pairs

Figure 1 – When comparing image pairs for instance recogni-
tion, finding discriminative information in one image depends
on its paired counterpart: the vehicle logo (in red) distinguishes
the second negative pair but not the first. Different windshield
elements (in blue) are relevant across the positive pairs illus-
trated. Lightglue [10] is a keypoint-matcher that associates
spatially coherent details (in green) across images, as seen in
the above figure, producing pair-dependent information in the
process. We combine this information with pair-independent
information to recognize vehicle instances.

For that, contrastive approaches are often used [18]. These
consist of pulling samples of the same identity closer (i.e.,
positives) while pushing samples of different identities away
(i.e., negatives) in a latent space. Various loss functions are
used to achieve this, such as classification loss [21], triplet
loss [6] and InfoNCE loss [14]. Sample selection has a major
impact on what type of information the network learns [20].
Local feature matchers make correspondences between two
sets of local features such as SuperPoint [3]. The goal is to fil-
ter matches from non-matches using spatial consistency: The
relative position of the matched key points should be similar
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Figure 2 – An illustration of the proposed method. SuperPoint [3] features are extracted from image pairs and matched through
Lightglue [10]. The top k descriptors (in terms of matching score) of each are fed together to M additional Lightglue matching
blocks (MB) and are then separately processed through a 3-layer MLP to create pair-dependent representations f2→1 and f1→2.
They are fed together with ResNet [4] features to another 3-layer MLP to produce a final decision score Sdec.

across images. Deep learning-based methods achieve state-of-
the-art performance. Lightglue [10] proposes a transformer-
based approach that solves the partial assignment problem
with a network instead. The method is trained to associate
a key point and its homography-warped counterpart. A con-
fidence classifier and an exit criterion are added to reduce
computations.
Vehicle Re-identification consists of recognizing vehicles
through multiple views. Similar to the recognition task, the
goal is to learn a similarity measure. Recent deep learning-
based methods use metric learning to achieve state-of-the-art
performance [8]. Some state-of-the-art approaches [13] use the
early stages of the ResNet [4] backbone, adapting them with
a classification and a triplet loss. Others like TransReID [5]
use visual transformers instead to obtain an image represen-
tation out of local patch representations. They also propose
a Jigsaw module that produces additional image representa-
tions out of different subsets of local representations. When
using a contrastive approach, networks need proper supervi-
sion to learn relevant fine-grained information [9]. Hence,
some methods complement their training with pose informa-
tion [17]. Others fuse different types of representations [1], a
view-dependent and a view-independent representation. That
said, the relevance of information in an image changes depend-
ing on what that image is compared to. Hence, some methods
like DCC [19] extract features from each image and compute
an attention matrix to create co-dependent representations.
They also use an LSTM-based comparator that mimics the
foveation of human eyes to produce relative representations.

3 Proposed method: Dual representa-
tion network

A recognition method built only on pair-independent rep-
resentations is not well-suited for finding fine-grained de-

tails [19]. The reason is that detecting discriminative regions
depends on a given pair, as illustrated in Figure 1. Hence, we
propose a method that combines pair-dependent representa-
tions obtained through Lightglue [10] with pair-independent
representations. Contrary to [19], we use spatially coherent
information complemented with pair-independent information.

As illustrated in Figure 2, n SuperPoint [3] keypoints KP =
(r, p, s) are extracted from each image, where r ∈ Rn×d are
the representations with d = 256, p ∈ Rn×2 are coordinates
and s ∈ Rn are detection scores. They are then matched with
Lightglue (LG):

(r̂1, r̂2) = LG(KP1,KP2). (1)

Out of the n transformed representations r̂1 and r̂2, we select
the top k in terms of matching scores to obtain x1, x2 ∈ Rk×d.
These representations are given as input to M additional Light-
glue matching blocks (MB) which consist of 2 self-attention
transformers applied separately to both inputs followed by a
cross-attention transformer:

(x
(m)
1 , x

(m)
2 ) = MB(x

(m−1)
1 , x

(m−1)
2 ). (2)

Their result is later fed into a 3-layer MLP (3 fully connected
layers with GELU non-linearities) and flattened to create pair-
dependent representations f2→1, f1→2 ∈ R kd

8 .

f2→1 = flat(MLP3(x
(M)
1 )), f1→2 = flat(MLP3(x

(M)
2 )).

(3)
As for the pair-independent representation, we use the earliest
4 stages of a ResNet-50 [4] backbone to extract representations
F ∈ Rb, b = 2048 that are normalized using a batchnorm1D.
Both pair-dependent and pair-independent representations are
then concatenated, producing dual representations:

DR1 = [F1, f2→1], DR2 = [F2, f1→2]. (4)

Both dual representations are then concatenated and fed to
another 3-layer MLP to create a final representation:

FR = MLP3([DR1, DR2]). (5)
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The final decision scores are then computed as:

Sdec(I1, I2) = σ(P (FR)) = (S0, S1) ∈ R2, (6)

where P is a linear projection and σ is a softmax function.
S0 and S1 correspond to the predictions of labels 0 and 1,
respectively.

The ResNet [4] backbone, SuperPoint [3] and Light-
glue [10] networks are all frozen. The rest is trained and
supervised with a negative log-likelihood loss:

Lnll = −y log(S1)− (1− y) log(S0), (7)

where y are the ground truth labels, taking a value of 1 for
negatives and 0 otherwise. We refer to this combined approach
as DRnet (dual representation network).

4 Experimental setup
We evaluate performances on the VeRI-Wild[12] and

VeRi776[11] datasets. We create lists of image pairs I1 and I2,
where a pair is either of the same identity (positives, labeled
0) or of different identities (negatives, labeled 1). Train and
evaluation sets contain positives, difficult negatives (vehicles
of the same type and color), and random negatives (of random
type and color) with a 50-25-25% ratio. To study how well
different approaches generalize, we split the dataset identities
into 2 groups, one with common vehicle types such as Sedans,
SUVs, minivans, and business multi-purpose vehicles (MPVs)
and another with the remaining types. The former will be
used for training and testing (Easy test), while the latter will
only be used for testing (Hard test). The easy set identities
are randomly split identity-wise into training, validation, and
testing identities, with an 80-10-10 ratio. Lastly, we focus on
vehicles seen from the same point of view as telling apart two
images of similar vehicles with no viewpoint overlap can be
ambiguous. Hence, all test set pairs are vehicles of the same
view (front-front, rear-rear). We report the binary accuracy.

4.1 Training protocol
We retrain BoT, DCC and TransReID following the author’s

guidelines. When it comes to the DCC’s number of glimpses,
We use T = 4 for stability. We empirically fine-tune decision
thresholds for the Lightglueratio, BoT, DCC, and TransReid.
We randomly sample 100,000 pairs per epoch during training
for 80 epochs and use a learning rate of 0,001, a weight decay
of 4e-4, and a batch size of 256 with SING [2] optimizer.
We resize the images to a 256 × 256 resolution when using
ResNet-50 and to 1024× 1024 to extract n = 256 keypoints
with SuperPoint. Lightglue [10] and SuperPoint [3] are not
retrained. We use imagenet weights for ResNet-50 [4]. All 8
layers of Lightglue are used without point pruning. We use
M = 3 matching blocks and select the top k = 32 Lightglue
features.

4.2 Results
We compare our proposed method to methods that use pair-

independent representations (BoT [13] and TransReID [5])
and pair-dependent representations (DCC [19]). We also
use Lightglueratio [10], the ratio of the number of Lightglue

Test set
Method

Lightglueratio [10] BoT [13] DCC [19] TransReID [5] DRnet

VeRI-776 Easy 58,52 86,28 84,5 90,18 89,75
Hard 65,64 76,1 65,92 73,8 79,01

VeRI-WILD Easy 66,19 91,13 87,14 91,53 96,61
Hard 73,05 85,32 71,68 87,44 88,32

VeRI-WILDtrain →
VeRi776test

Easy - 65,74 70,3 70,97 76,14
Hard - 67,85 65,45 71,78 71,17

Table 1 – A comparison of the test accuracy (%) of various
vehicle recognition methods on the VeRI-WILD and VeRi776
datasets. The best values are in bold, while the second best
are underlined. The proposed method (DRnet) achieves state-
of-the-art performance by combining pair-dependent and pair-
independent representations.

Test set
Method

Lightglueratio [10] DRnet (without ResNet features) DRnet

Easy 58,52 83,5 89,75
Hard 65,64 75,35 79,01

Table 2 – Test accuracy (%) of the proposed method with and
without the ResNet pair-independent representation on the
VeRI776 dataset. The highest values are in bold. Adding addi-
tional processing with Lightglue matching blocks and using
pair-independent representations complements the information
contained in Lightglue features.

matches (the number of matched keypoints out of available
keypoints) as a baseline.

We notice in Table 1 that on the VeRi776 dataset, TransReID
yields the best performance with DRnet slightly behind on the
easy set. On the hard test set however, DRnet performs better
than TransReID and the other methods. On the VeRI-Wild
dataset, DRnet outperforms all other methods on both the easy
and hard sets. We notice a similar behavior when cross-testing
the previously mentioned methods (training on VeRI-Wild and
testing on VeRi776) on the easy set, with the DRnet being
marginally behind on the hard set. DRnet generalizes better
overall to unseen vehicle types thanks to the added spatially-
coherent information.

4.3 Ablation
On pair-dependent and pair-independent information. We
study in Table 2 the impact of adding matching blocks and pair-
independent representations. We see that compared to using
the Lightglue representations as they are through the ratio
of matches, further processing them (without adding ResNet
features i.e, DR1 = f2→1 and DR2 = f1→2 in (4)) drastically
improves performance. This shows that, as expected, fine-
tuning the representations adapts them better to the recognition
case. When adding ResNet features, we notice they drastically
improve performance on both the easy and hard set. This is
due to how Lightglue provides a sparse description of an image
and is hence insufficient alone in a large number of cases.
The information contained in Lightglue. Lightglue yields
two types of information: representations and keypoint match-
ing scores, which are used to solve the partial assignment
problem. To understand the importance of Lightglue [10] for
our proposed method, we modify the representation fed to
DRnet (without ResNet features) right before the matching
blocks (MB) in (2) and report the results in Table 3.

First, instead of using the top k = 32 Lightglue represen-
tations in terms of matching scores (referred to as LG32), we
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SP32 SPLG,32 LG32

Easy 63,6 88,73 93,22
Hard 58,02 84,29 92,03

Table 3 – Test accuracy (%) of DRnet (without ResNet fea-
tures) when using the top k = 32 SuperPoint features in terms
of detection score, SuperPoint features in terms of Lightglue
matching scores, and Lightglue features in terms of matching
scores on the VeRI-Wild dataset. Both the partial assignment
information and representations of Lightglue are important for
DRnet. Adding the partial assignment information obtained
from Lightglue vastly boosts performance.

use their SuperPoint counterparts: we pick out the SuperPoint
representations associated with the k = 32 highest Lightglue
matching scores. We refer to this as SPLG,32. We notice a
slight decrease in performance, showing that Lightglue repre-
sentations were more adapted to the recognition task. Next,
we use the top k representations of SuperPoint in terms of de-
tection scores (referred to as SP32) instead of the top matched
with Lightglue. Compared to SPLG,32, we notice a substantial
drop in performance. This shows that, as expected, using the
set of information shared between images is more adapted for
recognizing vehicles. Both the assignment scores and repre-
sentations of Lightglue are, hence, important for recognition.

5 Conclusion
In this paper, we present our binary decision method that

leverages pair-dependent and pair-independent representations
for same-view vehicle recognition and propose an evaluation
protocol that focuses on generalization to unseen vehicle
types. We conclude that pair-dependent and pair-independent
representations contain complementary information that can
be combined for better performance. Our proposed method
leverages dual representations built on spatially consistent
Lightglue features and generalizes better to unseen vehicle
types than the state-of-the-art.
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